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SUMMARY: As part of our contributions to researches on the ongoing COVID-19 pandemic worldwide, we
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have studied the cough changes to the infected people based on the Hidden Markov Model (HMM) speech recog-
nition classification, formants frequency and pitch analysis. In this paper, An HMM-based cough recognition sys-
tem was implemented with 5 HMM states, 8 Gaussian Mixture Distributions (GMMs) and 13 dimensions of the
basic Mel-Frequency Cepstral Coefficients (MFCC) with 39 dimensions of the overall feature vector. A compari-
son between formants frequency and pitch extracted values is realized based on the cough of COVID-19 infected
people and healthy ones to confirm our cough recognition system results. The experimental results present that
the difference between the recognition rates of infected and non-infected people is 6.7%. Whereas, the formant
analysis variation based on the cough of infected and non-infected people is clearly observed with F1, F3, and F4
and lower for F0 and F2.
Key Words: COVID-19—Cough recognition—Formants—HMM—ASR—Pitch.
INTRODUCTION
The cough is a natural protective mechanism, it helps to
clear the secretions from the respiratory tract and prevents
entering of noxious particles into the respiratory system. It
is generally defined as the sudden expulsion of air accompa-
nied by typical sound. This sound is a characteristic that
allows identification and distinguishes it from other vocal
manifestations.1 Effective measurement of cough is needed
in order to assess the severity of a particular patient's cough
and the effectiveness of treatment. This assessment of cough
intensity so far has mainly relied on subjective measures,
such as cough reflex sensitivity, and on the patient's symp-
tom perception, which was assessed through visual analog
scores for cough, various cough symptoms, and quality of
life questionnaires.2

The authors in3 have described their system uses audio
signals sampled at 8 kHz. Data reduction is achieved by
selecting 1-s segments that contain signals above an energy
threshold. The selected segments of recording are then
played back for the identification of cough sounds. Matos.
S et al4 have proposed an automatic system based on Hid-
den Markov Model to detect cough sounds from ambula-
tory recordings. Their system achieved a success rate of
approximately 82%. In5,6 several of these have described
cough sounds according to their waveforms, finding that the
signal envelope appears to differ between patients with dif-
ferent diseases.
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On the other hand, the researchers in7 have developed an
automatic speech recognition system to evaluate the six dif-
ferent types of voice disordered also was calculated the four
formants (F1, F2, F3, and F4). The aim of their work is to
classify the type of pathology of the voice and to compare
distortion in terms of formants. In another study, Auto-
matic Speech Recognition (ASR) system was developed to
transcribe speech signals from subjects with a speech disor-
der into equivalent text.8 In other similar works,9,10,11 the
authors have evaluated the speech signal of smokers, where
different parameters were measured as pitch, four formants
frequency and jitter. Moreover, they have employed the
ASR technology to develop a system which differentiates
between smokers and non-smokers voice based on the Mel
frequency spectral coefficients (MFCCs) to determine the
voices’ features. Dubuisson et al12 have analyzed the normal
and pathological voices by utilizing the correlation between
different acoustic descriptors kinds that are temporal and
cepstral. Temporal descriptors consist of energy, mean,
standard deviation, and zero-crossing, whereas spectral
descriptors contain delta, mean, different moments, spectral
decrease, roll-off, etc. Their findings show that the correct
classification of pathological voices was 94.7% and the
correct classification rate of normal voices it was 89.5%.
Costa et al13 have discriminated speakers pathological
voices influenced by edema of the vocal fold by using
linear predictive coding (LPC)-based spectral analysis.
Their findings present that the LPC-based cepstral tech-
nique is a good method to illustrate changes in the vocal
tract by vocal fold edema. Recently, a new epidemic
called COVID-19 appeared, and among the most com-
mon symptoms at the beginning of this epidemic disease
were coughing, fever, etc. This led researchers to make
great efforts to understand and combat the phenomenon
from a medical and interdisciplinary point of view, as
well as computer science and engineering in terms of
“digital health” solutions aimed at maximizing the use
of available and achievable means.
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In this work, we develop an open-source ASR system able
to compare acoustic features of cough sounds producing by
healthy and COVID-19 infected people based on Mel-fre-
quency cepstral coefficients and HMM classifier. Also, we
carry out a formants frequency and pitch-based analysis for
two already presented kinds of cough. The first step is the
automated recognition of the resulting COVID-19 cough.
The second step is the confirmation of our obtained results
by using voice analysis methods.

Apart from the introduction in section 1, the paper is
organized as follows. The overview of COVID-19 is pre-
sented in section 2. Section 3 gives a brief cough production.
Section 4 introduces the techniques and methods employed
in this study. The system architecture is described in section
5. Section 6 investigates the experimental results. We fin-
ished with a conclusion.
FIGURE 1. Anatomical description of cough pathways18
THE OVERVIEW OF COVID-19
Coronaviruses (CoV) are a large family of viruses that cause
illnesses ranging from the common cold to more serious dis-
eases such as Middle East Respiratory Syndrome (MERS-
CoV) and Severe Acute Respiratory Syndrome (SARS-
CoV). A new coronavirus (nCoV) corresponds to a new
strain that has not previously been identified in humans. In
late December 2019, an outbreak of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infections occurred
in Wuhan, Hubei Province, China and rapidly spread in
China and outside.14 On February 12, 2020, WHO officially
named the disease caused by the novel coronavirus as Coro-
navirus Disease 2019 (COVID-19) also declared the epi-
demic of COVID-19 as a pandemic on March 12th 2020.15

Since most COVID-19 patients have been diagnosed with
pneumonia and characteristic CT scans, radiological exami-
nations and laboratory analyzes have become vital in early
diagnosis and disease course evaluation.16 The common
symptoms of pandemic COVID-19 are fever, dry cough and
fatigue and breathing difficulties. In the most serious cases,
the infection may cause pneumonia, severe acute respiratory
syndrome, kidney failure, and even death.17
COUGH PRODUCTION
The cough is a defense reaction mechanism that allows
clearing the breathing ways of irritants, particles and
microbes by an air expulsion from the lungs via the epiglot-
tis with fast speed. Cough is generated by three stages; Inha-
lation (breathing in), increased pressure in the throat and
lungs with the vocal cords closed, and an explosive release
of air when the vocal cords open, giving a cough its charac-
teristic sound.18 Cough is a very important feature of more
than 100 diseases and other medical symptoms. As reflex-
generated perturbation of the respiratory function, cough is
an important symptom in many respiratory diseases or irri-
tations.

Cough can be produced by several mechanisms like recep-
tors where the activation of specific these receptors will gen-
erate action potentials that will be carried by the vague
nerve, in particular, to the nucleus of the solitary tract
(NTS) in the brainstem. This has connections to neurons in
the respiratory and coordinating centers of cortical and sub-
cortical coughs. Once the information has been integrated,
the signal is transmitted by the efferent channels to all of the
actors (muscles of the upper airways, accessory respiratory
tract, phrenic muscle and abdominal muscles) allowing the
cough motor effort via effector motor neurons.19 The sche-
matic description of the cough reflex with the location of the
receptors, the afferent pathways, the nerve centres, the effer-
ent pathways and the effectors is shown in Figure 1.
TECHNOLOGY AND METHOD
In this study, in the first case, popular HMM statistical
method in machine learning systems were used to classify
COVID-19 and non-COVID-19 cough sounds. In the
second case, the cough sound acoustic measurement
pitch and formants are exploited to confirm our ASR
obtained results.
Pitch
Pitch describes the sound perceived fundamental frequency
(F0) and is one of the main auditory attributes of sounds
along with loudness and quality.20 It is defined as the vocal
cords vibration rate under the flux of the glottis air out.
Usually, the pitch is ignored by ASR systems and is consid-
ered as irrelevant to the recognition tasks. Although much
sounds information passed through pitch that is above the
levels of lexical and phonetic. In addition to providing the
necessary information on the nature of the vocal signal exci-
tation source, the speech pitch contour can be exploited for
the speaker's identification, emotion state recognition, voice
activity detection tasks and many different applications.
Different Pitch extraction methods were referred to in the
literature.21 The autocorrelation approach is one of the
most widely utilized time-domain methods to estimate the
speech signal pitch period.22 This approach is based on the
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FIGURE 2. Hidden Markov Model (HMM)—five-states.
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detection of the highest autocorrelation function value in
the interest region. For a known discrete signal {s(q), i= 0,
1, . . ., QS� 1}, generally, we define the autocorrelation func-
tion as:

RS mð Þ ¼ logQ! 00

1
2Qþ 1

XQ

q¼�Q

s qð Þs qþmð Þ 0� m � M

Where Q is the analysed sequence length and M0 is the
autocorrelation point’s number that we want to calculate.

For estimation of pitch, if s(q) was supposed as a peri-
odic sequence with period P, s(q)=s(q + P) for all q, the
autocorrelation function is also periodic RS (m) = RS

(m + P). Conversely, the periodicity in the signal is indi-
cated by the periodicity in the autocorrelation function.
Formants
By changing the shape of the vocal tracts, several shapes of
a perfect tube are generated, which in turn can be utilized to
change the required vibration frequencies. Each of the vocal
tract preferred resonant frequencies (corresponding to the
relevant bump in the frequency response curve) is known as
formant.23 The cough feature sound results from the vibra-
tions of the vocal cords, mucosal folds above and below the
glottis, and the accumulated secretions. The variation in
cough sounds is due to various factors that include the secre-
tions nature and amount, anatomical differences and patho-
logical changes in the larynx and another respiratory tract,
and the strength of the cough. Cough vibrations also help
dislodge secretions from the walls of the airways. There are
divers formants, each at a separate frequency; formants
occur at intervals of approximately 1000 Hz. At any point
in time (as with spectra) there may be any number of for-
mants, in the case of speech, most of the information relat-
ing to vowels is determined in the first four formants, called
F1, F2, F3, and F4. These are generally called F1 that indi-
cates the first formant, F2 presents the second formant, F3
indicating the third formant, etc. That is, by moving around
the body of the tongue and the lips, the position of the for-
mants can be changed.24
Praat
PRAAT25 is an open source software widely used by phone-
ticians and researchers for determining various phonetic fea-
tures of the speech. It is a flexible tool for analysis and
reconstruction of acoustic speech signals. It performs Ana-
lyze of speech, synthesis, manipulation, labeling and seg-
mentation, graphics and has much other functionality.26

Praat was used to record and analyze the wav files to obtain
all the parameters presented in this work.
ASR
Speech processing is defined as a study of the speech signals
and their treatment methods.27 The signals are generally
treated in a digital representation, so speech processing can
be assumed as a special event of digital signal treatment,
applied to a speech signal. On the other hand, Automatic
Speech Recognition (ASR) is considered as one of the thrust
research fields in speech processing. ASR is the procedure
through which a sound is converted into a word sequence
through an algorithm performed as a computer program.
The main role of an ASR system is the hypothesize of the
most probable discrete sequence of symbols out of all valid
sequences in a target language, from the given input acous-
tic speech vector.28 In the automatic speech recognition
approach, the most common productive learning method is
based on hidden Markov models combined with the Gauss-
ian-Mixture Model (GMM). This combination is exploited
by the conventional ASR systems for the representation of
the speech signals sequential structure. Typically, the Gauss-
ian mixture is utilized by each HMM state for the moduliza-
tion of sound wave spectral representation. The GMM-
HMM model is parameterized by λ ðA; B; mÞ m is the state
prior probability vector; A=(aij) is a transition probability
matrix; B= {(b1, . . ., bn}and is an ensemble where bj repre-
sents the state GMM j. The state is generally related to a
phone sub-segment in speech.29-30 The same topology is uti-
lized for all the HMMs and the defined topology contains 3
active states with observation functions and two non-emit-
ting states (initial and the last state with no observation
function), See Figure 2
SYSTEM ARCHITECTURE

System overview
In this study, An HMM-based ASR was implemented to
evaluate the difference of cough between healthy and
COVID-19 infected people. The system was divided into
three phases depending on their performances. The first one
is the training phase, whose function is to create knowledge
about the cough and their type to be used in the system. The
second one is the HMM model bank, which organizes the
system knowledge produced by the first step. Finally, there
is the recognition phase whose function is to figure the fea-
ture matched with the trained model of each and every class.
The parameters of the system were 25 millisecond Hamming
window duration with a step size of 10 milliseconds, MFCC
coefficients with 22 sets as the length of cepstral filtering and
26 filter bank channels, 13 as the number of MFCC coeffi-
cients, and 0.97 as the pre-emphasis coefficients.



FIGURE 3. Three phases of cough sound.
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In addition, the first four formants (F1, F2, F3, and
F4) were extracted to make analysis and compare the
formants frequencies for both groups (Normal
and patients by COVID-19). These formants were man-
ually measured using spectrograms, automatic forming
track detection and spectra with analysis parameters set
to: maximum number of formants, 5; maximum formant
frequencies 6000 Hz; window of analysis 0.025 Values
were taken in a central and stable part of cough, also
Pitch or (F0) was extracted using the command ‘Get
Pitch’, with analysis parameters set to: pitch floor
75 Hz, pitch ceiling 500 Hz. The cough sound is divided
into three phases (See Figure 3), the first one is an
explosive expiration due to the glottis suddenly opening,
the second is the intermediate phase with the attenua-
tion of cough sounds, and the third is the voiced phase
due to the closing of the vocal cord.31 We based espe-
cially on phase three for measuring these parameters.
Cough recording protocol
Our study includes the compilation of a data corpus of
coughing sounds recorded in a controlled environment.
During recording the cough, we used a microphone and a
laptop with 4GB of RAM and an Intel Core i5 CPU of
1.2GHz speed. Besides the operating system used in our
experience is Ubuntu 14.04 LTS. The microphone was
placed at a distance of 20 cm to the mouth of the subjects.
The actual distance could vary from 10 cm to 30 cm due to
the subject’s movement. We kept the sampling rate at
Fs = 16 k samples/s and 16-bit resolution to obtain the best
sound quality. The database used in our system contains 10
people, divided into two categories, the first consists of 5
normal people and the second contains 5 people infected
with the COVID-19 disease, for more detail see Table 1.
Concerning the recoding with healthy subjects, we have
recorded the cough in our laboratory. In the case of infected
people, we have recorded the sound data in the quarantine
TABLE 1.
Database by Gender Distribution

Male Female Age

Healthy 3 2 Ranged from 27
to 49 years

COVID-19 diseases 3 2 Ranged from 30
to 52 years
rooms. All subjects were without any respiratory disease
according to personal history and basic examination. At
this stage, we have faced several difficulties, most notably
reaching people affected during the onset of symptoms, as
well as recording the resulting natural cough from volunteer
patients. The coughs were extracted from the recordings by
detecting bursts of audio energy delimited by silence, and
then manually validating and adjusting the start and end
times of the detected region. This resulted in 10 segments of
audio per person, with each segment corresponding to one
complete cough. An audio recording for each cough was
saved in “.wav” files.
Cough acoustic model
This step involved the generation of acoustic models using
Sphinxbase and Sphinxtrain. We have exploited lexicon,
language model, filler dictionary, phone list, transcription,
fileids files and wave audio data. The a generated model
includes the information needed to extract the probabilities
of recordings Figure 4 summarizes the cough acoustic
model preparation step.
Lexicon file

The lexicon allows the given correspondence between the
transcribed word file and the phonemes exploited in the file
extension phone. The dictionary extends pronunciations for
each word that is presented in the Language Model and it
contains the words we want to train followed by their pro-
nunciation, it separates words into subword sequences units.
Our dictionary includes the proposed symbolic representa-
tions of the cough sound. The pronunciation dictionary
plays the role of an intermediary among the language and
acoustic models.
Binary language model file

The language model determines the used word in a
speech application where each word must be mentioned
in the lexicon file. A language model indicates a limita-
tion set on the sequence of the words accepted in a given
language.32 These limitations can be exploited for exam-
ple by the grammar rules via statistics on each word-esti-
mated on a training speech data. The Language model
in binary is used to change the language model file to
the N-gram language form.
Transcription and fileid files

The training and testing transcription files include
coughing sounds that are organized in sequence with
capital letters, punctuation and tagging symbols for ini-
tialization and ending sentences and followed by the
cough corpus file-name.fileids files contain the path of
sound files where for each recording file we generate a
line with the file name and the path in the control file
as it is presented in Figure 5, the extension for this file
is “.fleids”.



FIGURE 4. Cough acoustic model preparation structure.
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Filler file

In the filler file, we list the silent events as “words.” In our
work, this file includes the entries shown in Figure 6 that are
explained as follow:
EXPERIMENTAL RESULTS
The formants of cough will be analyzed to determine their
values. These are expected to confirm helpful in subsequent
speech processing tasks such as COVID-19 cough recogni-
tion and classification.
Cough sound recognition
In this section, we describe our cough recognition system
that allows us to illustrate the difference between the cough
of healthy people and the cough of infected ones. Our
designed system is based on the Mel frequency spectral coef-
ficients in the extraction phase that are modeled by Gauss-
ian-Mixture Models. In addition, the hidden Markov model
is used as classifier for the cough classification. The con-
ducted experiments were based on the cough sounds in the
training and testing phases where each cough sound was
modeled by five HMM states. The state transition was left-
to-right and the Gaussian-Mixture Model was used in the
modelization of observation probability density functions.
The number of mixtures in this model is 8. All training and
recognition experiments were implemented with the CMU
SPHINX. The training was performed using a cough of
patient people, while testing was performed using healthy
cough and people who have COVID-19 diseases. For the
first experiment, the system was trained by using the cough
sound of healthy people (five speakers) and tested by the
coughing of healthy ones (three speakers). In the second
experiment, the system was trained by the same data of first
experiment people (five speakers) and tested with the cough
FIGURE 5. Sample part file of fileids file.
sounds of COVID-19 infected people (three patients). the
recognition rate of each experiment was recorded.

Figure 7 illustrates the cough recognition rates of the
two experiments. For the first one, the system accuracy
is 93.33% and for the second, the recognition rate is
86.66%. The difference between the obtained recognition
rates based on two experiments is 7%. Both experiments
have shown that it is possible to observe the difference
between healthy people and COVID-19 patients. The
small observed difference can be caused by other factors
like influence of coronavirus on the vocal cord or glottis,
Also, the database size can play an important role in the
obtained results.
Formant based cough analysis
The aim of this part of the experiments was to perform
and evaluate the acoustic analysis of the values of pitch
(F0) that were extracted as well as the measurements of
the formant frequencies F1, F2, F3, and F4 for two
types of cough. For the calculation of these frequencies
(in Hz), we calculated the average of ten coughs for each
person and concentrated on phase three which indicate
the voiced phase, the duration of this phase was about
60 msec. Figure 8 presents the extracted features of male
coughing sounds based on the average of three patients
and three healthy people where Figure 9 shows the same
features based based on female coughing data with two
patients and two healthy people.

Based on the overall measurement results. In the case of
males, the pitch (F0) average is lower by 21 Hz for healthy
people compared to those of patients. While the opposite
was for women where the value for healthy people is a little
higher than patients by Approximate 6 Hz. Also, it can be
seen from Figures 8 and 9 that the F1 is small for healthy
than COVID-19 infected people with a difference of 100 Hz
by males also we observed the same for females with differ-
ence 88 Hz. But for F2 values were relatively high for
patients with a difference of 20 and 14 for both males and
females, respectively. Concerning the F3 and F4 values, the
FIGURE 6. Filler file.



FIGURE 7. Cough recognition rates of non-infected and infected
people.

FIGURE 9. The extracted features of females coughing sounds.
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observed differences between the healthy and patients are
presented as follows; for the males, the estimated difference
is at 175 and 279 Hz for both values respectively. For
females, the illustrated differences are 44 Hz and 138 Hz for
both values respectively. These findings show that the
extracted values of healthy people are higher than the
patients' ones for both genders.

Figure 10 presents the obtained values from the F0 analy-
sis severed into quartiles that is dependent on the vocal fold
vibration. The median values of males are 300 Hz and
325.11 Hz, whereas the obtained results for females are
321.5 Hz and 328 Hz, respectively for healthy and patients.
The differences between the medians of two types are
25.11 Hz and 7 Hz for males and females respectively. The
lower quartile (middle value of the lower half) for infected
females is 301.25 Hz and for non-infected females is
305.75 Hz, for infected males is 257 Hz and for healthy
males is 286 Hz. On the other hand, the difference between
the upper quartile (middle value of the upper half) for
females is 19.75 Hz and for males, it is 52.5 Hz.

Figure 11 presents the boxplot with F3 values. The pre-
sented median for non-infected females is 2694.5 Hz that is
higher than the infected ones by 128.5 Hz. For males, the
lower median value is 2829 observed with patients with a
variation of 186 Hz. The inter-quartile ranges for healthy
and patients females are 291 Hz and 266 Hz respectively, in
the case of males we observed 217 Hz for healthy people
and 366 Hz for patients.
FIGURE 8. The extracted features of males coughing sounds.
Figure 12 presents a comparison between F4 formant
extracted values based on cough data of COVID-19 infected
people and non-infected ones including females and males.
The boxplots show that the median of healthy females is
greater than the infected one by a difference of 124 Hz,
whereas the healthy male median is 4029 Hz that is higher
than patients by 350.5 Hz. The inter-quartile range for
males of healthy people is 232 Hz and patients is 353 Hz, as
well as for females of healthy people is 215 Hz and patients
is 182 Hz.

The median is generally considered to be the best repre-
sentative of the data central location. The more skewed the
distribution, the greater the variation among the median
and mean, and the greater affirmation should be placed on
utilizing the median as opposed to the mean. For the F0 val-
ues, the mean is higher than the median for females with a
difference of 12 Hz for infected and 11 Hz for non-infected
ones. Concerning males findings, the variation of mean and
median is 3 Hz for healthy people and 0 Hz for patients.
For F3 formant extracted values, the median is lower than
the mean for females with a variance of 100 Hz for patients
and 16 for healthy, whereas the opposite was observed with
males by a difference of 72 Hz and 42 Hz for patients and
healthy one, respectively. For F4 observed values, the differ-
ences between the mean and median are noticed with all
experimental sets, for females the calculated difference is
37 Hz and 17 Hz for patients and healthy, respectively. For
FIGURE 10. Boxplot of pitch (F0) values based cough of
infected and non-infected people including both males and
females.



FIGURE 11. Boxplot of F3 values based cough of infected and
non-infected people including both males and females.
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males, the variations are 102 Hz for patients and 46 Hz for
healthy ones. In the F4 formant case, the mean is higher
than the median for all sets except the healthy males set
where is the opposite.

The coughing sound gives information about the patho-
physiological mechanisms of coughing by several parame-
ters as well as the structural nature of the tissue, The pitch
of the vibration is determined mainly by the degree of the
stretch of vocal cords, by their approximation one to
another and by the mass of their edges. In the literature
studies,33,34 thier obtained value’s value of the pitch (F0)
defined by different authors ranges from 300 to 700 Hz in
normal condition whereas in cough sounds of bronchitis the
bands between 500-1200 Hz are the most expressive. Based
on our findings, we can say that for the healthy people we
are in agreement with those of33 but for infected ones, we
have observed a difference between COVID-19 infected
people's values and other diseases like bronchitis the bands,
perhaps that the behavior of glottis behaves differently in
COVID-19 similar to other pathological conditions. More-
over, the four formants values obtained by the females in
both groups healthy and COVID-19 infected are lower than
obtained by men with an except in F4 for patients. while in
the vowels the four formants for females usually are higher
than compared those of men as mentioned in,35,36 through
FIGURE 12. Boxplot of F4 values based cough of infected and
non-infected people including both males and females.
our findings, we noticed a difference between healthy and
COVID-19 cough sounds by physical sound features, espe-
cially in F3 and F4. These formants are able to change in
relation to the vocal tract dimension cavity and their reduc-
tion would lead to increased frequencies. On the other
hand, we cannot compare our cough COVID-19 diseases
formant values with published results because currently, we
could not find results for this type in the researches.
CONCLUSION
Generally, it was interesting to find out the changes in cough
sound in pathological conditions caused by COVID-19. In
this paper, we have presented HMM automatic speech rec-
ognition and formant based analysis of cough sounds by
exploiting a spectrogram technique. Agreement between the
recognition outputs and formants analysis can be inferred
from these results. The overall accuracy of the cough recog-
nition system was 93.33 % for healthy cough and 86.66%
for COVID-19 cough sounds with a difference of 6.67%. In
addition, the pitch and formant analysis show that in the
case of females, F0, F1, F3, and F4 values are higher for the
healthy by the difference of 6 Hz, 88 Hz, 44 Hz, and 138 Hz
respectively, in the opposite of F2 that is higher for the
infected people. In the case of males, the lower values are
observed with F0 and F2 for healthy people with a variation
of 21 Hz and 20 Hz, respectively, whereas, the F1, F3, and
F4 are lower for patients by a diversity of 100 Hz, 250 Hz,
and 279 Hz. Our obtained results present an agreement
among the conclusions drawn from cough recognition
results and formants analysis. To the best of our knowledge,
this is the first work that tries to examine the accuracy of
ASR and parameters sounds for coughs of people with
COVID-19 voices.
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