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Abstract 

Background:  The tumorigenesis of prostate cancer involves genetic mutations. Tumour mutational burden (TMB) is 
an emerging biomarker for predicting the efficacy of immunotherapy.

Results:  Single-nucleotide polymorphisms were the most common variant type, and C>T transversion was the most 
commonly presented type of single-nucleotide variant. The high-TMB group had lower overall survival (OS) than the 
low-TMB group. TMB was associated with age, T stage and N stage. Functional enrichment analysis of differentially 
expressed genes (DEGs) showed that they are involved in pathways related to the terms spindle, chromosomal region, 
nuclear division, chromosome segregation, cell cycle, oocyte meiosis and other terms associated with DNA mutation 
and cell proliferation. Six hub genes, PLK1, KIF2C, MELK, EXO1, CEP55 and CDK1, were identified. All the genes were 
associated with disease-free survival, and CEP55 and CDK1 were associated with OS.

Conclusions:  The present study provides a comprehensive analysis of the significance of TMB and DEGs and infiltrat-
ing immune cells related to TMB, which provides helpful information for exploring the significance of TMB in prostate 
cancer.
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Background
Prostate cancer ranks as the second most commonly 
diagnosed malignancy in males [1]. In terms of treat-
ment, challenges still exist, especially for castration-
resistant prostate cancer (CRPC). CRPC with metastasis 
is reported to have a poor prognosis, with a median sur-
vival time of less than 2 years [2]. In recent years, immune 
checkpoint inhibitors blocking programmed cell death 1 
and its ligand (PD-1/PD-L1) and cytotoxic T-lymphocyte 
antigen-4 (CTLA-4) have shown promising preliminary 
results in various kinds of tumours. Two clinical trials of 
ipilimumab in metastatic CRPC have shown improved 
progression-free survival [3, 4]. Nevertheless, the 

utilization of immunotherapy is still limited by low effi-
cacy. Some response predictive biomarkers are under 
investigation, including tumour mutational burden 
(TMB).

TMB involves the number of non-synonymous somatic 
mutations per megabase pair (Mbp) of sequenced DNA. 
Mutations of tumours affect the mutational load, which 
in turn determines the chance of presenting immunogen-
ically relevant neoantigens [5]. High-TMB tumours tend 
to harbour more neoantigens than low-TMB tumours, 
which make the high-TMB tumours more immunogenic, 
resulting in an improved T cell response and subsequent 
enhancement of antitumour immunity. Given the func-
tion of TMB in immunity, clinical studies focused on 
melanoma and non-small-cell lung cancer have demon-
strated that the TMB is associated with the immunother-
apy treatment response [6, 7]. Therefore, TMB is believed 
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to be one of the candidates for predicting the efficacy of 
immunotherapy.

Next-generation sequencing (NGS) profiling of patients 
has enabled advancements, and The Cancer Genome 
Atlas (TCGA) offers convenient access to relevant infor-
mation. In this study, the gene expression and muta-
tion profiles of prostate cancer samples were extracted 
from TCGA, and the data were used to investigate the 
clinical significance of TMB and its related differentially 
expressed genes (DEGs) and immune cell infiltration 
signatures.

Methods
Data collection and processing
Transcriptome data in the HTSeq‐FPKM format from 
524 samples, including 499 prostate and 25 adjacent 
normal tissue samples, were acquired from the TCGA 
databank (https​://porta​l.gdc.cance​r.gov/). The data were 
in masked somatic mutation files, and these data were 
analysed and visualized using the R software package 
maftools.

Estimation of TMB and its associations with clinical factors
TMB was defined as the sum of mutations in coding 
regions per megabase and was calculated as the total 
number of mutations/the length of exons. The length of 
exons was estimated to be 38  Mb in previous research 
[8]. First, Perl scripts were written to obtain the esti-
mated TMB data, which were amalgamated with inter-
related survival profiles for each patient. Then, we set 
the median TMB value as the cutoff, according to which 
samples were classified into a group with high TMB and a 
group with low TMB. We utilized the survival R package 
to analyse the overall survival (OS) differences between 
the two groups. The differences in TMB between groups 
categorized based on clinical features (age, T stage and N 
stage) were analysed using the limma R package.

Identification of DEGs and DEG pathway analysis
First, we performed DEG analysis with |log2 fold 
change > 1| and false discovery rate (FDR) < 0.05 as cut-
offs. We employed the limma package in the R package 
to analyse the differences and used pheatmap in the R 
package to generate a heatmap. Subsequently, the gene 
symbols were transferred into the ID of Entrez using the 
org.Hs.eg.db package of the R package. Moreover, we 
employed the ggplot2, enrichplot, and clusterProfiler of 
R packages to perform Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses of 
the DEGs. We used GSEA software (https​://www.gsea-
msigd​b.org/gsea/index​.jsp) to perform GSEA. We used 
c2.cp.kegg.v7.0.symbols.gmt as the databank of gene 
sets. In addition, the TMB level was set as the phenotype 

labels. The pathways were considered to be statistically 
enriched according to a cutoff of FDR < 0.25.

Protein–protein interaction (PPI) network and classification 
of core genes
We constructed a PPI network of DEGs using STRIING 
(https​://strin​g-db.org/). Evidence-based interactions 
were generated with a minimum required interaction 
score > 0.4 [9]. Then, the PPI network was visualized by 
utilizing Cytoscape 3.8.0 software [10]. Using the Cyto-
Hubba plugin, we obtained five protein groups, includ-
ing the top 30 proteins, with five analytic algorithms, 
including MCC, MNC, Degree, EPC and EcCentricity, 
as previously reported [11]. In addition, we acquired 
the overlapping proteins of the five groups and identi-
fied pivotal proteins with more interactions than others 
as potential hub proteins. These intersections were visu-
alized by a Venn diagram, which was generated online 
(http://bioin​forma​tics.psb.ugent​.be/webto​ols/Venn/). 
GEPIA (http://gepia​.cance​r-pku.cn/) was used to investi-
gate the prognostic significance of the hub proteins.

CIBERSORT
CIBERSORT is an algorithm for characterizing the 
immune cell composition of certain tissues according to 
their gene expression profiles [12]. We used CIBERSORT 
in the R package to analyse 22 types of immune cells. The 
comparison of the levels of immune cells between the 
group with low TMB and the group with high TMB was 
conducted using the Wilcoxon rank‐sum test, and the 
results were presented in a violin diagram generated with 
the vioplot package of the R package.

Statistical analysis
We used the Kaplan–Meier method to generate the sur-
vival curve. The comparisons of OS between different 
groups categorized according to TMB, age, T stage and 
N stage was performed using the log‐rank test. We used 
the Shapiro–Wilk test to determine whether the groups 
categorized according to TMB, age, T stage and N stage 
had normal distributions. Through the Shapiro–Wilk 
test, we found that all the groups were not normally dis-
tributed, and thus, nonparametric tests were required. 
The Wilcoxon rank‐sum test was used to compare groups 
classified by age and N stage. The Kruskal–Wallis test 
was used to compare groups classified by T stage. We 
used R software (version 3.6.1) to perform the Kaplan–
Meier analysis, log‐rank test, Wilcoxon rank‐sum test and 
Kruskal–Wallis test. We used SPSS (version 25.0) to per-
form the Shapiro–Wilk test. The criterion for statistical 
significance was a P value < 0.05.

https://portal.gdc.cancer.gov/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://string-db.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://gepia.cancer-pku.cn/
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Results
Mutations in prostate cancer
We obtained mutation data from TCGA, which were 
analysed and visualized with the maftools package. Mis-
sense mutations were the most common type of variant 
(Fig.  1a). The frequency of single-nucleotide polymor-
phisms (SNPs) was greater than that of other variant 
types (Fig. 1b). C>T transversions represented the largest 
proportion of single-nucleotide variants (SNVs) in pros-
tate cancer (Fig. 1c). TTN, TP53, SPOP, KMT2D, SYNE1, 
MUC16, FOXA1, KMT2C, SPTA1 and ATM were the 
top ten genes with high mutation frequencies.

Associations of TMB with prognostic and clinical factors
Based on the median TMB, we stratified the patients with 
prostate cancer into a group with high TMB and a group 
with low TMB. The prognostic analysis revealed that the 
group with low TMB had increased OS compared with 
the group with high TMB (Fig. 2a, P = 0.026). There was 
a relationship between age, T stage, N stage and TMB 
level (Fig.  2b–d). The median age of the patients was 
61  years. It was demonstrated that patients older than 
61 years had a higher TMB than those who were 61 years 
or younger(Fig. 2b, P < 0.001). In addition, the higher the 
T stage was, the higher the TMB (Fig. 2c, P < 0.001). Simi-
lar results were seen for N stage, with the N1 stage group 
having a higher TMB than the group with other N stages 
(Fig. 2d, P < 0.001).

Comparison of DEGs and functional enrichment analysis
A total of 257 DEGs were identified, and the top 20 
DEGs were displayed in the heatmap (Fig. 3a). Functional 
enrichment analysis of the DEGs was conducted. GO 
enrichment analysis, including three major categories, 
was utilized (Fig. 3b). In the biological process (BP) cat-
egory, the terms nuclear division, organelle fission and 
chromosome segregation were enriched. The cellular 
component (CC) category terms included spindle, chro-
mosomal region, kinetochore, midbody and microtubule. 
The molecular function (MF) category terms involved 
receptor-ligand activity, growth factor activity and hor-
mone activity. Moreover, we identified pathways related 
to the terms microRNA in cancer, cell cycle, oocyte mei-
osis and ECM-receptor interaction in the KEGG enrich-
ment analysis (Fig. 3c). There were 37 pathways enriched 
in the GSEA, and the top 10 pathways were displayed in a 
diagram (Fig. 3d). These pathways were related to DNA-
level cell proliferation, including mechanisms such as 
pyrimidine metabolism, DNA replication, DNA degrada-
tion, and aminoacyl tRNA biosynthesis, and the findings 
were in accordance with the above results.

PPI network of DEGs and selected hub genes
A PPI network of 189 nodes and 1789 edges was gener-
ated by STRING, and online tool for analysing proteins, 
and the results were visualized by Cytoscape (Fig. 4a). 
Five algorithms, MCC, MNC, Degree, EPC and EcCen-
tricity, were utilized, and the overlapping proteins in 
the results generated from each algorithm were iden-
tified with Venn diagrams (Fig.  4b). PLK1, KIF2C, 
MELK, EXO1, CEP55 and CDK1 were identified as hub 
genes through this method. High expression of PLK1 
and KIF2C was related to poor overall survival, with a 
P value < 0.05. High expression of PLK1, KIF2C, MELK, 
EXO1, CEP55 and CDK1 was related to poor disease-
free survival, with a P value < 0.05.

Comparison of differential immune cell signatures
A violin diagram was generated to visualize the dif-
ferences in the proportions of 22 infiltrating immune 
cells between the group with low TMB and the group 
with high TMB (Fig. 5). The group with high TMB had 
higher levels of CD8 T cells and activated CD4 memory 
cells than the low TMB group (P < 0.05). However, there 
were no other statistically significant findings or trends 
for the other infiltrating immune cells.

Discussion
Immunotherapies have shown preliminary results in 
prostate cancer. TMB is considered an emerging bio-
marker for response evaluation. Therefore, it is mean-
ingful to investigate the relationship between TMB and 
prostate cancer. This study provides an overview of 
mutations, the clinical significance of TMB, and DEGs 
and infiltrating immune cells related to TMB in pros-
tate cancer.

Among the top 10 mutated genes, TP53, SPOP, 
FOXA1 and ATM showed pivotal functions in the ini-
tiation and development of malignant prostate cancer. 
As a tumour suppressor, TP53 has a high mutation 
frequency among various kinds of tumours, and the 
mutant form is equipped with antiproliferative func-
tions and is related to the metastasis and progression 
of prostate cancer [13, 14]. Mutations in SPOP are con-
sidered the most common recurrent point mutations 
in prostate cancer [15]. SPOP is crucial for the preser-
vation of nuclear genome stability and is essential for 
the degradation of multiple proteins [16, 17]. FOXA1 
is necessary for androgen receptor-mediated activation 
of prostate genes [18]. Furthermore, the expression of 
FOXA1 is related to tumorigenesis and the progression 
of prostate cancer [19]. ATM is considered one of the 
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Fig. 1  Overview of mutation profile in prostate cancer patients. a Variant classification, b variant type, c SNV class, d variants per sample, e variant 
classification summary, f top 10 mutated gene, g waterfall diagram of top 30 mutated genes
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DNA damage repair genes, and its activation can be 
seen in the earlier stages of prostate tumorigenesis [20].

The clinical significance of TMB in prostate cancer 
was assessed. Similar to a previous prostate and renal 
cancer study, our study found that the group of patients 
with prostate cancer with high TMB had lower OS than 
the group of patients with prostate cancer with low 
TMB[1][21]. Furthermore, we observed higher TMB lev-
els in patients older than 61 years than in those who were 
61  years or younger and in the higher T stage and N1 
stage groups. According to reports from the TCGA data-
base, the prognostic role of TMB is unclear. In a study of 
bladder cancer, the high TMB group exhibited increased 
OS compared with the low TMB group [22]. Two rea-
sons probably account for the results of our research. 

One reason is that not all patients with a high TMB have 
an increased treatment response, as not every generated 
neoantigen has immunogenicity [23]. That is, high TMB 
does not always initiate an antitumour response. Another 
reason is that the high TMB group in this study was older 
and had a more advanced stage than the low TMB group.

GO and KEGG analyses revealed that the DEGs 
between the group with high TMB and the group with 
low TMB were related to the terms spindle, chromo-
somal region, kinetochore, nuclear division, chromosome 
segregation, cell cycle, oocyte meiosis, receptor-ligand 
activity, growth factor activity and ECM-receptor inter-
action, all of which are associated with DNA mutation 
and cell proliferation. Furthermore, the results of GSEA 
also supported this observation, showing enrichment of 

Fig. 2  Correlation analysis of TMB with prognostic and clinical factors. a Kaplan–Meier curve of OS between high TMB group and low TMB group, b 
the difference of TMB level between groups classified by age, c the difference of TMB level between groups classified by T stage, d the difference of 
TMB level between groups classified by N stage
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Fig. 3  DEGs and its corresponding enrichment analysis. a Heatmap of the top 20 DEGs, b GO enrichment of the DEGs, c KEGG enrichment of the 
DEGs, d top 10 pathways of the GSEA enrichment
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pathways related to pyrimidine metabolism, DNA repli-
cation, DNA degradation and aminoacyl tRNA biosyn-
thesis. None of the analyses showed associations with 
pathways related to immune mediation or response. This 
phenomenon is likely because the immunogenicity of 
prostate cancer cases with low TMB is poorer than that 
of lung cancer and melanoma [24]. Because of this poor 
immunogenicity, the numbers of neoantigens generated 
by prostate cancer patients may be less than those gen-
erated by high-TMB cancer patients. The subsequent 
immune response in patients with low TMB is probably 
also weaker than that of high-TMB cancer patients.

Through CytoHubba analysis of the PPI network, we 
identified six hub genes: PLK1, KIF2C, MELK, EXO1, 
CEP55 and CDK1. All the genes were correlated with 
DFS, and CEP55 and CDK1 were associated with OS. 
PLK1 and MELK have been suggested to be potential 
targets in prostate cancer. As PLK1 plays a critical role 

in the proliferation of cells, centrosome abnormalities, 
mediation of the cell cycle and apoptosis, it is considered 
a potential treatment target in prostate cancer [25]. It 
has been reported that targeting PLK1 can enhance the 
response to androgen signalling inhibitors or olaparib 
in CRPC [26, 27]. MELK is upregulated in prostate can-
cer and related to aggressiveness. Furthermore, in  vitro 
silencing of MELK can weaken the proliferation of pros-
tate cancer cells, and in  vivo tests also proved that an 
inhibitor of MELK could repress the growth of prostate 
cancer.

Different kinds of immune cells play a pivotal role 
in the tumour microenvironment and are also deter-
minants of immunotherapy efficacy. Therefore, our 
study explored differences in the levels of immune cells 
between the group with high TMB and the group with 
low TMB. The analysis indicated that the group with 
high TMB had a significantly higher proportion of CD8 

Fig. 5  Comparisons of 22 immune cell infiltrations between low‐TMB groups and high‐TMB groups

(See figure on previous page.)
Fig. 4  PPI network and hub genes with their correlation to survival. a PPI network of DEGs generated by Cytoscape with hub genes showing red 
color, b Venn dots of intersections from five methodology involved MCC, MNC, Degree, EPC and EcCentricity, c–j Logrank analysis of hubgenes. The 
relation of PLK1 (c) and KIF2C (d) with overall survival in prostate cancer patients. The relation of PLK (e), KIF2C (f), MELK (g), EXO1 (h), CEP55 (i) and 
CDK1 (j) with disease free survival in prostate cancer patients
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T cells and activated CD4 memory cells than the group 
with low TMB. These findings were similar to those in 
previous reports of bladder cancer [22]. Generally, a 
high TMB can produce more neoantigens, eliciting a 
subsequent immune response. CD8 T cells are one of 
the determinants of antigen-specific responses. There-
fore, the high TMB group with higher levels of CD8 T 
cells is likely to experience superior immunotherapy 
efficacy. However, a recent study demonstrated that 
metastatic CRPC with low TMB but a high density of 
CD8 T cells could also benefit from immune check-
point inhibitors [28]. Our findings suggesting that TMB 
has an interaction with immune infiltration are only 
preliminary, and further validation in clinical cohorts 
and investigations to explore the underlying mecha-
nisms of the correlations are needed.

The study has some limitations that should be con-
sidered. Firstly, all the data were retrospectively col-
lected which had bias. Secondly, the results of our study 
were preliminary exploration and should be further 
tested through in vitro or in vivo experiments. Thirdly, 
our study lacked sub-group analysis including CRPC 
patients and non-CRPC patients.

Conclusion
In conclusion, we performed a comprehensive and sys-
tematic analysis of TMB in prostate cancer and ana-
lysed its clinical significance. Furthermore, we also 
identified enriched pathways of DEGs, hub genes with 
prognostic roles and infiltrating immune cells related 
to TMB. Our results elucidate the association between 
TMB and infiltrating immune cells in prostate malig-
nancy and will likely be useful for future investigations 
of TMB in prostate cancer.

Supplementary Information
The online version contains supplementary material available at https​://doi.
org/10.1186/s1289​4-021-00795​-7.

Additional file 1. Table S1. Setting items of the transcriptome data. 
Table S2. Setting items of the clinical data. Table S3. Setting items of the 
mutation data.

Abbreviations
TMB: Tumour mutational burden; SNPs: Single nucleotide polymorphisms; 
SNV: Single-nucleotide variant; OS: Overall survival; DFS: Disease free survival; 
CRPC: Castration-resistant prostate cancer; PD-1/PD-L1: Programmed cell 
death 1 and its ligand; CTLA-4: Cytotoxic T-lymphocyte antigen-4; Mbp: 
Megabase pair; NGS: Next-generation sequencing; TCGA​: The Cancer Genome 
Atlas; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; 
PPI: Protein–protein interaction; BP: Biological process; CC: Cellular compo-
nent; MF: Molecular function.

Acknowledgments
Not applicable.

Authors’ contributions
LJW performed data analysis work and wrote the manuscript. SCP, BBZ and 
ZLY edited the manuscript. WW designed the study. All authors read and 
approved the final manuscript.

Funding
The project is supported by the Natural Science Foundation of Zhejiang Prov-
ince, China (LGF19H050007) and the Medical Health Science and Technology 
Project of Zhejiang Provincial health Commission (2018ZD006).

Availability of data and materials
The datasets used and/or analyzed during the current study are available 
from the TCGA databank (https​://porta​l.gdc.cance​r.gov/). Transcriptome data, 
clinical data, and mutation data could be downloaded according to the sup-
plementary file’s detailed setting items (Additional file 1: Table S1, Table S2 and 
Table S3).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that there are no competing interests associated with the 
manuscript.

Received: 13 October 2020   Accepted: 10 February 2021

References
	1.	 Center MM, Jemal A, Lortet-Tieulent J, et al. International variation in pros-

tate cancer incidence and mortality rates. Eur Urol. 2012;61(6):1079–92.
	2.	 Zhu Y, Ye D. Chinese Expert Consensus on the Diagnosis and Treatment 

of Castration-Resistant Prostate Cancer (2019 Update). Cancer Manag Res. 
2020;12:2127–40.

	3.	 Kwon ED, Drake CG, Scher HI, et al. Ipilimumab versus placebo after 
radiotherapy in patients with metastatic castration-resistant prostate 
cancer that had progressed after docetaxel chemotherapy (CA184-
043): a multicentre, randomised, double-blind, phase 3 trial. Lancet 
Oncol. 2014;15(7):700–12.

	4.	 Beer TM, Kwon ED, Drake CG, et al. Randomized, double-blind, phase 
III trial of ipilimumab versus placebo in asymptomatic or minimally 
symptomatic patients with metastatic chemotherapy-naive castration-
resistant prostate cancer. J Clin Oncol. 2017;35(1):40–7.

	5.	 Riaz N, Morris L, Havel JJ, Makarov V, Desrichard A, Chan TA. The role of 
neoantigens in response to immune checkpoint blockade. Int Immu-
nol. 2016;28(8):411–9.

	6.	 Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clini-
cal response to CTLA-4 blockade in melanoma. N Engl J Med. 
2014;371(23):2189–99.

	7.	 Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational 
landscape determines sensitivity to PD-1 blockade in non-small cell lung 
cancer. Science. 2015;348(6230):124–8.

	8.	 Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human 
cancer genomes reveals the landscape of tumor mutational burden. 
Genome Med. 2017;9(1):34.

	9.	 Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: 
quality-controlled protein-protein association networks, made broadly 
accessible. Nucleic Acids Res. 2017;45(D1):D362–8.

	10.	 Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment 
for integrated models of biomolecular interaction networks. Genome 
Res. 2003;13(11):2498–504.

	11.	 Liu Z, Meng J, Li X, et al. Identification of Hub genes and key pathways 
associated with two subtypes of diffuse large B-cell lymphoma based on 
gene expression profiling via integrated bioinformatics. Biomed Res Int. 
2018;2018:3574534.

	12.	 Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets 
from tissue expression profiles. Nat Methods. 2015;12(5):453–7.

https://doi.org/10.1186/s12894-021-00795-7
https://doi.org/10.1186/s12894-021-00795-7
https://portal.gdc.cancer.gov/


Page 10 of 10Wang et al. BMC Urol           (2021) 21:29 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	13.	 Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and signifi-
cance across 12 major cancer types. Nature. 2013;502(7471):333–9.

	14.	 Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. TP53 
mutations in human cancers: functional selection and impact on cancer 
prognosis and outcomes. Oncogene. 2007;26(15):2157–65.

	15.	 Barbieri CE, Baca SC, Lawrence MS, et al. Exome sequencing identifies 
recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat 
Genet. 2012;44(6):685–9.

	16.	 Geng C, He B, Xu L, et al. Prostate cancer-associated mutations in speckle-
type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein 
turnover. Proc Natl Acad Sci USA. 2013;110(17):6997–7002.

	17.	 Boysen G, Barbieri CE, Prandi D, et al. SPOP mutation leads to genomic 
instability in prostate cancer. Elife. 2015;4:e09207.

	18.	 Gao N, Zhang J, Rao MA, et al. The role of hepatocyte nuclear factor-3 
alpha (Forkhead Box A1) and androgen receptor in transcriptional regula-
tion of prostatic genes. Mol Endocrinol. 2003;17(8):1484–507.

	19.	 Alvarez-Cubero MJ, Martinez-Gonzalez LJ, Robles-Fernandez I, et al. 
Somatic mutations in prostate cancer: closer to personalized medicine. 
Mol Diagn Ther. 2017;21(2):167–78.

	20.	 Fan C, Quan R, Feng X, et al. ATM activation is accompanied with 
earlier stages of prostate tumorigenesis. Biochim Biophys Acta. 
2006;1763(10):1090–7.

	21.	 Zhang C, Li Z, Qi F, Hu X, Luo J. Exploration of the relationships between 
tumor mutation burden with immune infiltrates in clear cell renal cell 
carcinoma. Ann Transl Med. 2019;7(22):648.

	22.	 Zhang C, Shen L, Qi F, Wang J, Luo J. Multi-omics analysis of tumor 
mutation burden combined with immune infiltrates in bladder urothelial 
carcinoma. J Cell Physiol. 2020;235(4):3849–63.

	23.	 Chabanon RM, Pedrero M, Lefebvre C, Marabelle A, Soria JC, Postel-Vinay 
S. Mutational landscape and sensitivity to immune checkpoint blockers. 
Clin Cancer Res. 2016;22(17):4309–21.

	24.	 De Velasco MA, Uemura H. Prostate cancer immunotherapy: where are 
we and where are we going? Curr Opin Urol. 2018;28(1):15–24.

	25.	 Ahmad N. Polo-like kinase (Plk) 1: a novel target for the treatment of 
prostate cancer. FASEB J. 2004;18(1):5–7.

	26.	 Zhang Z, Hou X, Shao C, et al. Plk1 inhibition enhances the efficacy of 
androgen signaling blockade in castration-resistant prostate cancer. 
Cancer Res. 2014;74(22):6635–47.

	27.	 Li J, Wang R, Kong Y, et al. Targeting Plk1 to enhance efficacy of olaparib in 
castration-resistant prostate cancer. Mol Cancer Ther. 2017;16(3):469–79.

	28.	 Subudhi SK, Vence L, Zhao H, et al. Neoantigen responses, immune cor-
relates, and favorable outcomes after ipilimumab treatment of patients 
with prostate cancer. Sci Transl Med. 2020;12(537):eaaz3577.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Comprehensive analysis of tumour mutational burden and its clinical significance in prostate cancer
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Data collection and processing
	Estimation of TMB and its associations with clinical factors
	Identification of DEGs and DEG pathway analysis
	Protein–protein interaction (PPI) network and classification of core genes
	CIBERSORT
	Statistical analysis

	Results
	Mutations in prostate cancer
	Associations of TMB with prognostic and clinical factors
	Comparison of DEGs and functional enrichment analysis
	PPI network of DEGs and selected hub genes
	Comparison of differential immune cell signatures

	Discussion
	Conclusion
	Acknowledgments
	References


