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Abstract: Nowadays, diabetes mellitus is one of the most common chronic diseases in the world.
Current research on the treatment of diabetes combines many fields of science, such as biotechnology,
transplantology or engineering. Therefore, it is necessary to develop new therapeutic strategies
and preventive methods. A newly discovered class of lipids—Palmitic Acid Hydroxy Stearic Acid
(PAHSA) has recently been proposed as an agent with potential therapeutic properties. In this
research, we used an islet-on-a-chip microfluidic 3D model of pancreatic islets (pseudoislets) to study
two isomers of PAHSA: 5-PAHSA and 9-PAHSA as potential regulators of proliferation, viability,
insulin and glucagon expression, and glucose-stimulated insulin and glucagon secretion. Due to the
use of the Lab-on-a-chip systems and flow conditions, we were able to reflect conditions similar to
in vivo. In addition, we significantly shortened the time of pseudoislet production, and we were able
to carry out cell culture, microscopic analysis and measurements using a multi-well plate reader at
the same time on one device. In this report we showed that under microfluidic conditions PAHSA,
especially 5-PAHSA, has a positive effect on pseudoislet proliferation, increase in cell number and
mass, and glucose-stimulated insulin secretion, which may qualify it as a compound with potential
therapeutic properties.

Keywords: islet-on-a-chip model; therapeutic agent; 5-PAHSA; 9-PAHSA; fatty acid; glucose
stimulated insulin secretion; GSIS; Lab-on-a-chip model; glucagon secretion

1. Introduction

The World Health Organization (WHO) predicts that by 2030 diabetes mellitus (DM)
will be the seventh leading cause of death in the world [1]. This disease is closely related to
the pancreas, and more specifically to the pancreatic islet, which is a cluster of endocrine
cells that synthesize and release hormones. Five types of cells build the pancreatic islet,
but two of them are particularly important in the course of diabetes—glucagon secreting
α-cells and insulin secreting β-cells [2]. Only the proper functioning of the pancreas and
the proper secretion of hormones ensures the body’s homeostasis. The causes of diabetes
mellitus type 2 are not fully understood. The risk factors include, among others, genetic
and environmental factors such as inadequate diet, lack of physical activity, and stress [3].
For this reason, the number of studies of new diagnostic and therapeutic strategies have
recently increased. So far, significant progress has been made, including the development of
pancreatic islet models imitating in vivo conditions, especially with the use of Lab-on-chip
systems [4–7] drug screening [8,9] or new treatment strategies [10–14]. However, there
is still a need to find effective and safe therapeutic agents. Recently discovered class of
lipids named FAHFA (Fatty Acyl esters of Hydroxy Fatty Acids) seems to be a promising
compound in the treatment of diabetes and inflammatory diseases. They are endogenous
lipids with properties that increase glucose tolerance, increase the secretion of insulin
and GLP-1 (glucagon-like peptide 1), and reduce the inflammatory response [15]. These
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lipids occur naturally in the body in adipose tissue, kidneys, liver, serum, breast milk,
or meconium. They have beneficial effects on target cells and tissues in immune cells,
adipocytes, intestines, or pancreatic islets. Both mice and human FAHFA levels fluctuate
from 0.5 to 500 nmol/L in serum/plasma and up to 200 pmol/g in tissue [16].

There are several dozen of FAHFA families that are characterized by a different
composition of fatty acids and hydroxy fatty acids [15]. PAHSA (Palmitic Acid Hydroxy
Stearic Acid), which consist of palmitic acid (PA) esterified to the hydroxyl group of
hydroxystearic acid (HSA), is one of the FAHFA families. Regioisomer (e.g., 5-PAHSA,
9-PAHSA) is determined by the location of the branched carbon [17]. PAHSA has been
shown to have a positive effect on organs/tissues such as: adipose tissue [18], pancreas [19],
gut [20], liver [21], muscles [22]. The effect of PAHSA on the pancreas and its potential
use as a therapeutic agent in the treatment of diabetes seems to be of particular interest.
It was showed that PAHSA has the beneficial effect on pancreatic β-cells proliferation,
as well as increased insulin and glucagon-like peptide 1 (GLP-1) secretion, and thus a
possible anti-diabetic effect [19]. Interestingly, PAHSA levels in the serum and adipose
tissue of insulin-resistant humans and high-fat diet fed (HFD) mice have been found to be
reduced. It was showed that chronic administration of 5-PAHSA and 9-PAHSA to HFD
mice increases PAHSA levels by ~1.4 to 3-fold, resulting in improved insulin sensitivity
and glucose tolerance [22]. Moreover, there are indications that the administration of
solutions containing PAHSA may attenuate cytokine-induced apoptotic and necrotic β-cell
death and increase β-cell viability [23]. The mechanism of PAHSA action is not yet fully
understood, but it suggests the activation of the GPR40 receptor, which is a member of
the family of G-protein coupled free fatty acid receptors and is activated by saturated
and unsaturated carboxylic acids. In addition, it stimulates the influx of Ca2+ ions and
increases the secretion of insulin and glucagon-like peptide 1 (GLP-1). However, some
studies suggest that high glucose levels in the blood may reduce the effect of 5-PAHSA by
inhibiting the AMPK signaling pathway and promoting nuclear factor kappa-B (NF-κB)
mediated inflammation [24]. There are also studies that question antidiabetic potential
of PAHSA [18]. Therefore, it is very important to resolved contentious data on the role
of PAHSA in the regulation of pancreatic islet function. In our study, we assessed the
possibility of using the previously developed pseudoislet model in Lab-on-a-chip system as
a universal model for the rapid testing of new therapeutic agents [5,25]. Simultaneously, we
investigated the influence of two PASHA isomers (5-PAHSA, 9-PAHSA) on the functionality
and insulin/glucagon secretion from a three-dimensional pseudoislet model in Lab-on-a-
chip system. The positive effect of PAHSA isomers on pancreatic islet cell proliferation,
aggregation process, and increase their mass was confirmed. The ability of 5-PAHSA and
9-PAHSA to increase insulin and glucagon secretion, both after stimulation with low and
high glucose concentrations and without them, was also noted. Thus, we believe that
PAHSA (especially 5-PASHA) can be considered as a potential therapeutic agent in the
treatment of diabetes. In addition, it was confirmed that due to the developed geometry,
our system can be a good candidate as a universal tool for research newly discovered
therapeutic agents. Thanks to the geometry of the system and the selection of appropriate
culture parameters, it is possible to obtain a stable culture of pseudoislets, reflect of in vivo
conditions, shorten the time of the research and analysis in real time on one device. To the
best of our knowledge, this is the first report that determinates the direct effect of treatment
with 5-PAHSA and 9-PAHSA on a pseudoislet model in a microfluidic system.

2. Materials and Methods
2.1. Three-Dimensional Islet-on-a-Chip Model

The three-dimensional model of the pseudoislet was developed by using a microfluidic
system composed of two poly(dimethylsiloxane) (PDMS, Sylgard 184, Dow Corning, Wies-
baden, Germany) layers, which were connected to each other by oxygen plasma treatment
(Preen II-973, Plasmatic System, Inc., North Brunswick, NJ, USA). The geometry, materials,
and fabrication methods of the microfluidic system used in this study were described in
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detail in our earlier work [5]. In short, the geometry of the microfluidic system contained
two main microchamber (9000 µm length, 6000 µm width, 200 µm height), each of them
was equipped with 15 round microtraps (280 µm diameter, 200 µm height) which limit cell
growth surfaces and thus support aggregation. Each of the microtraps was constructed
of seven circular micropillar (145 µm × 145 µm × 200 µm), arranged in a semicircle at
20 µm intervals with 160 µm wide open inlet space. The islet-on-a-chip model was devel-
oped by using the above-described microsystem and two pancreatic islet cell lines: α-cells
(α-TC1-6) were purchased from the American Type Culture Collection (catalog no. CRL-
2934) and rat INS-1E insulinoma β-cell line was a gift from Dr. Pierre Maechler (University
of Geneva, Geneva, Switzerland). The culture conditions have been described in detail
previously [5]. As in previous studies, in the Lab-on-a-chip system, cells were co-cultured
in the ratio 1: 2 (α-TC1-6 cell suspension (density of 2 × 106 cells/mL) and INS-1E cell
suspension (2 × 106 cells/mL)). In each chamber of the islet-on-a-chip system, 15 spherical
aggregates were obtained, which in terms of the composition and localization of α and
ß cells correspond to the rodent pancreatic islet in vivo were used for all further studies.
The microchamber geometry, complete system, and the obtained cell structures after 24 h
of culture are shown in Figure 1.

Biosensors 2022, 12, x FOR PEER REVIEW 3 of 12 
 

Wiesbaden, Germany) layers, which were connected to each other by oxygen plasma 
treatment (Preen II-973, Plasmatic System, Inc.). The geometry, materials, and fabrication 
methods of the microfluidic system used in this study were described in detail in our ear-
lier work [5]. In short, the geometry of the microfluidic system contained two main micro-
chamber (9000 µm length, 6000 µm width, 200 µm height), each of them was equipped 
with 15 round microtraps (280 µm diameter, 200 µm height) which limit cell growth sur-
faces and thus support aggregation. Each of the microtraps was constructed of seven cir-
cular micropillar (145 µm × 145 µm × 200 µm), arranged in a semicircle at 20 µm intervals 
with 160 µm wide open inlet space. The islet-on-a-chip model was developed by using 
the above-described microsystem and two pancreatic islet cell lines: α-cells (α-TC1-6) 
were purchased from the American Type Culture Collection (catalog no. CRL-2934) and 
rat INS-1E insulinoma β-cell line was a gift from Dr. Pierre Maechler (University of Ge-
neva, Geneva, Switzerland). The culture conditions have been described in detail previ-
ously [5]. As in previous studies, in the Lab-on-a-chip system, cells were co-cultured in 
the ratio 1: 2 (α-TC1-6 cell suspension (density of 2 × 106 cells/mL) and INS-1E cell suspen-
sion (2 × 106 cells/mL)). In each chamber of the islet-on-a-chip system, 15 spherical aggre-
gates were obtained, which in terms of the composition and localization of α and ß cells 
correspond to the rodent pancreatic islet in vivo were used for all further studies. The 
microchamber geometry, complete system, and the obtained cell structures after 24 h of 
culture are shown in Figure 1. 

 
Figure 1. Islet-on-a-chip system. (A) Geometry of one microchamber of the islet-on-a-chip. (B) 
PDMS/PDMS microfluidic system. (C) INS-E and α-TC1-6 aggregates 24 h after cells introducing 
into islet-on-a-chip system. (D) Three-dimensional confocal image of the obtained aggregate. Con-
firmation of the localization of α- and β-cells by staining glucagon (conjugated with Alexa Fluor 
594) (red cells) and insulin (conjugated with Alexa Fluor 488) (green cells). The cell nucleus is shown 
in blue (Hoechst staining). 

2.2. The Influence of PAHSA on Cell Proliferation 
Our goal was to test a wide range of concentrations (5 µM, 20 µM, 40 µM, 60 µM, 80 

µM, 100 µM) of two regioisomers of palmitic acid hydroxy stearic acid. We used 5-(pal-
mitoyloxy) octadecanoic acid (5-PAHSA, Cayman Chemicals) and 9-[(1-oxohexa-
decyl)oxy]-octadecanoic acid (9-PAHSA, Cayman Chemicals) in all studies. After obtain-
ing a spherical pseudoislet model (24h after the introduction of α- and β-cells cells in ratio 
of 1:2 into the microfluidic system), solutions of 5-PAHSA or 9-PAHSA at concentrations 
of 5 µM, 20 µM, 40 µM, 60 µM, 80 µM, 100 µM were introduced into the system. All rea-
gents were introduced into the microfluidic system using a peristaltic pump at a flow rate 
of 10 µL/min over 3 min. These parameters were selected on the basis of simulation (using 
Microelectromechanical Systems (MEMS) simulation module of COM- SOL Multiphysics 
software) and confirmed experimentally. The results were presented in our previous pub-
lication [5]. The proliferation rate was measured daily for 5 days of cell culture after 24 h 
incubation of pseudoislets with above mentioned concentrations of 5- and 9-PAHSA. Each 

Figure 1. Islet-on-a-chip system. (A) Geometry of one microchamber of the islet-on-a-chip.
(B) PDMS/PDMS microfluidic system. (C) INS-E and α-TC1-6 aggregates 24 h after cells intro-
ducing into islet-on-a-chip system. (D) Three-dimensional confocal image of the obtained aggregate.
Confirmation of the localization of α- and β-cells by staining glucagon (conjugated with Alexa Fluor
594) (red cells) and insulin (conjugated with Alexa Fluor 488) (green cells). The cell nucleus is shown
in blue (Hoechst staining).

2.2. The Influence of PAHSA on Cell Proliferation

Our goal was to test a wide range of concentrations (5 µM, 20 µM, 40 µM, 60 µM, 80 µM,
100 µM) of two regioisomers of palmitic acid hydroxy stearic acid. We used 5-(palmitoyloxy)
octadecanoic acid (5-PAHSA, Cayman Chemicals) and 9-[(1-oxohexadecyl)oxy]-octadecanoic
acid (9-PAHSA, Cayman Chemicals) in all studies. After obtaining a spherical pseudoislet
model (24 h after the introduction of α- and β-cells cells in ratio of 1:2 into the microfluidic
system), solutions of 5-PAHSA or 9-PAHSA at concentrations of 5 µM, 20 µM, 40 µM,
60 µM, 80 µM, 100 µM were introduced into the system. All reagents were introduced
into the microfluidic system using a peristaltic pump at a flow rate of 10 µL/min over
3 min. These parameters were selected on the basis of simulation (using Microelectrome-
chanical Systems (MEMS) simulation module of COM- SOL Multiphysics software) and
confirmed experimentally. The results were presented in our previous publication [5]. The
proliferation rate was measured daily for 5 days of cell culture after 24 h incubation of
pseudoislets with above mentioned concentrations of 5- and 9-PAHSA. Each day of the
culture pseudoislets were incubate for 50 min with 10% vol AlamarBlue (Abcam, Waltham,
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MA, USA) prepared in the culture medium (mixture of INS-1E and α-TC1-6 culture media
in a 1:1 ratio). Fluorescence measurements were carried out on a chip using multi-well
plate reader (Tecan Infinite 200 Pro) at an excitation wavelength of 552 nm and emission
wavelength of 583 nm. Fresh solutions of 5-PAHSA or 9-PAHSA were administered daily.
Moreover, every day, after incubation with PAHSA solutions, we conducted microscopic
observations of aggregation and changes in the diameter of pseudoislet. Observations
were made using an inverted microscope coupled with a CCD camera (Olympus IX70).
The microscopic photos were analyzed using CellSens Dimension image analysis software
(Olympus, Warszawa, Poland).

2.3. Immunostaining

To confirm the proper morphology of cell aggregates and to analyze the fluorescence
intensity profile after incubation with 5-PAHSA and 9-PAHSA solutions, immunofluores-
cence staining with primary and secondary antibodies was performed. After the membrane
permeabilization and cells fixation steps, primary antibodies for insulin (Cell Signaling
Technology, Danvers, MA, USA) and glucagon (Abcam) in a 1:200 dilution were intro-
duced into the microfluidic system. As a secondary antibodies anti-mouse Alexa Fluor 594
(Thermo Fisher) and anti-rabbit Alexa Fluor 488 (Thermo Fisher, Waltham, MA, USA) in a
1:200 dilution was used. DNA was stained with Hoechst (Sigma Aldrich, St. Louis, MO,
USA). The results were analyzed in two dimensions (2D and 3D views) using a Fluoview
FV10i confocal microscope (Olympus) and the Olympus Fluoview Fv10i software.

2.4. The Effect of 5- and 9-PAHSA on Glucose Stimulated Insulin Secretion (GSIS)

To examine the therapeutic effect of 5-PAHSA and 9-PAHSA on the pseudoislet model,
an islet functionality test was performed after incubation with 5, 20, 40, 60, 80, or 100 µM of
5-PAHSA or 9-PAHSA solutions and stimulation with low (2.75 mM) or high (16.5 mM)
glucose concentrations. After obtaining spherical pseudoislets aggregates, the 5-PAHSA or
9-PAHSA solution at the appropriate concentration was introduced (flow rate = 10 µL/min,
3 min) into one chamber of the system, and the culture medium was introduced into the
other chamber (as a control). After 48 h of incubation, the medium was removed from
the chamber by washing the system with DPBS (Biowest, MS00QC1001) at a flow rate of
10 µL/min, 3 min. Afterward, 2.75 glucose solution (Sigma-Aldrich) prepared in Krebs
buffer (135 mM NaCl, 3.6 mM KCl, 5 mM NaHCO3, 0.5 mM MgCl2 × 6H2O, 1.5 mM
CaCl2 × 2H2O, 10 mM HEPES, 0.1% BSA, and 0.5 mM Na2PO4 × H2O) was introduced
into all chambers of the microfluidic systems (a flow rate of 10 µL/min, 3 min) and
incubated (37 ◦C, 5% CO2) for 1 h. After the incubation step, 2.75 mM glucose was added
(10 µL/min, 3 min) into both chambers of one microfluidic system, and Krebs buffer that
contained 16.5 mM glucose was added to the other microfluidic system (10 µL/min, 3 min),
and incubated for 1 h at 37 ◦C with 5% CO2. Next, the obtained samples were transferred
into the Eppendorf tubes and analyzed using the Rat/Mouse Insulin ELISA Kit (Millipore)
in a multi-well plate reader (Tecan Infinite 200 Pro), absorbance (450 nm and 590 nm).

2.5. The Effect of 5- and 9-PAHSA on Glucagon Secretion

The effect of 5- and 9-PAHSA on glucose secretion was determined from the samples
obtained in the previous section (2.4) using the Glucagon Chemiluminescent ELISA Kit
(Millipore, Burlington, MA, USA) according to the manufacturer’s instructions. Luminescence
(~425 nm) was read in a multi-well plate reader (Tecan Infinite 200 Pro).

2.6. Statistical Analysis

All the quantitative data were expressed as mean ± standard deviation (SD), based on at
least three independent experiments. The statistical analysis was performed using one-way
analysis of variance (ANOVA). Values of p < 0.05 were considered statistically significant.
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3. Results and Discussion
3.1. The Influence of PAHSA Isomers on Cell Proliferation in 3D Pseudoislet Model

The growing number of diabetes cases and complications related to its development
was an impulse to research new therapeutic and prophylactic strategies. Recently, more and
more attention has been paid to the influence of FAHFA, especially PAHSA, on improving
pancreatic β-cells function. The presence of these substances has been confirmed in the
tissues of mammals, but also in nutrients such as fruit, vegetables, eggs and oats [26].
It was concluded that introducing PAHSA-rich foods into the diet or administering this
compound orally could be one of the therapeutic strategies for type 2 diabetes. It was
shown that oral treatment of nonobese diabetic (NOD) mouse with PAHSA compounds
resulted in an increase in the area of β-cells per islet and therefore, an increase in their
number [23]. Based on these references, we performed research on the direct impact
of a wide range of 5-PAHSA and 9-PAHSA concentrations on the pseudoislet model in
flow conditions. In our previous study, due to the use of a microfluidic system with an
appropriate geometry, we developed a model that mimics the unique structure of the
rodent pancreatic islet (in terms of size, structure of aggregate and distribution of α- and
β-cells) was imitated. The model was fully functional, characterized by high viability
and proliferation level and an appropriate level of insulin and glucagon secretion under
different glucose concentrations [5]. Here we decided to use the above-mentioned model
to study the islet cell proliferation, as well as an analysis of islet mass and aggregation
process in the following days of PAHSA treatment. The high degree of islet cell aggregates
proliferation was detected after incubation with all tested concentrations of 5-PAHSA
(Figure 2A). Higher values of proliferation level were obtained in relation to both the
control and the stimulation with the same concentrations of 5-PAHSA on the previous
day. After 72 h of cell culture, the highest increase in the degree of proliferation (more
than twice compared with 24 h of culture) was noticed in the case of stimulation with the
5-PAHSA solution at a concentration of 40 µM and 60 µM (proliferation rate increased
by 1.09 and 0.96, respectively). In the case of incubation with 9-PAHSA, in all tested
concentrations an approximately two-fold lower increase in the degree of proliferation
was observed compared to proliferation after incubation with 5-PAHSA (Figure 2B). The
degree of proliferation after 72 h of exposure to 5 µM, 20 µM, 80 µM of 9-PAHSA compared
with the first day of stimulation (24 h) increased by 0.15 and 0.3, 0.2, respectively. In the
case of higher concentrations 9-PAHSA (especially 60 µM and 100 µM), a decrease in the
proliferation level was noted in the following days of culture. In summary, incubations
with the 5-PAHSA solutions at all tested concentrations did not have a toxic effect on the 3D
structures of pancreatic islets and significantly increased cells proliferation. In contrast, a
significant decrease in cell proliferation was noted after incubation with high concentrations
of 9-PAHSA. As expected, an increase in diameter and total aggregate mass was noted,
which also indicates a high degree of cell proliferation (Figure 2C,D). The diameters of the
aggregates, and thus the total mass of β-cells after treatment with 5-PAHSA, increased in
the following days of culture. After 72 h of incubation, an increase of about 20–35 µm in
relation to the first day was noted. Similarly, in the case of 9-PAHSA, an increase in diameter
was also noted in the following days of culture, with a maximum increase of 25 µm. Next
days of culture, the area of aggregates increased, which proves that the aggregation process
was correct. These results are in line with previous reports on the possible influence of
PAHSA isomers on the survival and function of β-cells. The degree of cell proliferation
depends on many factors, including age, species, or type of cells. During diabetes, β-cells
gradually lose their ability to proliferate, which results in reduced insulin secretion [27]. So
far, the effect of PAHSA concentration in the 0–20 µM range on cells proliferation in mice
has been tested [21,23]. It was showed that PAHSA reduces apoptotic and necrotic β-cell
death and increases their viability. Currently, the proposed mechanism of this phenomenon
is the reduction of ER stress and MAPK signaling [23]. Here we showed that PAHSA (and
especially the 5-PAHSA isomer) has the direct positive effect on the pancreatic islet cell
proliferation (Figure 2).
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Figure 2. Proliferation and diameter of the pseudoislet after incubation with different concentration
of 5-PAHSA (A,C) and 9-PAHSA (B,D). The results presented in the graphs were related to the
measurement of the degree of proliferation 24 h after introducing the cells into Lab-on-a-chip system
(without incubation with 5-PAHSA and 9-PAHSA), n = 3 * p < 0.05.

3.2. Study of Pseudoislet Structures and Hormones Fluorescence Intensity

The morphology (i.e., composition and location of cells) and size of the pancreatic
islet depend on the species. In rodents, the size of the islet is approximately 200 µm and
consists 60% of the β-cells located on the core of the islet, whereas α-cells were distributed
peripherally and consisted 25% of all cells in the islet. The remaining 5% of the islet are
γ/PP, δ, ε cells [28]. As mentioned before, rodent pancreatic islets are well-defined 3D
structures with a specific location and composition of cells. It is very important to maintain
the correct morphology of the pseudoislet throughout the culture process. In order to
confirm the appropriate aggregate structure and characterize the production of insulin and
glucagon after incubation with 5-PAHSA and 9-PAHSA immunofluorescence staining was
performed. At this stage of the research, it was decided to choose the three concentration
limits: the highest—100, the lowest—5 µM, and the concentration in the middle of the
range (60 µM).

The values presented in the graphs were obtained for pseudoislets incubated with the
above-mentioned concentrations of 5-PAHSA and 9-PAHSA without additional stimulation
with solutions containing glucose (Figure 3). In each case, the correct distribution of β-
cells in the core of the aggregate was confirmed, while α-cells outside, creating a mantle
surrounding β-cells. This distribution is correct and consistent with that obtained in our
previous studies. In Figure 3, red color is less intense than green, which is associated with
a greater ability to produce insulin than glucagon by aggregates incubated with PAHSA
solutions. This is also confirmed by the observed differences in the levels of fluorescence
intensity, which indicates a higher ability to secrete insulin and glucagon after stimulation
with solutions with specific concentrations of PAHSA. The higher levels of insulin and
glucagon fluorescence intensity for 60 µM and 100 µM of 5-PAHSA and a slight increase
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after incubation with 100 µM of 9-PAHSA were obtained. Moreover, the correct process
of cell aggregation and the distribution of α-cells outside the aggregate and β-cells inside
were confirmed (Figure 3).
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Figure 3. Immunostaining process of the pseudoislet. Confirmation of the localization of α- and β-cells
by staining glucagon (conjugated with Alexa Fluor 594, red cells) and insulin (conjugated with Alexa
Fluor 488, green cells). The analysis of the intensity of individual hormones was performed based on
images obtained in a confocal microscope with the use of the CellSens Dimension program, n = 3.

3.3. The Effect of 5- and 9-PAHSA on Glucose Stimulated Insulin Secretion (GSIS)

Mice treated with PAHSA showed increased glucose tolerance and insulin sensitiv-
ity [19,20]. It was shown that 48-h incubation of isolated human pancreatic islets with
PAHSA solution at a concentration of 40 µM increased GSIS. Moreover, the same study was
performed for incubation only with palmitic acid (PA), and an increase in insulin secretion
in response to glucose stimulation was not recorded [29]. However, it is not clearly defined
what range of PAHSA concentration causes a direct negative or positive effect on β-cells.
Different concentrations of PAHSA—usually a concentration of the order of nM or mM are
often used in animal or isolated islets studies, frequently much higher to test the effect of
PAHSA on GSIS and much lower to test its effect on the proliferation of pancreatic islet
cells [22,23,29]. Glucose-stimulated insulin secretion (GSIS) is major parameter indicating
functionality of pancreatic β-cells [30]. In the present study we checked whether the 48-h
incubation with 5-PAHSA and 9-PAHSA affects GSIS. We performed ELISA test of insulin
secretion after 48 h of incubation of pseudoislets with different concentrations (0 µM,
5 µM, 10 µM, 20 µM, 60 µM, 100 µM) of 5-PAHSA or 9-PAHSA, and cell stimulation with
low (2.75 mM) or high (16.5 mM) concentrations of glucose. Thanks to the design two
microchambers in one microfluidic system, cell stimulation of with low and high glucose
solutions were performed simultaneously under the same environmental conditions. As
was expected, at the lower concentrations of 5-PAHSA (5 µM, 10 µM, 20 µM), no significant
increase in the level of insulin secretion was observed compared to the results obtained in
the control (culture medium). On the other hand, after incubation with higher concentra-
tions of 5-PAHSA, a significant increase in the level of insulin secretion was observed. The
level of insulin secretion after incubation with 60 µM 5-PAHSA was 4,14 ng per pseudoislet
after low glucose stimulation and 9.12 ng per pseudoislet after high glucose stimulation
(a twofold increase compared with the control). After 48 h of incubation with 100 µM
5-PAHSA, the cells secreted 19.98 ng per islet at the stimulation with low glucose concentra-
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tion solution, and 22.02 ng per islet in the high glucose environment (Figure 4). However,
in this concentration (100 µM), no significant differences in the level of insulin secretion
between stimulation with high and low glucose concentration were observed, which is not
correct islet function. In opposite, no significant effect of 9-PAHSA at concentrations of
5 µM, 10 µM, 20 µM, 60 µM on GSIS was observed. Only after incubation with 100 µM
9-PASHA, an increase in insulin secretion was observed. The cells secrete 4.28 ng per
islet and 10.71 ng per islet after stimulation with low and high glucose concentrations,
respectively. However, it was more than two times lower increase in insulin secretion
than after incubation with the same concentration of 5-PAHSA (Figure 4). It may also be
associated with a lower rate of cell proliferation.
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There are several literature reports confirming that HFD-induced insulin-resistant
mice showed better glucose tolerance after treatment with 5-PAHSA [17,24]. Most of these
studies are carried out on animal models. It has been proven that treatment with 5-PAHSA
can increase glucose-stimulated (11 mM) insulin secretion by up to 30% [29]. Other reports
deny positive effects of PAHSA on insulin secretion [18]. In our study, it was confirmed
that PAHSA (especially 60 µM 5-PAHSA and 100 µM 9-PAHSA) might have a positive
effect on increasing insulin secretion by pancreatic β-cells. Moreover, we examined insulin
secretion after treatment with PAHSA isomers and after stimulation with both low and
high glucose concentrations, in each case at least a 50% increase in insulin secretion relative
to the control was confirmed (Figure 4). A similar trend of increasing insulin secretion was
observed as in the studies on animal models presented in the literature, but a higher level
of secretion was obtained after administration of lower concentrations of PAHSA, which
had not been tested on pseudoislet model so far.

3.4. The Effect of 5- and 9-PAHSA on Glucagon Secretion

Glucagon plays an important role in regulation of blood glucose homeostasis. During
hypoglycemia, insulin secretion is inhibited, glucagon is produced by α-cells, and when
it reaches its maximum level, glucose is released from the liver. As the blood glucose
level increases, the secretion of glucagon is inhibited, which causes an increase in insulin
secretion [31,32]. Diabetes research usually focuses on β-cells, but it should be remembered
that in order to maintain proper homeostasis of the blood glucose, the proper functioning
of α-cells is equally important [33,34]. In the case of the studies on the effect of PAHSA
on pancreatic cells, two parameters are usually analyzed: insulin secretion and the effect
on body weight. There are no publications of in vitro or in vivo studies of an effect on
glucose-stimulated glucagon secretion. There is one brief report compiled by Zhou et al.
showed that in HFD-fed mice, treatment with PAHSA did not increase glucagon levels [20].
In our research, we incubated the pseudoislet model with various concentrations (5 µM,
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10 µM, 20 µM, 60 µM, 100 µM) of 5-PAHSA and 9-PAHSA. After 48 h of incubation,
the glucagon secretion from the pseudoislets in low (2.75 mM) and high (16.5 mM) of
glucose was tested using the ELISA test (Figure 5). As expected, no statistically significant
differences were noticed in glucagon secretion after incubation with lower concentrations
of 5-PAHSA (5–60 µM). Only after 48 h of incubation with 100 µm 5-PAHSA, a twofold
increase in glucagon secretion was noted after stimulation with a low glucose solution.
Such an increase in glucagon secretion was not observed, for the same concentration of
5-PAHSA and stimulation with high glucose concentration. In the case of 9-PAHSA, it was
noticed that glucagon secretion under low glucose conditions increased after incubation
with 5 µM, 10 µM, 20 µM and 100 µM by, respectively: 0.39 ng, 0.09 ng, 0.36 ng, 0.23 ng
per islet. However, in the case of stimulation with high glucose concentrations, an increase
in glucagon secretion by 0.30 ng per islet was observed only after incubation with 60 µM
9-PAHSA. There was no such marked increase in secretion under both high and low glucose
conditions as in the case of insulin secretion. The obtained results show that 5-PAHSA and
9-PAHSA in some concentrations may have a positive effect on glucagon secretion from
α-cells, but practically only in conditions of low glucose concentration. Therefore, 5-PAHSA
and 9-PAHSA are much better suited for administration of impaired insulin secretion in
disease states but may be ineffective in increasing/reducing glucagon secretion.

 
 

 
 

 
Biosensors 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/biosensors 

 

 

 

Figure 5. The level of glucagon secretion after pseudoislet treatment with 5-PAHSA (left) and
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solution. n ≥ 3. * p < 0.05.

4. Conclusions

The aim of this study was to determine the possibility of applying the developed
model to the study of therapeutic agents (direct influence of two PAHSA isomers) and to
determine the compatibility of cell responses in vivo and in vitro. Two aspects were the
most important here: proof that PAHSA has a chance of being a completely safe therapeutic
agent for type 2 diabetes and proof that our Lab-on-a-chip system can be used as a universal
device for research on potential therapeutic agents and observation multiple responses
(from single cell structures) at the same time. We decided to choose two isomers of PAHSA:
5-PAHSA because this form is the most severely reduced in all adipose tissue in mice and
human resistant to insulin and 9-PAHSA which is the most abundant isomer in adipose
tissue in mice and humans. There are several literature reports on the above-mentioned
compounds, and the argument in their favor is that these substances can be completely safe
due to their natural occurrence in the body [18]. Research on these compounds is based
mainly on the introduction of PAHSA into the rodent’s diet and long-term determination of
insulin levels and weight gain or the study of insulin secretion on isolated islets. Contrary
to this, we present research using 3D pancreatic islet model (pseudoislet) under flow condi-
tions. In this study, we determined the effect of a wide range of 5-PAHSA and 9-PAHSA
concentrations on cell proliferation, change in islet mass and their unique structure. More-
over, we investigated the activity of pseudoislets, insulin and glucagon profile intensity,
and the effect of PAHSA treatment on glucose stimulated insulin secretion and on glucose
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stimulated glucagon secretion. Due to developing the proper geometry and environment in
developed model we were able to better mimic in vivo conditions, reduce the time needed
to obtain a functional pseudoislet model and test multiple compound concentrations at the
same time. In this study, we have proved that incubation with 5-PAHSA allowed for even
a twofold increase in cell proliferation in the following days of culture, and thus increased
their mass and higher insulin secretion levels. On the other hand, the degree of cell prolifer-
ation, their mass, and insulin secretion increased after incubation with 9-PAHSA but was
lower than after incubation with 5-PAHSA in the same concentrations. Moreover, there was
an increase in glucagon secretion after treatment with PASHA isomers, which was higher for
5 µM, 20 µM and 100 µM 9-PAHSA than for the same 5-PAHSA concentrations. In our
research, we report that PAHSA isomers may have potential therapeutic properties and
examined their direct effect on α- and β-cells. We believe that the best treatment results
will be obtained with 60 µM 5-PAHSA and 100 µM 9-PAHSA. We also want to emphasize
that the developed microsystem can be an ideal solution in screening tests, testing new
drugs, or the impact of therapy on the development of diabetes, and thanks to its design it
is possible to conduct research and observations in real time.
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