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Abstract

Chlamydia pecorum is a mucosal infection, which causes debilitating disease of the urinary

tract, reproductive tract and ocular sites of koalas (Phascolarctos cinereus). While antibiot-

ics are available for treatment, they are detrimental to the koalas’ gastrointestinal tract

microflora leaving the implementation of a vaccine as an ideal option for the long-term man-

agement of koala populations. We have previously reported on the successes of an anti-

chlamydial recombinant major outer membrane protein (rMOMP) vaccine however, recom-

binant protein based vaccines are not ideal candidates for scale up from the research level

to small-medium production level for wider usage. Peptide based vaccines are a promising

area for vaccine development, because peptides are stable, cost effective and easily pro-

duced. In this current study, we assessed, for the first time, the immune responses to a syn-

thetic peptide based anti-chlamydial vaccine in koalas. Five healthy male koalas were

vaccinated with two synthetic peptides derived from C. pecorum MOMP and another five

healthy male koalas were vaccinated with full length recombinant C. pecorum MOMP (geno-

type G). Systemic (IgG) and mucosal (IgA) antibodies were quantified and pre-vaccination

levels compared to post-vaccination levels (12 and 26 weeks). MOMP-peptide vaccinated

koalas produced Chlamydia-specific IgG and IgA antibodies, which were able to recognise

not only the genotype used in the vaccination, but also MOMPs from several other koala

C. pecorum genotypes. In addition, IgA antibodies induced at the ocular site not only recog-

nised recombinant MOMP protein but also, whole native chlamydial elementary bodies.

Interestingly, some MOMP-peptide vaccinated koalas showed a stronger and more sus-

tained vaccine-induced mucosal IgA antibody response than observed in MOMP-protein

vaccinated koalas. These results demonstrate that a synthetic MOMP peptide based
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vaccine is capable of inducing a Chlamydia-specific antibody response in koalas and is a

promising candidate for future vaccine development.

Introduction

Chlamydia (C) continues to be one of the major factors threatening the long-term survival of

the koala (Phascolarctos cinereus). C. pecorum is primarily considered to be a sexually transmit-

ted infection however, congenital transmission has also been shown [1]. C. pecorum is a muco-

sal infection, which causes debilitating disease at the urinary tract, reproductive tract and

ocular sites of koalas [2]. When left untreated, C. pecorum infection can lead to cystitis, infertil-

ity and blindness [2–5]. The current treatment for Chlamydia in koalas involves the use of anti-

biotics, which can be detrimental to the koalas’ gastrointestinal tract microflora, which is

essential for the digestion of their diet of eucalyptus leaves [6–8]. Although antibiotics can be a

useful treatment, they offer no long-term protection from subsequent infections and have lim-

ited effect on severe cases of chlamydiosis [9]. Furthermore, as Chlamydia can be asymptom-

atic, showing no overt signs of disease in up to 50% of infected koalas, many infected koalas go

untreated [1].

Our group has been working towards the successful development of an anti-chlamydial

vaccine with considerable progress [10–20]. Until now, the vaccine has been composed of

recombinant proteins derived from the full length chlamydial major outer membrane protein

(MOMP) [21]. Previous vaccine trials have shown that, a) the vaccine is safe to use, in both

healthy and infected koalas [11], b) there is a level of cross protection against other koala-C.

pecorum genotypes [12], c) both humoral and cellular immune responses are stimulated [14,

15], d) the vaccine-induced immune responses are long lasting [14], and e) vaccination has

both prophylactic as well as therapeutic effects [19]. Although the current recombinant based

vaccine has shown considerable promise, its production is at a research level and scale up for

wider use will be challenging. One alternative would be the development of a synthetic, peptide

based vaccine. Peptide vaccines are becoming increasingly popular, primarily because peptide

based antigens are, a) easier to produce, b) cost effective, c) customised, d) typically water-solu-

ble, e) stable, and f) able to be freeze dried for long-term storage [22]. Furthermore, it has also

been suggested that dendritic cells (DC) can process synthetic peptides more efficiently than

full length proteins [23]. This would provide an ideal advantage as antigen presenting cells

(APCs) are responsible for initiating adaptive T-cell responses, which are thought to be needed

for cellular and/or humoral immunity to Chlamydia [22, 24]. However, peptide based antigens

are often recognised as being poor immunogens, lacking essential immunostimulatory proper-

ties required for effective immune stimulation [22, 25–28]. The addition of an appropriate

delivery system or adjuvant is therefore essential. Whilst there are a number of adjuvants suit-

able for use in animals the choice of adjuvant for use in humans is limited due to their adverse

side effects and toxicity [29, 30]. For this reason, careful consideration should be taken when

selecting an appropriate adjuvant. Peptide vaccines have also been shown to induce tolerance

and autoimmunity, post vaccination [30–34]. This is of particular importance when develop-

ing anti-cancer peptide-based vaccines as tumor-associated antigens can also be expressed in

normal cells where self-recognition can lead to tolerance or an induced immune response

could lead to autoimmunity [30].

Developing a successful peptide based vaccine requires the identification of key epitopes

responsible for producing strong humoral and cell mediated immunity against C. pecorum.

Our progression towards a peptide based vaccine, has identified the location of B and T cell
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epitopes within the full length MOMP from a diverse range of C. pecorum genotypes, with a

focus on the immunostimulatory epitopes located within both the variable and conserved

regions of MOMP [13, 35]. Further analysis was then performed to identify which epitopes

were responsible for inducing antibodies with neutralising capabilities, essential for an effec-

tive vaccine. This led to the identification of a unique set of epitopes, all contained within the

conserved region of MOMP, that induced antibodies capable of neutralising whole C. pecorum
elementary bodies (EBs) [15, 16]. As C. pecorum vaccinated koalas have previously been

shown to cross-recognise other C. pecorum genotypes [12] and given this unique set of neutral-

ising epitopes that reside within the conserved region of MOMP, it is equally expected that a

peptide vaccine, based on these epitopes, would also show cross-protective abilities against

other C. pecorum genotypes. In this study, we present for the first time, the humoral responses

in koalas vaccinated with a synthetic peptide antigen, derived from the conserved region of

whole C. pecorum MOMP, combined with a Tri-Adjuvant [36]. We have shown that our pep-

tide antigen is capable of inducing a systemic IgG antibody response as well as a mucosal IgA

antibody response at the ocular site.

Materials and methods

Animals

Ten healthy captive adult male koalas were used for this study. All koalas had been bred and

housed at, Lone Pine Koala Sanctuary (LPKS), Fig Tree Pocket, Brisbane, Queensland, Austra-

lia. A full veterinary health check was performed on all koalas before being given approval to

participate in the vaccine trial. Enclosures and koala husbandry followed the Code of Practice

for wildlife care (Queensland). Koala enclosures consisted of a sand or concrete floor with

either wooden, brick, colourbond or glass walls with a tin or sail roof. Koalas remained housed

in their usual enclosure with other koalas, which all met or exceeded zoo standards for koala

exhibit size. They were supplied with fresh eucalyptus leaves daily, with the water in the leaf

holding pots and water dishes topped up two to three times a day. The floors were cleaned

once a day, and the koala climbing poles were cleaned once a week with disinfectant. All koalas

were individually checked daily by a senior koala keeper and cared for by their regular koala

keepers. All procedures relating to this study were approved by the University of the Sunshine

Coast (USC) Animal Ethics Committee (Animal Ethics permit number AN/S/15/42) and by

the Queensland Government (Scientific Purposes Permit number WISP16718315).

Chlamydia pecorum MOMP purification

The protein antigen vaccine consisted of recombinant MOMP G. ELISA’s were performed

using recombinant MOMP genotypes, A, F and G. Chlamydia pecorum MOMP proteins,

genotype A, F and G, was purified as previously described by Kollipara et al. (2012) [11].

Peptide synthesis and alignment

The peptide antigen vaccine consisted of two synthetic peptides located within the conserved

regions of MOMP. P1, a 14 amino acid sequence, H-EGMSGDPCDPCATW-OH and P2, a 21

amino acid sequence H-INYHEWQVGAALSYRLNMLIP-OH (Fig 1). For use in the ELISA

assays, both P1 and P2 were constructed as Biotin molecules linked to a serine glycine (SGSG)

spacer. Peptides were reconstituted using endotoxin-free water. All peptides were produced by

Mimotopes (Melbourne, Australia).

Koala C. pecorum ompA genotypes were compared for similarity within the conserved

regions, where the two synthetic peptides (P1 and P2) are located. In total, 14 C. pecorum
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ompA genotypes (A, F, G, F’, E’, J, H, L, B, M, C, I, N and K), were retrieved from GenBank

for sequence comparison (Fig 1). All C. pecorum ompA sequences can be found through Gen-

Bank using accession numbers, AGV52054 (A), AGV52057 (F), AGV52059 (G), AGV52058

(F’), AGV52056 (E’), AGV52062 (J), AGV52060 (H), AMO26059 (L), AGV52055 (B),

AMO26056 (M), AMO26054 (C), AGV52061 (I), AMO26053 (N) and AGV52063 (K).

Sequence alignment was performed using Geneious 9.1 software.

Immunisation schedule and sample collection

Koalas were randomly assigned to two groups of five animals. One group (n = 5) received a

single subcutaneous injection containing recombinant MOMP G (50μg) with Tri-Adjuvant

(MOMP-protein vaccinated group), and the other group (n = 5) received a single subcutane-

ous injection containing synthetic peptides P1 and P2 (50μg or each peptide) (MOMP-peptide

vaccinated group) combined with Tri-Adjuvant and made up to a total volume of 500μL with

sterile endotoxin-free PBS. The Tri-Adjuvant contained a 1:2:1 ratio of Poly I;C (250μg), Host

Defence Peptide–Innate Defence Regulator IDR-1002 (500μg), and Polyphosphazene EP3

(250μg) all produced and supplied by VIDO-Intervac (University of Saskatchewan, Saskatoon,

SK, CA). Each vaccine was prepared in a 2mL sterile endotoxin free amber glass vials, stored

on ice and administered within 2 hours of preparation.

All koalas were sampled pre-vaccination and again at 12 and 26 weeks post-vaccination.

Samples were collected from the koalas whilst they were being restrained by an experienced

staff member, as per standard Lone Pine Koala Sanctuary procedure. Briefly, koalas were held

facing outwards from the handler and seated on a table. Forelimb and hindlimb were held

together, right with right and left with left in the handlers’ respective right and left hands. Anti-

septic was applied to the forelimb and whole blood (3mL) was collected from either the left or

right cephalic vein. Whole blood was then placed into EDTA collection tubes (Interpath Ser-

vices) and stored at 4˚C until centrifugation where the plasma was removed and then stored at

-20˚C. Swabs were collected from the ocular site (Aluminium rayon swabs; Copan), placed

into 1% protease inhibitor cocktail and stored at -20˚C until processed.

Fig 1. Vaccine peptide antigens are located within the conserved regions of the chlamydial MOMP. Sequence alignment showing the location of the vaccine

peptide antigens at 45–55 (P1) and 265–285 (P2) are both within the conserved regions of the major outer membrane protein across the 14 koala Chlamydia
pecorum ompA genotypes (A, F, G, F’, E’, J, H, L, B, M, C, I, N and K).

https://doi.org/10.1371/journal.pone.0200112.g001
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Koala specific Chlamydia pecorum IgG ELISA

The IgG ELISA assay was performed to determine the systemic antibody response utilising

recombinant MOMP proteins A, F and G, from plasma samples, collected pre-vaccination and

again at 12 and 26 weeks post-vaccination. Initially, 96 well plates (Greiner Bio-One medium

binding) where coated with 50μL of carbonate-bicarbonate coating buffer containing, 2μg/well

of recombinant MOMP G, then incubated at 4˚C overnight. After incubation, wells were emp-

tied then coated with 100μL per well of blocking buffer consisting of 5% skim milk in PBS con-

taining 0.01% Tween-20 then incubated for 2 hours at 37˚C. After incubation, wells were

emptied then 1:3 serially diluted plasma, with dilutions starting at 1:50, was added in duplicate

then incubated for 1 hour at 37˚C. After incubation, wells were washed 3 times with PBS con-

taining 0.05% Tween-20 then coated with 50μL/well of sheep anti-koala IgG diluted 1:8000 in

PBS containing 0.01% Tween-20 then incubated for 1 hour at 37˚C. After incubation, wells

were washed 3 times with PBS containing 0.05% Tween-20 then coated with 50μL/well of

HRP-conjugated donkey anti-sheep IgG diluted 1:20000 (Abcam) in PBS containing 0.01%

Tween-20 then incubated for 1 hour at 37˚C. After incubation, wells were washed 3 times with

PBS then 50μL/well of TMB substrate (Sigma-Aldrich) was added and incubated at room tem-

perature for 30 mins before stopping the reaction with 50μL/well of 1M sulphuric acid. The

end point titre (EPT) was calculated as per [20].

Koala specific Chlamydia pecorum IgA ELISA

The IgA ELISA assay was performed to determine the mucosal antibody response utilising

recombinant MOMP protein, and heat inactivated semi-purified C. pecorum G EBs (purified

as per Carey et al. (2010)) [10] on ocular swab samples, stored in 1% PIC, collected at pre-vac-

cination and again at 12 and 26 weeks post-vaccination. Initially, 96 well plates (Greiner Bio-

One medium binding) where coated with 50μL of carbonate-bicarbonate coating buffer con-

taining either, 2μg/well of recombinant MOMP G or 50000 IFU/well of heat inactivated semi-

purified C. pecorum G EBs, then incubated at 4˚C overnight. After incubation, wells were emp-

tied then coated with 100μL per well of blocking buffer consisting of 5% skim milk in PBS con-

taining 0.01% Tween-20 then incubated for 2 hours at 37˚C. After incubation, wells were

emptied then 50μL/well of swab sample solution, defrosted at room temperature then vortexed

for 3 minutes, was added in duplicate then incubated for 1 hour at 37˚C. After incubation,

wells were washed 3 times with PBS containing 0.05% Tween-20 then coated with 50μL/well of

rabbit anti-koala IgA diluted 1:3000 in PBS containing 0.01% Tween-20 then incubated for 1

hour at 37˚C. After incubation, wells were washed 3 times with PBS containing 0.05% Tween-

20 then coated with 50μL/well of HRP-conjugated goat anti-rabbit IgG (ab6721; Abcam)

diluted 1:20000 in PBS containing 0.01% Tween-20 then incubated for 1 hour at 37˚C. After

incubation, wells were washed 3 times with PBS then 50μL/well of TMB substrate (Sigma-

Aldrich) was added and incubated at room temperature for 30 mins before stopping the reac-

tion with 50μL/well of 1M sulphuric acid. The optical density (OD) was measured at 450nm

and the absorbance value was calculated as the mean of duplicate samples minus the mean of

the no sample control wells.

Koala specific synthetic peptide IgG and IgA ELISA

Peptide ELISA’s were performed to determine the antibody response to P1 and P2, as

described by Bommana et al. (2017) [37] with the following modifications. Streptavidin plates

were initially coated with either, 1.5μg/well of P1 or 1.5μg/well of P2. For the IgG ELISA,

100μL/well of 1:3 serially diluted plasma, starting with a 1:50 dilution, was added in duplicate,

following incubation, 100μL/well of sheep anti-koala IgG, diluted 1:8000, was added followed
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by a final incubation of 100μL/well of HRP-conjugated donkey anti-sheep IgG diluted 1:20000

(Abcam). For the IgA ELISA, 50μL/well of swab sample solution, defrosted at room tempera-

ture then vortexed for 3 minutes, was added in duplicate, following incubation, 100μL/well

rabbit anti-koala IgA, diluted 1:3000, was added followed by a final incubation of 100μL/well

HRP-conjugated goat anti-rabbit IgG (ab6721; Abcam) diluted 1:20000. The optical density

(OD) was measured at 450nm and the absorbance value was calculated as the mean of dupli-

cate samples minus the mean of the no sample control wells.

Statistical analysis

All statistical analysis was performed using GraphPad Prism version 7 (GraphPad Software,

LaJolla, CA, USA). To evaluate the difference between time-points of each group, a one-way

ANOVA Tukey’s multiple comparison test was performed with P-values set at �p<0.05,
��p<0.01, ���p<0.005.

Results

Systemic IgG antibody response of vaccinated koalas to full length

recombinant MOMP protein

We initially assessed the ability of vaccine induced antibodies to recognise full length recombi-

nant MOMP protein in an ELISA. The systemic IgG antibody response was measured against

recombinant MOMP protein from three different C. pecorum genotypes (A, F and G) to assess

their ability to cross-recognise varying MOMP genotypes (Fig 2). These genotypes were chosen

as representatives of the previously identified genotypes circulating in wild koala populations,

particularly in northern Australia. MOMP-peptide vaccinated koalas produced a good systemic

IgG response, to all three recombinant MOMP genotypes (A, F and G) (Fig 2A, 2C and 2E),

with the response increasing gradually to 26 weeks post-vaccination. As expected, MOMP-pro-

tein vaccinated koalas also produced a strong systemic IgG response, to all three recombinant

MOMP genotypes (A, F and G) (Fig 2B, 2D and 2F), which was, overall, slightly stronger than

that produced in the MOMP-peptide vaccinated group. Eventhough the vaccine was designed

against the C. pecorum genotype G MOMP sequence, both groups produced antibodies that

also recognised MOMP protein from C. pecorum genotypes A and F, in addition to G.

Systemic IgG antibody response of vaccinated koalas to the synthetic

peptides P1 and P2

We then determined the level of antibodies produced post-vaccination that specifically re-

cognised the peptides P1 and P2. All MOMP-peptide vaccinated koalas made an increasing

vaccine-induced systemic IgG antibody response, from pre-vaccination to 26 weeks post-vac-

cination, when tested against each peptide (P1 and P2) (Fig 3A and 3C). The MOMP-protein

vaccinated koalas also produced vaccine-induced systemic IgG antibodies, which recognised

the peptides, P1 and P2 (Fig 3B and 3D) that increased to 26 weeks post-vaccination. Intersest-

ingly, similar results were seen between the two vaccinated groups from pre-vaccination to 26

weeks post-vaccination.

Mucosal IgA antibody response in vaccinated koalas to full length

recombinant MOMP protein, synthetic peptides P1 and P2 and whole

Chlamydia pecorum elementary bodies

Because Chlamydia is a mucosal pathogen, causing disease at the ocular and urogenital sites, it

is important for any vaccine to induce the correct immune response at these mucosal sites. We
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analysed the IgA antibody response to vaccination at the ocular site in this study. The mucosal

IgA antibody response was measured against C. pecorum recombinant MOMP protein (G),

the two synthetic peptides (P1 and P2) and whole C. pecorum EBs (G). The MOMP-peptide

vaccinated koalas produced Chlamydia-specific mucosal IgA antibodies at the ocular site to all

three forms of chlamydial antigen tested. They produced antibodies that recognised full length

recombinant MOMP protein as well as peptides P1 and P2 (Fig 4A, 4C and 4D). Importantly,

they produced a significant increase in IgA antibodies that recongised whole native chlamydial

EBs (P = 0.0299) (Fig 5A). Perhaps not surprisingly, the MOMP-protein vaccinated koalas also

produced IgA antibodies at the ocular site to C. pecorum recombinant MOMP protein (G),

two synthetic peptides (P1 and P2) (Fig 4B, 4D and 4F) and a significant increase to whole

native chlamydial EBs (P = 0.0009) (Fig 5B). Interestingly, although some koalas showed a

stronger vaccine-induced mucosal IgA antibody response than others, at 12 and 26 weeks

post-vaccination, some of the MOMP-peptide vaccinated koalas made a stronger and more

sustained antibody response, compared to the MOMP-protein vaccinated group.

Discussion

Wild koala populations continue to have significant levels of infection with C. pecorum and as

a result are suffering debilitating disease, which is threatening their long-term survival [1, 38,

39]. In many populations, these levels of infection and disease are actually higher than previ-

ously reported [1] and current treatment options are showing little to no impact on the decline

in the level of infection and disease, with hospital admission records remaining stable over

Fig 2. MOMP-peptide vaccinated koalas (Phascolarctos cinereus) produced a systemic IgG antibody response to rMOMP proteins. Systemic IgG

antibody response (from plasma) against recombinant protein from Chlamydia pecorum MOMP genotypes A, F and G measured pre-vaccination and at

12 and 26 weeks post-vaccination. Samples were analysed by ELISA and measurments are shown as end point titre (EPT). (A, C and E) MOMP-peptide

vaccinated koalas (n = 5) response against recombinant MOMP genotypes A, F and G, respectively. (B, D and F) MOMP-protein vaccinated koalas (n = 5)

response against recombinant MOMP genotypes A, F and G, respectively.

https://doi.org/10.1371/journal.pone.0200112.g002
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time [39]. The widespread implementation of a vaccine in wild koalas could offer the protec-

tion needed to reverse this progression. To date, previous rMOMP protein vaccine trials con-

ducted on both infected and diseased wild koala populations have been very successful [11, 13,

15, 16, 18, 19]. These trials have shown that a rMOMP protein vaccine stimulates the immune

system and is responsible for an increase in neutralising antibodies [11, 15, 18]. Vaccinated

koalas have shown a decrease in their chlamydial infectious load [18, 19] as well as ocular dis-

ease status [19], post-vaccination, and importantly, rMOMP vaccinated wild koalas have also

shown a decrease in the progression to disease over a 12 month period [18–20]. However, in

spite of this success, there are many challenges in producing and implementing a recombinant

protein format vaccine on a wider scale. A synthetic peptide based vaccine could overcome

some of these challenges, assuming that it induces a strong and relevant immune response

[22]. The development of a peptide based anti-chlamydial vaccine that can elicit the same, or

even stronger immune responses as the current C. pecorum MOMP vaccine, with the potential

to be mass produced, would be an ideal candidate for future anti-chlamydial vaccine develop-

ment. In this study, we have shown that a vaccine consisting of two relatively short peptides,

derived from the full length MOMP, is capable of inducing an immune response in koalas up

to 26 weeks post-vaccination. We have shown a mucosal IgA antibody response to full length

rMOMP (G), in both the MOMP-peptide and MOMP-protein vaccinated koalas. Most impor-

tantly, for the first time, we found that the MOMP-peptide vaccinated koalas produced a

Fig 3. MOMP-peptide vaccinated koalas (Phascolarctos cinereus) produced a systemic IgG antibody response to

the peptides P1 and P2. Systemic IgG antibody response (from plasma) against two different synthetic peptides (P1

and P2) measured pre-vaccination and at 12 and 26 weeks post-vaccination. Samples were analysed by ELISA and

measurments are shown as EPT. (A) MOMP-peptide vaccinated koalas (n = 5) response against P1. (B) MOMP-

protein vaccinated koalas (n = 5) response against P1. (C) MOMP-peptide vaccinated koalas (n = 5) response against

P2. (D) MOMP-protein vaccinated koalas (n = 5) response against P2.

https://doi.org/10.1371/journal.pone.0200112.g003
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mucosal IgA antibody response to whole chlamydial EBs with some MOMP-peptide vacci-

nated koalas showing a stronger response than the MOMP-protein vaccinated koalas. Further-

more, our study has also shown that the MOMP derived peptide vaccine is safe to use in koalas

with no adverse effects reported in any of the koalas involved in this trial.

Fig 4. MOMP-peptide vaccinated koalas (Phascolarctos cinereus) produced a stronger mucosal IgA antibody response to rMOMP protein than

MOMP-protein vaccinated koalas (Phascolarctos cinereus). Mucosal IgA antibody response to recombinant MOMP (G) and synthetic peptides (P1

and P2) in ocular swab samples collected pre-vaccination and 12 and 26 weeks post-vaccination. Samples were analysed by ELISA and are shown as

optical density (OD) measured at 450nM. (A, C and E) MOMP-peptide vaccinated koalas (n = 5) response to recombinant MOMP G, peptide P1 and

peptide P2, respectively. (B, D and F) MOMP-protein vaccinated koalas (n = 5) response to recombinant MOMP G, peptide P1 and peptide P2,

respectively.

https://doi.org/10.1371/journal.pone.0200112.g004

Fig 5. MOMP-peptide vaccinated koalas (Phascolarctos cinereus) produced a stronger mucosal IgA antibody

response to whole Chlamydia pecorum elementary bodies than MOMP-protein vaccinated koalas (Phascolarctos
cinereus). Mucosal IgA antibody response to heat inactivated Chlamydia pecorum elementary bodies from genotype G

in ocular swab samples collected pre-vaccination and 12 and 26 weeks post-vaccination. Samples were analysed by

ELISA and are shown as OD measured at 450nM. (A) MOMP-peptide vaccinated koalas (n = 5) response with a P

value 0.0009. (B) MOMP protein-vaccinated koalas (n = 5) response with a P value 0.0299.

https://doi.org/10.1371/journal.pone.0200112.g005
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For the successful development of an anti-C. pecorum vaccine, it is important that the vac-

cine antigen is specific, induces a strong humoral and cell mediated response and can elicit

long-lasting immunity. Additionally, it is advantageous that an anti-chlamydial vaccine anti-

gen is capable of cross recognising other C. pecorum strains circulating in wild koala popula-

tions causing infection and disease [1, 38]. Previously, we have shown that using a full length

rMOMP protein induced antibodies that could recognise other chlamydial genotypes (A, F

and G) [12]. This current study also found that using just two peptides (14 aa and 21 aa in

length) located at positions 42–55 (P1) and 265–285 (P2) in the MOMP, can also induce anti-

bodies to epitopes of chlamydial genotypes A, F and G. Presumably, this is because these pep-

tides were designed from regions of MOMP that are conserved across genotypes A, F and G.

By carefully selecting peptides located in these conserved regions of MOMP, we further predict

that these peptides should also be able to cross-recognise other C. pecorum genotypes, as these

regions are also conserved across all 14 currently known koala C. pecorum ompA genotypes.

As C. pecorum is a mucosal infection, it is essential that an anti-chlamydial vaccine elicits a

strong mucosal IgA antibody response. Secretory IgA found in mucosal surfaces is the first

line of defence against invading pathogens and works to prevent infection by blocking the

attachment of pathogens to epithelial cells and by eliminating pathogens from the mucosal sur-

face [40, 41]. Studies in mice have shown that mucosal IgA was responsible for protective

immunity when challenged [42] and in another study, secretory IgA was shown to have an

effect on reducing the chlamydial infectious load [43]. Furthermore, a recent study conducted

by Desclozeaux et al. (2017) [20] also showed that IgA could possibly play a role in lowering

the chlamydial burden in koalas. In our current study, we have shown a strong mucosal IgA

antibody response by vaccinated koalas that recognises rMOMP (G) protein and peptide (P1

and P2) antigens. However, more importantly, this study has shown for the first time, that pep-

tide vaccinated koalas are capable of producing a mucosal IgA immune response to whole C.

pecorum EBs. This ability to identify the C. pecorum infectious agent is paramount to the suc-

cessful development of an effective peptide-based anti-chlamydial vaccine. This demonstrates

the specificity of our peptides to the key antigenic regions, required to stimulate a mucosal IgA

response. Further showing that, despite any conformational 3D structures, our predicted epi-

topes of the target antigen molecule are surface exposed.

What was a surprising finding in our study, is that some of the peptide-vaccinated koalas

had a stronger mucosal IgA antibody response to, rMOMP (G), peptides (P1 and P2) and

whole chlamydial EBs, compared to MOMP-protein vaccinated koalas. One possible explana-

tion for this could be the intracellular mechanisms by which antigens are processed within

APCs, such as DCs. Synthetic peptides have been shown to follow a different intracellular path-

way than proteins within DCs, with studies showing that DCs are more efficient at processing

and directing synthetic peptides to MHC pathways, compared to whole proteins [23, 44, 45].

Furthermore, synthetic peptides have been shown to induce both CD4+ and CD8+ T cell

immune responses in contrast to proteins, which have been shown to primarily induce CD4+

T cells and at lower levels [23, 45]. This further implies that synthetic peptides are more effi-

cient at MHC class l cross-presentation, as outlined by Menager et al. (2014) [44].

To optimise immune responses and maximise DC activation and maturation, the addition

of a Toll-like receptor (TLR) agonist is recommended for peptide based vaccines. Invading

pathogens recognised by TLRs located on DCs trigger a response when bound, initiating DC

maturation and immune responses [24, 46, 47]. To address this, we have combined our pep-

tide vaccine with a Tri-Adjuvant containing Poly I:C, a known TLR agonist. Previously, it has

been described that Poly I:C enhances immune responses, increases antigen uptake by DCs,

[48, 49], and shows significant humoral and cellular immune responses [25]. Furthermore, a

vaccine trial comparing adjuvants containing two different TLR agonists (Poly I:C and CpG),
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resulted in higher levels of IgA within the lungs of mice vaccinated with the Poly I:C adjuvant,

and subsequently showed long lasting immunity [50]. This would suggest that poly I:C, com-

bined with our peptide based vaccine, has contributed significantly to mucosal IgA antibody

responses.

It has also been suggested that long lasting immunity could be attributed to the Tri-Adju-

vant. Mice vaccinated with a live virus stimulated only short-lived immunity compared to

mice vaccinated with a fusion protein of the virus combined with the Tri-Adjuvant, which

demonstrated long term immunity [51]. They further showed that while both vaccinated

groups of mice had similar responses to sera IgG, the fusion protein plus Tri-Adjuvant vacci-

nated group had a significantly higher IgA response than the live vaccinated group, in both the

lung and lymph node [51]. The second component of the Tri-Adjuvant is a host defence syn-

thetic peptide, innate defence regulator 1002 (IDR-1002), known for its ability to recruit

immune cells, stimulate immature DCs, have antimicrobial activity, and anti-inflammatory

properties [52, 53]. A recent study conducted to evaluate the ability of IDR-1002 demon-

strated, both in-vitro and in-vivo, its ability to supress pro-inflammatory cytokines (tumor

necrosis factor alpha and interleukin-6), and further showed a reduction in airway inflamma-

tion in IDR-1002 treated mice [54]. The third component of the Tri-Adjuvant is polyphospha-

zene, known for having immunostimulatory properties [55] and the ability to form non-

covalent complexes with antigens enhancing uptake by APCs [56, 57]. Selecting an appropriate

adjuvant to enhance the delivery and uptake of a peptide vaccine is crucial for optimal out-

come. Here we have described the successful combination of a peptide vaccine antigen with a

Tri-Adjuvant, resulting in strong mucosal IgA responses, necessary to combat a chlamydial

infection.

Developing a peptide based vaccine is complex, with some challenges to consider. Although

there are no commercially available peptide based vaccines as yet, there has been considerable

progress towards this goal, for both the prophylactic and therapeutic effects [58, 59], particu-

larly for the treatment of cancer [30, 60]. Progress towards the development of an anti-Chla-
mydia trachomatis peptide based vaccine have also been promising with results revealing

strong humoral [42, 61] and cell mediated immune responses [61]. In considering future

development, it has been suggested that the conjugation of both the antigen and adjuvant

would ensure they are both delivered to the same APC, for optimal stimulation and matura-

tion. Furthermore, having a better understanding about the functionality of the targeted epi-

tope would also help in developing a more directed outcome specific to the required response.

In conclusion, we report for the first time, the success of a koala vaccine consisting of two

synthetic peptides, derived from C. pecorum MOMP, in place of a previously used rMOMP

protein based vaccine. We have shown that MOMP-peptide vaccinated koalas produced Chla-
mydia-specific antibodies that recognised not only rMOMP but importantly, also whole chla-

mydial EBs. We have shown that MOMP-peptide vaccinated koalas produced a Chlamydia-

specific IgG and IgA immune response still seen at 26 weeks post-vaccination. Most impor-

tantly, this study has shown that MOMP-peptide vaccinated koalas can produce a stronger

mucosal IgA response to whole EBs than MOMP-protein vaccinated koalas. Together, these

results are promising and show the potential for the future development of a peptide based

anti-C. pecorum vaccine that can be mass produced with precision for broader applications.
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