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Chimeras are widely acknowledged as the gold standard for assessing stem cell pluripotency, based on
their capacity to test donor cell lineage potential in the context of an organized, normally developing tissue.
Experimental chimeras provide key insights into mammalian developmental mechanisms and offer a
resource for interrogating the fate potential of various pluripotent stem cell states. We highlight the appli-
cations and current limitations presented by intra- and inter-species chimeras and consider their future
contribution to the stem cell field. Despite the technical and ethical demands of experimental chimeras,
including human-interspecies chimeras, they are a provocative resource for achieving regenerative medi-
cine goals.
Introduction
Experimental chimeras are widely recognized as the most strin-

gent assays for validating stem cell pluripotency. Preimplanta-

tion chimeras provide donor cells with developmental access

to the entire fetus and extraembryonic mesoderm (yolk sac,

allantois, and amniotic mesoderm), thereby enabling a broad

assessment of donor cell developmental capacity. Tetraploid

preimplantation chimeras in particular are considered the most

comprehensive test of pluripotency because wholly stem cell-

derived mouse offspring are the assessment endpoint.

The inner cell mass-like (ICM-like) ‘‘naive’’ mouse embryonic

stem cells (mESCs) adhere to the most stringent definitions of

pluripotency in that they contribute to all tissues of the devel-

oping body in a preimplantation chimera assay including the

germline (Bradley et al., 1984; Nagy et al., 1993). Mouse plurip-

otent stem cells (PSCs) generated by reprogramming of somatic

cells either by somatic cell nuclear transfer into nuclear transfer

embryonic stem cells (ntESCs) (Munsie et al., 2000; Kawase

et al., 2000) or by direct reprogramming into mouse induced

PSCs (miPSCs) (Takahashi and Yamanaka, 2006) also share

the defining feature of mESCs: they have generated mice wholly

derived fromdonor stem cells following tetraploid complementa-

tion (Boland et al., 2009; Lin et al., 2010).

Recently, chimera assays have been more broadly applied

to test the lineagepotential of othermammalian pluripotent states.

Interestingly, epithelial epiblast-like ‘‘primed’’ PSCs (including

mEpiSCs, hESCs, and hiPSCs), unlike their ICM-like counterparts

(mESCs, ntESCs, andmiPSCs), are barely able to formpreimplan-

tation chimeras (James et al., 2006; Brons et al., 2007; Tesar et al.,

2007; Masaki et al., 2015; Chen et al., 2015). Efforts continue to

assess the potential of naive human cells to form preimplantation

interspecies chimeras (Gafni et al., 2013; Theunissen et al., 2014;

Takashima et al., 2014; Theunissen et al., 2016). Conversely,

epithelial epiblast-like PSCs, which resemble the post-implanta-

tion epiblast, instead form post-implantation chimeras (Huang

et al., 2012; Kojima et al., 2014; Mascetti and Pedersen, 2016).
Cell Stem Cell 19, A
This is an open access article und
In this Perspective we focus on the contribution of mammalian

chimeras for assessing the competence of PSCs and their

respective stem cell states to participate in normal in vivo devel-

opment. We also consider the lessons gleaned from the em-

bryo’s own resident PSCs and how this can inform the in vitro

capture of mammalian pluripotent states.

Definitions of Chimeras
A chimera is a composite organism in which the different cell

populations are derived from more than one fertilized egg,

thereby combining tissues with distinct genetic origins and iden-

tities (McLaren, 1976). The distinct biological mechanisms un-

derpinning chimera formation begin with the persistence of

donor cells after transplantation and continue via their participa-

tion in the morphogenetic movements of the host embryo,

culminating in donor cell differentiation in a manner paralleling

the tissue in which they reside.

A primary, or embryonic, chimera is one in which the geneti-

cally different cell populations co-exist from a very early stage

of embryogenesis, even from fertilization (McLaren, 1976). In

light of current and advancing technologies it is pertinent to state

that a primary chimera is one in which both host and donor have

not undergone organogenesis and thus are capable of contrib-

uting to most or all major building blocks of the body. Typically,

experimental primary chimeras are formed by combining iso-

lated blastomeres from a minimum of two embryos, by the ag-

gregation of two or more whole early cleaving embryos, or by

stem cell transplantation under the zona pellucida or into the

blastocyst cavity of a preimplantation embryo. Primary chimera

formation, generated by cell transplantation (whether embryo-

derived or in vitro-derived stem cells) to the embryo, provides

a stringent assessment of stem cell pluripotency.

By contrast, a secondary chimera is one in which tissues are

combined from two or more adult individuals, or from embryos

after the period of organogenesis has begun (McLaren, 1976).

As a consequence of being initiated at a later developmental
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Figure 1. Chimeras: Assays for Mammalian Embryology and Stem Cell Biology
Donor cell and donor chimera contribution are depicted in blue; host cell and host chimera contribution are depicted in orange. At the early blastocyst stage
(E3.5), the mouse embryo consists of a compact inner cell mass (ICM) and an outer layer of trophectoderm (TE). At the late blastocyst stage (E4.0-4.5), the ICM
consists of two morphologically distinct cell populations: the epiblast (EPI) and a layer of primitive endoderm (PE).
(A) Whole-embryo aggregation gives donor and host embryo contribution to both inner cell mass (ICM) and trophectoderm (TE) lineages at E3.5.
(B) ICM injection into blastocyst, or ICM <-> morula aggregation gives donor contribution to ICM, but not to TE at E3.5.
(C) Mouse PSCs injected into blastocyst or aggregated with diploid host embryo (2N) contribute to epiblast, but not primitive endoderm at E4.5.
(D) Mouse PSCs injected into blastocyst or aggregated with tetraploid (4N) host embryo contribute to epiblast lineage, while host contributes to PE and tro-
phectoderm at E4.5.
(E) Embryonic epiblast or primitive streak (PS) transplanted into post-implantation embryo contributes to three primary germ layers (endoderm, ectoderm, and
mesoderm)
(F) Mouse EpiSCs, hESCs, or hiPSCs transplanted into post-implantation embryo contributes to three primary germ layers.
(G) Single E3.5 or E4.5 epiblast (EPI) cells injected into blastocyst contribute to Epi but not PE at E4.5.
(H) Single E3.5 or E4.5 primitive endoderm (PE) cells injected into blastocyst contribute to PE but not EPI at E4.5.
See Figure 2 for additional details of lineage contribution by donor and host cells in chimera assays.
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stage, secondary chimerism is typically limited to one or more

tissue-specific lineages.

A Brief History of Experimental Chimeras
Initially, chimeric potential was assessed by full-term gestation in

utero resulting in the birth of offspring: Tarkowski’s pioneering

study revealed the capacity for two cleavage-stage embryos to

aggregate and form a single chimeric blastocyst (Figure 1A

and Figure 2) and for these to develop subsequently to mid-

and full-term when transferred to the uteri of foster mothers (Tar-
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kowski, 1961). These primary chimeras resulted in normal-sized

mice termed ‘‘quadriparental or allophenic’’ by Mintz (Mintz,

1965), and they were composed of a mixture of cells derived

from the two parental embryos (McLaren and Bowman, 1969).

Chimerism in such embryos extends throughout both embryonic

and extraembryonic lineages, including derivatives of the

epiblast, trophectoderm, and primitive endoderm.

Later, chimeras were generated with embryonic cells via

the technically challenging procedure of direct injection into the

cavity of the host blastocyst (Gardner, 1968) (Figure 1B and



Figure 2. Lineage Contributions of Donor
and Host Cells in Chimera Assays
Lineage contribution of donor and host cells in
chimera assays depicted in Figure 1. ICM includes
the epiblast and primitive endoderm. Epiblast-
derived tissues include the entire fetus (Embryo
proper), plus extraembryonic mesoderm (ExEm
Mesoderm) and amnion.
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Figure 2). After this discovery, mESCs were injected into mouse

blastocysts by Evans and co-workers, who reported that mESCs

were able to integrate and differentiate into all tissue types in the

chimera, including those contributing to the germline (Bradley

et al., 1984; Robertson et al., 1986) (Figure 1C and Figure 2).

The developmental potential of mESCs was assessed in par-

allel with 3.5 day ICM after aggregation with normal diploid

(2N) embryos (Figure 1C and Figure 2) or with developmentally

compromised tetraploid (4N) embryos (Figure 1D and Figure 2),

with both donor types capable of colonizing somatic tissues

(Nagy et al., 1990; 1993). Tarkowski and co-workers first showed

that tetraploid embryos demonstrate abortive development

(failing between E7.5 and E14) (Tarkowski et al., 1977), but their

development can be rescued by complementation with normal

diploid embryos to create tetraploid-diploid chimeras. Interest-

ingly, in chimeras made using tetraploid host embryos and

diploid embryo, ICM, or mESCs, the resulting epiblast-derived

tissues at E13.5 (yolk sac mesoderm, amnion, and fetus) and

in newborn mice were derived completely from their diploid

component (either embryo, ICM, or cultured mESCs) (Kaufman

and Webb, 1990; Nagy et al., 1990, 1993). However, the yolk

sac endoderm and placenta (trophectoderm) lineages were of

complete tetraploid origin. Taken together, these pioneering

studies provided evidence that mESCs were able to support

complete fetal development, and they established tetraploid

complementation as an assessment of stem cell pluripotency.

Building on these findings, scientists mutated genes in ESC

lines by homologous recombination and transplanted these cells

into mouse embryos in order to achieve targeted mutagenesis in

the mouse (Doetschman et al., 1988; Thomas and Capecchi,

1990), birthing a revolution in genetic manipulation of mamma-

lian models. The adoption of gene-targeted ESC lines (Rajewsky

et al., 1996; Danielian et al., 1998; Shalem et al., 2015) expanded
the utility of chimeras, especially when

combined with tetraploid complementa-

tion (Seibler et al., 2003), to discern

gene-development interactions (function

and dysfunction) in testing lineage po-

tency and disease modeling. The age of

designer mice was conceived.

Post-implantation mouse embryos

have been utilized in experimental biology

routinely since the 1970s, when New

developed a method in Cambridge for

culturing rat and mouse embryos (Sadler

and New, 1981). The post-implantation

mouse embryo opens a window in

developmental time, gastrulation, that

would otherwise be inaccessible in other

mammals (most notably humans) due
to practical and ethical challenges. Accordingly, use of post-

implantation mouse embryos as chimeric hosts has enabled

the assessment of potency and fate of primitive streak (Kinder

et al., 1999), epiblast (Tam and Zhou, 1996), and early mesoderm

(Parameswaran and Tam, 1995) (Figure 1E and Figure 2). More

recently, the ability to generate post-implantation chimeras by

the transplantation of epithelial epiblast-like PSCs (commonly

referred to as primed) such as mEpiSCs (Huang et al., 2012;

Kojima et al., 2014), hESCs, and hiPSCs (Mascetti and Pedersen,

2016) to the post-implantation mouse embryo has removed

the barrier to an in vivo functional validation of primed state

pluripotency (Figure 1F and Figure 2). Just as the ICM-like plurip-

otent state of mESCs benefited from pre-implantation embryo

chimerism, now the primed state of hPSCs possesses an assay

for experimental assessment of its pluripotency.

Origin and Fate of Embryonic Tissue Lineages as
Revealed by Chimera Studies
Chimera studies have been used to determine the potency and

fate of embryonic cell lineages based on the capacity for the em-

bryo’s resident PSCs (the epiblast of ICM and post-implantation

embryo) to participate in embryonic development (Figure 2).

At the late blastocyst stage (E4.0–4.5), themouse ICMconsists

of twomorphologically distinct cell populations: a compactmass

of epiblast cells enveloped by a layer of primitive endoderm on

the blastocoelic surface. In order to understand the origin of the

embryonic tissues in the developing fetus, distinct from extra-

embryonic tissues, chimeras were formed by the injection of

either primitive endoderm or epiblast cells (the two populations

in the ICM) into genetically distinct mouse blastocysts and were

analyzed at late gestation (Gardner and Rossant, 1979). These

two donor populations had mutually exclusive descendants,

primitive endoderm contributing to extraembryonic tissues
Cell Stem Cell 19, August 4, 2016 165
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(especially visceral yolk sac endoderm), and the pluripotent

epiblast contributing to the entire fetus (including definitive, or

gut, endoderm) and to yolk sac mesoderm, but not to yolk sac

endoderm (EPI: Figure 1G; PE: Figure 1H; and Figure 2). The re-

sults demonstrate that differentiation of the ICM into two popula-

tions in the late blastocyst is accompanied by the acquisition of

distinct cell types, as evidenced by the fate of the cells following

transplantation. Interestingly, at the early blastocyst stage (E3.5),

lineage tracing and aggregation chimera experiments also

showed that the majority of single early ICM cells were already

restricted to be either epiblast or primitive endoderm, despite

displaying no morphological or positional distinction (EPI: Figure

1G; PE: Figure 1H) (Chazaud et al., 2006).

The pluripotent epiblast of the mouse embryo undergoes

major progressive transitions during development. A principal

example of epiblast transition occurs at E5.0 when the round,

multi-layered epiblast cells of the preimplantation ICM become

a single layer of polarized cells forming a pseudostratified epithe-

lium, which is accompanied by a dramatic reorganization of the

epiblast at implantation (Gardner and Cockroft, 1998; reviewed

in Bedzhov et al., 2014). The chimeric contribution of donor cells

from post-implantation stage embryos was also examined by

blastocyst injection and reimplantation to maternal recipients.

Transplants performed using post-implantation epiblast donor

cells from E5.5 and E8 into the preimplantation blastocyst

showed embryonic and fetal chimera formation, but with a pre-

cipitous decline in chimera frequency as the donor epiblast

progressed in developmental stage (E5.5: 10.9%; E8: 1.1%)

(Moustafa and Brinster 1972). By comparison, when primitive

endoderm cells of E5.5 and E6.5 were transplanted, they

contributed exclusively to extraembryonic endoderm (mostly

parietal) (E5.5: 78.8%; E6.5: 6.2%) (Gardner, 1982).

By striking contrast to the diminished preimplantation

chimera rate, post-implantation fetal chimeras were readily

achieved using embryonic epiblast cells from primitive-

streak-stage mouse embryos (Tam, 1989; Tam and Zhou,

1996) (Figure 1E and Figure 2). Intriguingly, heterotopic trans-

plants revealed broad epiblast plasticity, whereby their prog-

eny adopted fates typical of their site of transplantation. Trans-

plants to the epiblast region bordering on the extraembryonic

ectoderm remarkably contributed to the primordial germ cell

(PGC) lineage, even when the epiblast cells originated from

the region typically developing into brain. This not only rein-

forced the evidence for epiblast plasticity from single-cell

tracing (Lawson et al., 1991), but it also confirmed the origin

of PGCs from the embryonic-extraembryonic border region,

as observed in cell lineage tracing studies in intact pre- and

early- gastrula stage embryos (Lawson and Hage, 1994). Or-

thotopic primitive streak transplants gave orderly allocation

of mesodermal cells to the extraembryonic and embryonic

structures, revealing the fate of different streak stages and

sites during mouse gastrulation (Kinder et al., 1999). The fidel-

ity of the fate map obtained using chimeras is confirmed by its

similarity to the fate of epiblast cells marked by intracellular in-

jection of intact embryos (Lawson et al., 1991). Taken together,

these studies prove that post-implantation epiblast and primi-

tive streak tissues can indeed participate in chimera formation,

provided that they are transplanted to post-implantation-stage

embryos.
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Use of Chimeras for Validation of Epithelial Epiblast-like
Pluripotency
A central question regarding the identity of the in vivo embryonic

counterpart to PSCs arises from comparison between properties

exhibited by human ESCs (and hiPSCs) that distinguish them

from mouse ESCs, despite their paralleled derivation from the

ICM of the blastocyst. Analysis of the epiblast of the ICM and

the epiblast of the post-implantation embryo reveals properties

shared between the pluripotent compartments in the embryo

and their respective stage-matched PSCs in vitro. These proper-

ties may hold the key to unlocking stage-specific chimeric com-

petency (Figure 3A).

In 2007 two groups reported that PSCs could be isolated from

the epiblast layer of post-implantation embryos, designated

mEpiSCs (Brons et al., 2007; Tesar et al., 2007). The discovery

of mEpiSCs provided what some might consider to be the

missing piece of the jigsaw puzzle in the field of pluripotency,

in revealing a much-needed explanation for the differences be-

tween ICM-like mESCs and epithelial epiblast-like hPSCs (Krtol-

ica et al., 2007). mEpiSCs and hPSCs represent a pluripotent

state equivalent to the epithelial epiblast layer of gastrulation-

stage embryos. It became evident that human PSCs phenocopy

mouse epiblast stem cells and thus the epiblast of the egg cylin-

der (Figure 3A)—this is exemplified by their requirement for Acti-

vin and FGF in maintenance of pluripotency (Vallier et al., 2005).

The distinct culture requirements and gene expression pro-

gramsassociatedwithPSCscaptured in vitro likely reflect thedy-

namic development of the epiblast in the embryo (Kojima et al.,

2014; Boroviak et al., 2015) (Figure 3A). In sum, this emphasized

that the nature of pluripotency in the embryo changes during

development and revealed that different types of PSCs can cap-

ture the embryo’s properties as distinct pluripotent states (at pre-

sent, the ICM-like state and the epithelial epiblast-like state).

A race ensued to capture the missing naive ICM-like state

of human pluripotency (reviewed in Hackett and Surani, 2014;

Mascetti and Pedersen, 2014; Weinberger et al., 2016; Wu and

Izpisua Belmonte, 2015). Between 2010 and 2016, a number

of papers emerged reporting the derivation of naive hPSCs

comprising hESCs and hiPSCs (Buecker et al., 2010; Chan

et al., 2013; Gafni et al., 2013; Guo et al., 2016; Hanna et al.,

2010; Takashima et al., 2014; Theunissen et al., 2014, 2016;

Ware et al., 2014). These intriguing reports detailed various

candidate culture conditions to capture the previously missing

naive, ICM-like flavor of hPSCs. Nevertheless attempts to

generate preimplantation chimeras using naive-like hPSCs

have yielded a low rate of chimeras when assessed at fetal

stages (Gafni et al., 2013; Theunissen et al., 2014, 2016; Taka-

shima et al., 2014; Masaki et al., 2015), often with efficiency

too low to be used as an assay for their pluripotency.

Interestingly, mEpiSCs, like both naive and primed state hPSCs

(hESCsandhiPSCs), contributeonlypoorly topreimplantationchi-

meras, thus providing no information on the functional capacity of

the differentiated tissues derived from the stem cells (Brons et al.,

2007; Chen et al., 2015; Gafni et al., 2013; James et al., 2006;

Masaki et al., 2015; Tesar et al., 2007). Initial speculation led to

suggestions that mEpiSCs represent a more restricted (primed)

PSC, with some even doubting their pluripotent nature, while

mESCs were suggested to symbolize a more developmentally

potent (naive) state ofpluripotency (reviewed inNichols andSmith,



Figure 3. Chimeric Competency of PSC
States
(A) Properties shared between ICM-like or
epithelial epiblast-like PSCs and their respective
pluripotent compartments in the embryo. ICM-
like mouse and human PSCs share a number of
properties with the ICM itself, including signaling
dependencies, dual X chromosome activity,
cellular morphology and behavior, chimera com-
petency, enhancer usage, and cell surface adhe-
sion. Epithelial epiblast-like mouse and human
PSCs likewise share properties with the post-im-
plantation epiblast. The sharing of these and other
characteristics can be suggested as the basis for
stage-matched chimerism.
(B) Assessing pluripotent states by chimera
formation. Mouse ESCs and iPSCs, derived
from blastocysts and the reprogramming of so-
matic cells, respectively, have an ICM-like (naive)
phenotype and form dome-shaped colonies.
mESCs can form chimeras with preimplantation
embryos. Mouse EpiSCs, derived from egg cylin-
der epiblast layer, have an epithelial epiblast-like
(primed) phenotype, form flattened colonies, and
can form chimeras with post-implantation mouse
embryos. mESCs and mEpiSCs can be inter-
converted through the exchange of their growth
media. Human ICM-like (naive) state PSCs derived
from blastocysts or by the reprogramming of
somatic cells form dome-shaped colonies. Naive
hPSCs are expected to form preimplantation chi-
meras but have done so inefficiently. Human PSCs
derived from blastocysts or by the reprogramming
of somatic cells in Activin-FGF-containing media
have an epithelial epiblast-like (primed) phenotype,
form flatted colonies, and can form chimeras with
post-implantation mouse embryos. Human naive
and primed state hPSCs can be interconverted by
having their media conditions exchanged.
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2009). Others suggested that the inability of mEpiSCs to form pre-

implantation chimeras was due to their failure to contribute to the

vital extraembryonic tissues,whichwerespeculated toberequired

for subsequent development into the lineages of the embryo

proper (PolejaevaandMitalipov, 2013).However, a studybyScho-

eler andco-workers (Han et al., 2010) demonstrated that a specific

transgenicmEpiSC line (GOF18)wasmorecapableofcontributing

to blastocyst chimeras, albeit at low efficiency, owing to their rela-

tive immaturity as compared to other mEpiSC lines.

In 2012, Wilson reported that multiple mEpiSC lines were

broadly chimera competent when transplanted to the epiblast

of the post-implantation mouse embryo (Huang et al., 2012; Ko-

jima et al., 2014); conversely, mESCs formed teratoma-like

clumps, indicating an absence of post-implantation chimeric

competency (Huang et al., 2012). In a similar approach, other

types of PSCs, such as region-selective hESCs, can also be

aligned with their in vivo counterpart by chimera formation. In

this manner, region-selective cells showed chimeric contribution

when transplanted to the posterior epiblast of the late gastrula-

stage mouse embryo, confirming their spatially defined nature

as revealed by transcriptional profiling (Wu et al., 2015). Notably,

Mascetti and Pedersen transplanted hESCs and hiPSCs to the

epiblast and primitive streak of the gastrulating post-implanta-

tion mouse embryo and generated interspecies human-mouse

chimeras with high efficiency (Mascetti and Pedersen, 2016).

Chimeric hPSC progeny showed widespread dispersion and

proliferation in the host fetus, as well as differentiation capacity
in a manner that paralleled the resident epiblast, thus validating

hPSC pluripotency (Mascetti and Pedersen, 2016).

As commonly accepted, evidence for hPSC pluripotency from

in vitro differentiation and teratoma assays demonstrates three

germ layer competency and has been used as the standard

criteria with which to grant pluripotent status to hiPSCs, hESCs,

andmEpiSCs. Post-implantation chimeras transcend in vitro dif-

ferentiation and teratoma assays for assessment of stem cell

pluripotency by providing evidence for the capacity of PSCs to

participate in normal tissue development and cell fate acquisition

in an embryonic context. Post-implantation chimeras, however,

do not permit development to term because reimplantation to

the mother after post-implantation dissection from the parietal

yolk sac is not technically feasible (Beddington, 1985), providing

instead a short-term in vitro assay (2–3 days). As development of

transplanted cells within recipient embryos can only be tracked

within a relatively narrow timeframe, the differentiation potency

of hPSCs has not been tested for every tissue lineage (e.g., the

germline cells and more advanced germ layer derivatives).

Indeed, global contributions would not be expected from gas-

trula-stage transplants, paralleling orthotopic epiblast and prim-

itive streak transplants (Tam and Zhou, 1996; Kinder et al., 1999),

and would only arise from the transplantation of PSCs into pre-

implantation-stage embryos; however, post-implantation chi-

meras do provide donor cell access to the entire fetus and extra-

embryonic mesoderm. Accordingly, both post-implantation and

preimplantation chimeras represent primary chimeras enabling
Cell Stem Cell 19, August 4, 2016 167
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validation of stem cell pluripotency, epithelial epiblast-like and

ICM-like, respectively (Figure 3B).

Insight from Intraspecies Chimeras
Chimeric animals have been generated using cleavage-stage

blastomeres or ICM in a number of mammalian species besides

mice, including sheep (Tucker et al., 1974), rats (Mayer and Fritz,

1974), rabbits (Gardner and Munro, 1974), cattle (Brem et al.,

1984), pigs (Bremet al., 1984;Matsunari et al., 2013), and non-hu-

manprimates (Tachibana et al., 2012). The ubiquity of chimera for-

mation using embryonic blastomeres or whole preimplantation

embryosdemonstrates that chimera-forming capacity is a general

trait of early mammalian embryos. Interestingly, although the

derivation of ESCs or ESC-like cells has been reported for other

species, only mouse, rat, and pig PSCs have been reported to

contribute to chimeras capable of full-term development and

germline contribution (Bradley et al., 1984; Li et al., 2008; West

et al., 2011). The block to germline chimerism using PSCs in other

speciesmay therefore be attributable to the limitations of the PSC

lines (or states) derived in thosespecies.This insight is important in

interpreting the outcomesof interspecies chimerismexperiments.

Generation of Embryonic Interspecies Chimeras
The amazing degree of variation found between mammalian

reproductive strategies is coupled with heterochrony within their

early developmental events, differences in the timing of implan-

tation, and diversity in modes of placentation (Wimsatt, 1975).

This makes the identification of shared developmental events

fundamental to mammalian pluripotency a major challenge.

Knowledge about the nature of conserved developmental mech-

anisms can be gained through interspecies chimeras.

The first interspecies chimeras were generated by Gardner

and Johnson (1973, 1975), who made mouse-rat chimeras by

injection of ICMs into blastocysts; by Mystkowska (1975), who

made mouse-vole chimeras; and by Rossant (1976), who aggre-

gated rat ICMs with mouse morulae. Development of the result-

ing chimeras was abortive as they did not progress beyond

early post-implantation stages. Rossant then generated chi-

meras between embryos of two mouse species, M. musculus

andM. caroli, by ICM injection into blastocysts and by aggrega-

tion of eight-cell embryos (Rossant and Frels, 1980; Rossant

et al., 1982, 1983). These developed to term and beyond as

mixed-species adults, provided that the chimera had tropho-

blast cells with a genotype matching that of the foster mother.

Subsequent experiments by Fehilly and co-workers generated

goat-sheep chimeras by embryo-blastomere aggregation or

blastocyst injection (Fehilly et al., 1984), which survived to term

and postnatally, again providing that their trophoblast genotype

matched the recipient (sheep) mother. Interestingly, the chimeric

coat phenotype was mixed, seemingly representing domains of

goat and sheep hair in alternating stripes (Fehilly et al., 1984). It is

tempting to speculate that relative evolutionary proximity is

responsible for the success of Rossant’s interspecific mouse

chimeras (7.8 Mya divergence; Time Tree of Life [TToL] [Hedges

et al., 2015]) and Fehilly’s goat-sheep chimeras (10.1Mya; TToL).

A Chimeric Index for PSC Interspecies Chimeras
The chimera-forming ability of PSCs has been evaluated in vivo

by the transfer of injected embryos to uteri of foster mice, where
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they have been assessed at mid-gestation (fetal) stages and at

full term (neonate). Additionally, the chimera-forming capacity

of most PSCs has been tested in an in vitro model of integration,

where persistence of donor cells was scored at successive days

in vitro (DIV) following preimplantation or post-implantation em-

bryo injection. The chimeric index derived from the ratio of these

two outcomes (in vitro outcomes/in vivo fetal and full-term out-

comes combined = ‘‘chimeric index’’) gives a measure of the

chimera-forming ability of PSC types, whereby the chimeric in-

dex should tend to 1 (Table 1, Table S1). As such, the chimeric

index can then be used in twoways: (1) as a criterion for chimeric

competency, whereby PSCs transplanted into an interspecies

host embryo should meet a comparable chimeric index to the

intraspecies chimera; (2) to estimate the chimera-forming ability

of other PSC cell types that are not amenable to in vivo chimera

formation, due to ethical and technical limitations, based on their

in vitro chimera outcomes.

As expected for the ‘‘gold standard’’ intraspecific positive

control, mESCs show high incidences of full-term chimerism

(�77%) and fetal chimerism (70%); they also showed high levels

of contribution to in vitro chimeras (83.5% at 4 DIV), giving a high

chimeric index of 1.16 at 4 DIV (Masaki et al., 2015). Similar to

mouse ESCs, mouse iPSCs gave high levels of full-term chime-

rism (60.25%) and fetal chimerism (76%) (Masaki et al., 2015).

Subsequent successful efforts to generate rat-mouse chimeras

using blastocyst injection of ESCs (Kobayashi et al., 2010; Iso-

tani et al., 2011) indicate that even the more distantly related

rat-mouse pair (22.6 Mya, TToL) was capable of chimera forma-

tion. When injected into mouse embryos, rat ESCs and iPSCs

gave moderate levels of full-term chimerism (rat ESCs, 47%;

rat iPSCs, 41%) and gave low levels of in vitro chimeras (rat

ESCs, 32%; rat iPSCs, 48.25% at 4 DIV), for a chimeric index

of 0.8 and 1.18, respectively (Masaki et al., 2015). Indeed, the

rat-mouse species pairing has been recently used to demon-

strate organ-specific contribution in interspecies chimeras

(Usui et al., 2012; Kobayashi et al., 2010; Isotani et al., 2011).

Monkey iPSCs, when injected into mouse preimplantation em-

bryos, were non-chimeric at mid-gestation fetal stages (Fang

et al., 2014). However, naive monkey ESCs were able to form

fetal chimeras (14.3%) and preimplantation chimeric outgrowths

in vitro (51.8% at 2 DIV), (Chen et al., 2015), for a chimeric index

of 3.62, which is likely artificially inflated due to the short period of

in vitro growth. Mouse EpiSCs, when injected into mouse preim-

plantation embryos, were scarcely chimeric at full term (0%–1%)

(Brons et al., 2007; Tesar et al., 2007), and they gave no contri-

bution to in vitro implantation (Masaki et al., 2015), for a chimeric

index of 0. Strikingly, however, when mEpiSCs were trans-

planted to the post-implantation mouse embryo, they gave

high levels of chimerism (R80% after 1 or 2 days culture) (Huang

et al., 2012). Brivanlou and co-workers injected hESCs into

mouse blastocysts or aggregated themwith cleavingmouse em-

bryos and examined the resulting embryos for chimerism both

in vitro and after transfer to foster mothers for 5 days of gestation

(E8) (James et al., 2006). The low rate of normally developing fetal

chimeras (4.17%) that resulted had sparse hESC contribution (an

illustrated embryo had only 10 human cells) (James et al., 2006),

and this, together with the complete lack of hiPSC persistence in

an in vitro chimera model (Masaki et al., 2015), could be inter-

preted to mean that distantly related species such as human



Table 1. Summary of Pluripotent Stem Cell Chimera Rates

Pluripotent Donor

Cell Types Host Embryo

In Vivo

Chimera Rate

In Vitro

Chimera Rate

Chimeric

Index References

Mouse ESC preimpl. mouse high fetal,

high neonate

high 4 DIV,

mod. 5 DIV

1.16 4 DIV,

0.68 5 DIV

Masaki et al., 2015;

Mouse iPSC preimpl. mouse high fetal,

high neonate

–

–

–

–

Masaki et al., 2015;

Kobayashi et al., 2010; Usui et al., 2012;

Mouse iPSC preimpl. rat mod. fetal – – Kobayashi et al., 2010

Mouse EpiSC preimpl. mouse none fetal none 1–5 DIV 0 1–5 DIV Brons et al., 2007; Tesar et al., 2007;

Guo et al., 2009; Han et al., 2010;

Mouse EpiSCs

GOF 18

preimpl. mouse low fetal,

low adult

low 1 DIV 1.12 1 DIV Han et al., 2010

Mouse EpiSCs post-impl. mouse – high 1–2 DIV – Huang et al., 2012; Kojima et al., 2014;

Tsakiridis et al., 2014; Wu et al., 2015

rs Mouse EpiSCs post-impl. mouse – high 1.5 DIV – Wu et al., 2015

Rat ESC preimpl. rat high fetal – – Kobayashi et al., 2010

Rat ESC preimpl. mouse mod. fetal,

mod. neonate,

low fetal,

low neonate

mod. 4 DIV,

low 5 DIV,

–,

–

0.8 4 DIV,

0.4 5 DIV,

–,

–

Masaki et al., 2015;

Kobayashi et al., 2010;

Isotani et al., 2011

Rat iPSC preimpl. mouse low neonate,

mod. neonate

–,

mod. 4 DIV,

low 5 DIV

–,

1.18 4 DIV,

0.58 5 DIV

Kobayashi et al., 2010;

Masaki et al., 2015

Rat iPSC preimpl. rat high fetal – – Kobayashi et al., 2010

Pig iPSC preimpl. pig high neonate – – West et al., 2011

Monkey ESC preimpl. monkey none fetal – – Tachibana et al., 2012

Monkey ESC preimpl. mouse none fetal low 4 DIV,

none 5 DIV

0 5 DIV Masaki et al., 2015

rs monkey ESCs post-impl. mouse – high 1.5 DIV – Wu et al., 2015

Naive monkey

iPSC

preimpl. mouse sporadic fetal – – Fang et al., 2014

Naive monkey

iPSC

preimpl. monkey low fetal high 2 DIV 3.62 2 DIV Chen et al., 2015

Monkey iPSC preimpl. mouse none fetal – – Fang et al., 2014

Naive human

iPSCs

preimpl. mouse –

–

mod. 3 DIV,

low 4 DIV,

none 5 DIV

–

–

Takashima et al., 2014;

Masaki et al., 2015

Naive human

ESC

preimpl. mouse positive fetal,

none fetal,

sporadic fetal

spor. 1 DIV,

–,

–

0.48 1 DIV,

–,

–

Gafni et al., 2013;

Theunissen et al., 2014;

Theunissen et al., 2016

Human ESCs preimpl. mouse low fetal mod. 2 DIV 9.35 2 DIV James et al., 2006

Human ESCs post-impl. mouse – high 2 DIV – Mascetti and Pedersen, 2016

rs Human ESCs post-impl. mouse – high 1.5 DIV – Wu et al., 2015

Human iPSC preimpl. mouse – low 4 DIV,

none 5 DIV

– Masaki et al., 2015

Human iPSCs post-impl. mouse – high 2 DIV – Mascetti and Pedersen, 2016

Chimeric contribution from diverse donor cell types in fetal, full-term, and in vitro chimera assays. Table 1 summarizes representative chimera con-

tributions for mouse, rat, pig, monkey, and human PSCs (embryonic stem cells, ESCs; induced pluripotent stem cells, iPSCs; and epiblast stem cells,

EpiSCs). Outcomes shown include fetal and full-term (neonate) in vivo chimera rate (where available), in vitro chimera rate (showing data for successive

days in vitro [DIV]), and the ratio of their respective rates, the ‘‘chimeric index’’ (in vitro/in vivo full-term plus fetal averaged as overall chimeras) where

this could be calculated. Outcomes of PSC chimera rate both in vivo or in vitro are shown; high > 50%, moderate < 50%, low < 25%, sporadic < 5%,

none = 0%. Table S1 provides additional details on the data summarized in Table 1.
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and non-human primates (90.9 Mya, TToL) are not in fact

capable of robust chimera formation with preimplantation

mouse embryos. Indeed, the low rate of fetal chimera formation

observedwhen human naive-like PSCswere injected intomouse
morula/blastocyst (6.19% and 0.9%, depending on the study)

(Gafni et al., 2013; Theunissen et al., 2016) suggests that further

work will be required to fully address the capacity of naive-like

hPSCs to form robust preimplantation chimeras in mice. In
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striking contrast, when hESCs and hiPSCs were transplanted

to post-implantation mouse embryos, they resulted in high

rates of chimera formation (99.2% and 71.8%, respectively),

accompanied with robust and widespread dispersion and pro-

liferation of graft-derived progeny (Mascetti and Pedersen,

2016). Correspondingly, region-selective hESCs form chimeras

(60.69%) when transplanted to their matched location in the

post-implantation mouse embryo.

It is entirely plausible that any cell types showing a lower

chimeric efficiency than documented for the intraspecies control

assay in vivo or in vitro (Table 1) may be considered less chimera

competent. Differences in chimera competence may be traced

to a variety of alternative mechanisms such as (1) the inhospi-

table nature of the host embryo, (2) species-specific differences

in ESCmaintenance and culture, which pose challenging factors

in the identification and derivation of putative ESCs, and (3) a

block to interspecies chimerism, or more specifically a develop-

mental-stage-specific interspecies barrier, which would require

the precisematching of the developmental window for each spe-

cies in order to be overcome.

Parameters for Effective Chimera Formation
Segregation of the early lineages in the developing embryo, the

epiblast and the primitive endoderm in the ICM, may be a

determinative mechanism in the stage-matching of host and

donor cell to form chimeras. At peri-implantation in the mouse,

when segregation is morphologically evident, there is a signifi-

cant decline in the ability of the host ICM to incorporate donor

cells and form mouse chimeras (Ohta et al., 2008). Interestingly,

analysis of marmoset preimplantation blastocysts revealed that

their ICMs had already segregated into clusters of NANOG-

positive epiblast covered by GATA-6-positive primitive endo-

derm cells (Boroviak et al., 2015). As such, we suggest that

segregation might prevent incorporation of transplanted donor

cells into the host ICM. In support of this hypothesis, and fasci-

natingly, monkey chimeras were efficiently generated by aggre-

gating cleaving four-cell embryos, before the ICM is evident

(Tachibana et al., 2012).

It is important to emphasize the pivotal role PSC states seem

to play in unlocking chimeric competency. Human and monkey

PSCs are derived and maintained in an epithelial epiblast-like

state, which has very distinct biological properties from the

ICM (Figure 3A). These differences, by analogy with mEpiSCs,

may importantly include altered expression of intercellular adhe-

sionmolecules (Ohtsuka et al., 2012) and an epithelial rather than

globular cellular morphology (Gardner and Cockroft, 1998).

Accordingly, we have to consider the epithelial epiblast-like state

of hPSCs and mEpiSCs as an alternative explanation for their

lack of chimera-forming ability observed to date with mouse

preimplantation embryos. This conclusion is seemingly sup-

ported by Nakauchi and co-workers’ findings that rat andmouse

ESCs and iPSCs formed full-term in vivo chimeras efficiently with

mouse blastocysts, but monkey ESCs did not persist in vivo

to E8.5 (Masaki et al., 2015). In a similar vein, ICM-like mESCs

do not incorporate into the post-implantation mouse embryo,

instead forming teratoma-like clumps that express OCT4 and

other pluripotency-associated factors (Huang et al., 2012). The

existence of PSCs in distinct developmental pluripotent states

therefore leads to the conclusion that stage-matching ICM-like
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PSCs to the preimplantation embryo and epithelial epiblast-like

PSCs to the post-implantation embryo may hold the key to un-

locking efficient chimera formation (Figure 3B).

Interestingly, current evidence indicates only scant ability of

naı̈ve-state hPSCs to incorporate into mouse morulae/blasto-

cysts, to which they are presumably stage matched (Gafni

et al., 2013; Theunissen et al., 2014, 2016; Takashima et al.,

2014; Masaki et al., 2015). Indeed, alternative conditions for

defining naive human PSCs may result in a differing alignment

of stem cell stage when compared to the human embryo, and,

in turn, diversity in their chimeric competency. In the most

recent report of naive human pluripotency, Theunissen et al.

concluded that 5i/L/A-maintained naive hESCs are closely

related to the late-morula and early blastocyst-stage human

embryo using their highly sensitive transposon transcription

signature method. Significantly, now that the absence of a

human-mouse interspecies barrier has been demonstrated

(Mascetti and Pedersen, 2016, Wu et al., 2015), the sporadic

integration of naı̈ve-state human stem cells into the preimplan-

tation embryo may call into question their putative naive plurip-

otent state.

Developmental normality is an inherent technical challenge

in generating chimeras. As the host embryo species seems to

dictate many of the resulting chimera’s characteristics, including

its size (Kobayashi et al., 2010), it is pivotal to ensure that in vitro

development of the host embryo parallels that observed in utero.

Indeed, the question remains, what extent of donor cell contribu-

tion is required to achieve a bona fide chimera? The idealized

stereotype, equal contribution based on having two parental or-

igins, is an oversimplification of the biological process of devel-

opment. However, many biological factors will influence the

extent of donor cell contribution, including the rate of cell divi-

sion, which differs with stage of development, transplant loca-

tion, and donor cell incorporation efficiency. Additionally, host-

donor competition can dramatically affect the extent of donor

cell contribution. Moreover, stochastic mechanisms can enable

some stemcells to havemore descendants than others such that

gradually one source will dominate (Krieger and Simons, 2015).

The tendency of one source to prevail may result from division

orientation or other still poorly understood mechanisms that

enable some stem cells to have more descendants than others

(Krieger and Simons, 2015). Similarly, chimeric drift—where the

proportion of contribution by each member of the chimera

changes over time—may play a role in chimeric contribution,

as certain strains have been shown to predominate over others

and so may have a demonstrable competitive advantage (Ah-

mad et al., 1993).

Researchers have sought to increase the extent of graft-

derived tissue contribution. To this end, growth-enhancing or

proliferative transgenic lines have been used in order to achieve

a more prolific chimeric contribution. However, one remains

skeptical about the normality and thus use of these chimeras;

for example, c-myc transgenic chimeras resulted in overgrowth

of graft cells and subsequent abnormalities in the chimeric

mice likely due to the imbalance of growth potential between

themyc transgenic and the normal cells in the same chimeric in-

dividual (Augustin et al., 1998). Additionally, anti-apoptotic

‘‘don’t die’’ transgenic lines such as BCL-2 may enable donor

cells to survive long enough to incorporate into the correct



Figure 4. Ethical and Future Perspectives for PSC
Chimeras
(A) Ethical regulation of human chimera research. Diverse
approaches to chimera research involving hPSCs and hu-
man embryos are listed, ranked according to their category
of review and permissibility as recommended by the ISSCR
(ISSCR, 2016).
(B) Embryonic origins of stem cells for future in vitro capture.
Totipotent and pluripotent stem cell populations in the
developing embryo (from two-cell to E7.5), shown in blue,
may have the potential to be isolated in vitro as self-re-
newing stem cell states.
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location and stage of the developing host embryo, or cell adhe-

sion molecules may be utilized to enhance engraftment of donor

cells and increase chimeric rate (Ohtsuka et al., 2012). While

demonstrating that a transgenic cell line has a selective advan-

tage over a normal line (a principle already established in cell cul-

tures), these chimeras will remain under a cloud regarding their

normality andmay thus have their developmental or clinical utility

called into question.

Dissecting the Ethical Issues of hPSC and Human
Embryo Research
All aspects of hPSC and human embryo research have an

ethical dimension. This begins with the patient consent required

for derivation of hESCs, which come from surplus human

embryos from infertility therapy or patient donation of somatic

cells for reprogramming into hiPSCs. New ethical issues have

emerged in connection with the generation of interspecies chi-

meras containing progeny of hPSCs, and these extend into still
uncharted territory amidst future prospects for

regenerative medicine application of animals

containing human material (ACHM) (Figure 4A).

Extensive dialog between stem cell researchers

and ethicists during the past 2 decades estab-

lished ethical standards for the experimental

use of hESCs (Hyun et al., 2007; Streiffer,

2010). The discovery and adoption of hiPSCs

in human stem cell research has led to reduced

ethical complexity, owing to their somatic cell

provenance. Regardless of source, the use of

hPSCs for chimera studies raises additional

ethical issues because of their potential for

contribution to the regions of the developing

fetus that remain controversial (e.g., brain and

gonads). Accordingly, academic organizations

with responsibility for oversight of stem cell

research have promulgated guidelines for ex-

periments that combine hPSCs and mamma-

lian embryos. These specify the categories of

research on hPSCs according to their need for

oversight (review, approval, and on-going moni-

toring) by the Embryo Research Oversight

(EMRO) process in the parent institute. The

International Society for Stem Cell Research

(ISSCR) has established and recently updated

its recommendations for EMRO review (ISSCR,

2016; Daley et al., 2016), as summarized in

Figure 4A. Specifically, these guidelines recom-
mend EMRO review for any experiments involving chimera for-

mation between human totipotent or pluripotent stem cells and

human embryos. Moreover, they forbid experiments in which

human embryos or embryo-like structures are cultured beyond

14 days or the time of primitive streak formation (whichever

comes first). They also forbid experiments in which human-an-

imal chimeras with potential human gametes are bred to each

other. Taken together, these constraints on hPSC research

leave ample scope for experiments that address major biolog-

ical questions posed here.

The interest shown by researchers in forming pre-gastrula

interspecies chimeras has led the US NIH to suspend funding

for research on ‘‘pre-gastrulation’’ (preimplantation) chimeras

for a period of review. This action does not seemwarranted given

the already promulgated ethical parameters. In view of a policy

that will likely hinder the great leaps currently being made by re-

searchers, one only hopes that as scientists we continue to work

with both regulatory and funding bodies to ensure best practice
Cell Stem Cell 19, August 4, 2016 171
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while also enabling the quest for innovative, elegant, and para-

digm-shifting experimental research.

Perspective for PSCChimeras inRegenerativeMedicine
Chimeras, in particular those using mESCs as the donor cell

type, have become a revolutionary experimental tool to study

the gene function in knockout models. Impressively, more than

9,000 genes have been targeted in mESCs in the International

Knockout Mouse Consortium (Skarnes et al., 2011) and their

phenotypes are currently being assessed in large-scale pro-

grams (White et al., 2013). Additionally, transgenes, mutations,

and gene-targeting in mESCs have been utilized to induce or

suppress formation of specific organs/tissues in chimeras

(Usui et al., 2012; Kobayashi et al., 2010; Isotani et al., 2011).

The elimination of the target organ by knockout of an essential

gene (e.g., Pdx1 in pancreas development) in the host embryo

creates an open niche for contribution by PSCs of the donor.

This approach has been used to generate interspecies mouse-

rat chimeras with extensive contribution to specific organs

(pancreas [Kobayashi et al., 2010], thymus [Isotani et al., 2011],

and kidney [Usui et al., 2012]). Moreover, this strategy is envis-

aged for use in creating human organs for regenerative medicine

through human-animal chimerism (reviewed in Rashid et al.,

2014). However, the ultimate realization of this vision will be

extremely challenging, owing to the limited human contribution

in preimplantation embryo chimeras seen to date and the contri-

bution of host blood vessels to such organs. The generation of

human-naive PSC preimplantation chimeras remains a holy grail

in this endeavor.

The ethical and xenotransplantation obstacles inherent in

generating humanized organs in domestic species make it very

challenging. Growing entire organs from embryonic rudiments

completely in vitro—recapitulating the process of organ forma-

tion and growth—seems equally if not more difficult. An alterna-

tive to generating a whole organ may be to generate the func-

tional subunits of an organ in vitro (Pedersen et al., 2012; Yin

et al., 2016) Most organs are composites of functional subunits

(the smallest elements of an organ that retain the essential activ-

ity performed by the organ). The use of genetically deficient/

rescue chimeric models may revolutionize the generation of

organs either by generating organs for transplant or, perhaps

more realistically, by enabling the study of human organ genera-

tion in vivo in real time. If a synthetic organ requires only the

functional role of an organ and not its gross morphology and

size, then reconstituting organs in the mouse embryo provides

an expedient approach to modeling organ regeneration without

the technical and experimental challenges of larger mammalian

models.

The progress in achieving functional tissues in vitro is counter-

balanced with the lack of information about human embryo-

genesis, which presents an obstacle in understanding how

closely in vitro pluripotency and differentiation of human PSCs

mimic normal development. Human-mouse chimeras (pre- and

post-implantation) will facilitate the study of early human devel-

opment including lineage mapping, cell fate decisions, embry-

onic signaling cascades, and differentiation mechanisms of hu-

man-tissue-specific progenitors during normal development,

as well as provide a functional validation of human donor cells

(PSCs or tissue-specific progenitors). These chimeras, espe-
172 Cell Stem Cell 19, August 4, 2016
cially post-implantation chimeras where ex vivo development

parallels in vivo development, will also enable real-time assess-

ment of in vivo developmental progression; this is particularly

relevant where the specific developmental stages are inacces-

sible in humans (e.g., gastrulation) and when roles of develop-

mental processes such as cell cycle (Boward et al., 2016) and

stem cell loss (Krieger and Simons, 2015) are still poorly under-

stood as determinants of differentiation and cell fate specifica-

tion. Moreover, the advent of CRISPR technology (Seruggia

and Montoliu, 2014) and its use not only for the derivation of

transgeneic lines but also in direct modification of the embryo

genomes will usher in a new phase in functional genomics in

experimental chimeras.

An Embryonic Counterpart for PSCs
Despite our apparent ability during the past 40+ years to capture

PSCs in vitro, pluripotency itself remains enigmatic. While PSCs

exist only transiently in the developing embryo, when estab-

lished in vitro as cell lines, PSCs can be maintained and propa-

gated indefinitely using adaptive culture conditions. One could

surmise that in vitro pluripotent states capture snapshots in

developmental time. To this end, it is important to determine

the in vivo counterpart of in-vitro-derived cells (pluripotent states

or tissue-specific progenitors) in order to provide a develop-

mental context in which to frame them and thus enable re-

searchers to use the cells in the most efficient manner and to

their full potential. This is especially important because, unlike

mESCs, hPSCs do not resemble their original starting material,

the ICM or somatic cells.

It seems that a realistic goal for future research is to capture

distinct PSC identities or states in vitro that resemble the plurip-

otent epiblast of the embryo at each day of development until

such time as the embryo develops an embryonic axis at gastru-

lation, at which time it would be possible to mimic the regional

and positional information in the embryo. The age of single-cell

transcriptomics will aid in the dissolution of our embryonic igno-

rance and, ultimately, the timely capture of alternate pluripotent

states in vitro. The resultant cell populations will capture still-

elusive pluripotent and even totipotent cell states. As such, it

may be possible in the future to isolate stem cell populations

resembling totipotent cleavage blastomeres, E3.5 ICM and

E5.0 epiblast, and pluripotent states that would capture each

axis pole in the gastrulating embryo (anterior, posterior, distal,

and proximal). The beauty of this vision is that each state can

be functionally validated by chimeric stage-matched transplan-

tation to the developing embryo. In sum, there may be much

more to pluripotency in the developing embryo than we currently

witness in the dish.
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Chan, Y.-S., Göke, J., Ng, J.-H., Lu, X., Gonzales, K.A.U., Tan, C.-P., Tng,
W.-Q., Hong, Z.-Z., Lim, Y.-S., and Ng, H.-H. (2013). Induction of a human
pluripotent state with distinct regulatory circuitry that resembles preimplanta-
tion epiblast. Cell Stem Cell 13, 663–675.

Chazaud, C., Yamanaka, Y., Pawson, T., and Rossant, J. (2006). Early lineage
segregation between epiblast and primitive endoderm in mouse blastocysts
through the Grb2-MAPK pathway. Dev. Cell 10, 615–624.

Chen, Y., Niu, Y., Li, Y., Ai, Z., Kang, Y., Shi, H., Xiang, Z., Yang, Z., Tan, T., Si,
W., et al. (2015). Generation of Cynomolgus Monkey Chimeric Fetuses using
Embryonic Stem Cells. Cell Stem Cell 17, 116–124.

Danielian, P.S., Muccino, D., Rowitch, D.H., Michael, S.K., andMcMahon, A.P.
(1998). Modification of gene activity in mouse embryos in utero by a tamoxifen-
inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326.

Daley, G.Q., Hyun, I., Apperley, J.F., Barker, R.A., Benvenisty, N., Bredenoord,
A.L., Breuer, C.K., Caulfield, T., Cedars, M.I., Frey-Vasconcells, J., et al.
(2016). Setting Global Standards for Stem Cell Research and Clinical Transla-
tion: The 2016 ISSCR Guidelines. Stem Cell Reports 6, 787–797.

Doetschman, T., Maeda, N., and Smithies, O. (1988). Targeted mutation of the
Hprt gene in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 85,
8583–8587.

Fang, R., Liu, K., Zhao, Y., Li, H., Zhu, D., Du, Y., Xiang, C., Li, X., Liu, H., Miao,
Z., et al. (2014). Generation of naive induced pluripotent stem cells from rhesus
monkey fibroblasts. Cell Stem Cell 15, 488–496.

Fehilly, C.B., Willadsen, S.M., and Tucker, E.M. (1984). Interspecific chimae-
rism between sheep and goat. Nature 307, 634–636.
Gafni, O., Weinberger, L., Mansour, A.A., Manor, Y.S., Chomsky, E., Ben-Yo-
sef, D., Kalma, Y., Viukov, S., Maza, I., Zviran, A., et al. (2013). Derivation of
novel human ground state naive pluripotent stem cells. Nature 504, 282–286.

Gardner, R.L. (1968). Mouse chimeras obtained by the injection of cells into the
blastocyst. Nature 220, 596–597.

Gardner, R.L. (1982). Investigation of cell lineage and differentiation in the
extraembryonic endoderm of the mouse embryo. J. Embryol. Exp. Morphol.
68, 175–198.

Gardner, R.L., and Cockroft, D.L. (1998). Complete dissipation of coherent
clonal growth occurs before gastrulation in mouse epiblast. Development
125, 2397–2402.

Gardner, R.L., and Johnson, M.H. (1973). Investigation of early mammalian
development using interspecific chimaeras between rat and mouse. Nat.
New Biol. 246, 86–89.

Gardner, R.L., and Johnson, M.H. (1975). Investigation of cellular interaction
and deployment in the early mammalian embryo using interspecific chimaeras
between the rat and mouse. Ciba Found. Symp. 0, 183–200.

Gardner, R.L., and Munro, A.J. (1974). Successful construction of chimaeric
rabbit. Nature 250, 146–147.

Gardner, R.L., and Rossant, J. (1979). Investigation of the fate of 4-5 day post-
coitum mouse inner cell mass cells by blastocyst injection. J. Embryol. Exp.
Morphol. 52, 141–152.

Guo, G., Yang, J., Nichols, J., Hall, J.S., Eyres, I., Mansfield, W., and Smith, A.
(2009). Klf4 reverts developmentally programmed restriction of ground state
pluripotency. Development 136, 1063–1069.

Guo, G., von Meyenn, F., Santos, F., Chen, Y., Reik, W., Bertone, P., Smith,
A., and Nichols, J. (2016). Naive Pluripotent Stem Cells Derived Directly
from Isolated Cells of the Human Inner Cell Mass. Stem Cell Reports 6,
437–446.

Hackett, J.A., and Surani, M.A. (2014). Regulatory principles of pluripotency:
from the ground state up. Cell Stem Cell 15, 416–430.

Han, D.W., Tapia, N., Joo, J.Y., Greber, B., Araúzo-Bravo, M.J., Bernemann,
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