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Resting-state fMRI (rs-fMRI) can identify large-scale brain networks, including the
default mode (DMN), frontoparietal control (FPN) and dorsal attention (DAN) networks.
Interactions among these networks are critical for supporting complex cognitive
functions, yet the way in which they are modulated across states is not well understood.
Moreover, it remains unclear whether these interactions are similarly affected in aging
regardless of cognitive state. In this study, we investigated age-related differences in
functional interactions among the DMN, FPN and DAN during rest and the Multi-Source
Interference task (MSIT). Networks were identified using independent component
analysis (ICA), and functional connectivity was measured during rest and task. We found
that the FPN was more coupled with the DMN during rest and with the DAN during the
MSIT. The degree of FPN-DMN connectivity was lower in older compared to younger
adults, whereas no age-related differences were observed in FPN-DAN connectivity
in either state. This suggests that dynamic interactions of the FPN are stable across
cognitive states. The DMN and DAN were anti correlated and age-sensitive during
the MSIT only, indicating variation in a task-dependent manner. Increased levels of
anticorrelation from rest to task also predicted successful interference resolution.
Additional analyses revealed that the degree of DMN-DAN anticorrelation during the
MSIT was associated to resting cerebral blood flow (CBF) within the DMN. This suggests
that reduced DMN neural activity during rest underlies an impaired ability to achieve
higher levels of anticorrelation during a task. Taken together, our results suggest that only
parts of age-related differences in connectivity are uncovered at rest and thus, should be
studied in the functional connectome across multiple states for a more comprehensive
picture.
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INTRODUCTION

Resting-state fMRI (rs-fMRI) measures temporal correlations
in spontaneous blood oxygen level-dependent (BOLD) signal
fluctuations of discrete brain regions. Coherence in spontaneous
activity among brain regions is referred to as functional
connectivity, and provides an important measure of information
transfer and dynamics in the brain (Shmuel and Leopold, 2008;
Damoiseaux and Greicius, 2009). Several studies have shown
coherent spontaneous activity within neuroanatomical systems,
revealing large-scale functional networks (Damoiseaux et al.,
2006; Chen et al., 2008; Biswal et al., 2010; Allen et al., 2011;
Power et al., 2011; Yeo et al., 2011; van den Heuvel and Sporns,
2013; Salami et al., 2014a,b). These resting-state networks (RSNs)
show strong within-network connectivity and have a particular
topological signature. A number of RSNs are now recognized,
including the default mode network (DMN; Raichle et al.,
2001; Buckner et al., 2008; Andrews-Hanna et al., 2010), the
frontoparietal control network (FPN; Vincent et al., 2008; Spreng
et al., 2010; Niendam et al., 2012), and the dorsal attention
network (DAN; Corbetta and Shulman, 2002; Fox et al., 2006).
The latter two are part of the task-positive network (TPN; Fox
et al., 2005) and show increased activation during externalized
attention-demanding cognitive tasks (Cabeza and Nyberg, 2000;
Fox et al., 2005; Dosenbach et al., 2007). In contrast, the DMN
has been shown to deactivate during externally focused tasks
(Raichle et al., 2001; Buckner et al., 2008), and is instead active
during internally focused tasks (Spreng et al., 2010; Spreng
and Schacter, 2012) and unconstrained cognition (e.g., mind-
wandering; Mason et al., 2007; Buckner et al., 2008; Christoff
et al., 2009; Spreng et al., 2009).

The topology of the brain is similar across different cognitive
states (Calhoun et al., 2008; Smith et al., 2009; Cole et al., 2014;
Krienen et al., 2014). That is, the same functional networks,
including TPNs and the DMN, are present during both rest
and a number of cognitive tasks. Functional interactions among
these networks are critical for integrating resources from distinct
brain systems, in order to support complex cognitive functions
(Fransson, 2006; Kelly et al., 2008; Hampson et al., 2010; Spreng
et al., 2010; Spreng and Schacter, 2012; Elton and Gao, 2014).
However, the way in which interactions between TPNs and
the DMN are modulated across cognitive states is not well
understood. On the one hand, previous studies report moment-
to-moment anticorrelations (i.e., negative correlations) between
the DMN and some parts of the TPN, particularly the DAN,
during both rest (Fox et al., 2005, 2009; Fransson, 2005; Keller
et al., 2015) and task (Fornito et al., 2012; Elton and Gao,
2014, 2015). Importantly, the degree of anticorrelation tends
to increase from rest to task and is associated with level of
cognitive performance (Kelly et al., 2008; Hampson et al., 2010;
Rieckmann et al., 2011; De Pisapia et al., 2011). On the other
hand, positive functional coupling between the DMN and FPN
has also been observed during rest and goal-directed internally
focused cognitive tasks (Simons et al., 2008; Spreng et al., 2010;
Spreng and Schacter, 2012; Bluhm et al., 2011; Gerlach et al.,
2011; Leech et al., 2011; Gao and Lin, 2012; Di and Biswal,
2014). Yet, the extent to which these opposite connectivity trends

reflect increases or decreases in connectivity as a function of
cognitive demands is not clear. This diverse pattern of functional
connectivity may reflect that different parts of the TPN serve
different functions across different cognitive states. Hence, their
dynamic profile and coupling with the DMN may also change.
In support of this view, Spreng et al. (2010) provided a first
indication that the FPN facilitates the relation between the DMN
and DAN, by coupling its activity with one or the other in
support of internally or externally-oriented cognition. As the
FPN is anatomically interposed between the DMN and DAN,
it is well placed to integrate information from both networks
(Vincent et al., 2008). Although this model was initially suggested
for two different types of goal-directed tasks (autobiographical
vs. visuospatial planning), it could be extended to become
a hypothetical model of dynamic changes from rest to task.
Thus, the first aim of this study is to investigate how dynamic
interactions among the DMN, FPN and DAN differ between rest
and an external goal-directed task.

Functional interactions between large-scale networks,
particularly between the DMN and DAN/FPN during both
rest and task, are altered in aging (Grady et al., 2006, 2010,
2016; Andrews-Hanna et al., 2007; Sambataro et al., 2010; Wu
et al., 2011; Chan et al., 2014; Geerligs et al., 2014a,b; Li et al.,
2015). However, the underlying cause of these disruptions is
still under debate. Some studies have reported that older adults
show lower levels of within-network connectivity in the DMN
when performing external attention-demanding tasks, which
might lead to disruptive interactions between the DMN and
TPNs (Lustig et al., 2003; Grady et al., 2006; Persson et al.,
2007; Damoiseaux et al., 2008; Sambataro et al., 2010). Others,
however, have suggested that age-related alterations in inter-
network connectivity are not caused by dysfunction within
the DMN itself, but rather reflect lower flexibility of network
interactivity and reduced range of network modulation to
changing task demands (Spreng and Schacter, 2012). Thus, this
would indicate that there are age-related functional connectivity
deficiencies in interactions between the DMN and other
networks.

Moreover, the way in which these RSNs are affected by aging
may not be identical during rest and task. For some networks,
functional connectivity can represent a stable characteristic of
the brain, whereas for others it can change depending on
cognitive state. Previous studies suggest that both stability
and variability are important in shaping individual functional
connectivity profiles (Cole et al., 2014; Geerligs et al., 2015).
Still, it remains unclear whether the degree of functional
connectivity between TPNs and the DMN is stable or whether
it differs across states. Geerligs et al. (2015), showed that average
functional connectivity among several RSNs was highly similar
across mental states, whereas age-related differences remained
similar for some RSNs, but different for others. This dichotomy
could reflect underlying differences in connectivity nature. Still,
regardless of the role of the FPN in supporting internal or
external goal-directed cognition, results from previous studies
show that the level of functional connectivity within these TPNs
and between the FPN and DMN is positive (Spreng et al., 2010;
Spreng and Schacter, 2012; Elton and Gao, 2015). On the other
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hand, the DMN and DAN have been consistently reported to
be anticorrelated, reflecting the extent to which the DMN is
suppressed and the DAN is engaged (Fox et al., 2005, 2009;
Elton and Gao, 2014, 2015). Hence, it is possible that age-related
alterations in connectivity between the FPN and DMN/DAN
behave differently from those involving the DMN and DAN
and, subsequently, exhibit distinct stability patterns. The second
aim of our study is to investigate this possibility, by exploring
whether possible age-related differences in dynamic interactions
among the DMN, FPN and DAN are modulated when switching
from rest to task. This allows us to discriminate if age-related
differences are readily observed during rest, or whether networks
need to be engaged in a task for them to be detected.

We used fMRI data from 29 younger and 30 older participants
scanned during rest and while performing the Multi-Source
Interference task (MSIT, Bush et al., 2003). To complete the
MSIT, subjects need to ignore irrelevant information and deal
with multiple dimensions of cognitive interference. This type
of conflict resolution is known to decline in aging, with older
adults being less able to inhibit irrelevant information (Hasher
et al., 1991; Stoltzfus et al., 1993; Madden et al., 2004; Gazzaley
et al., 2008; Greenwood and Parasuraman, 2012; Salami et al.,
2014b). To investigate how dynamic interactions among these
networks change from rest to the MSIT, we used independent
component analysis (ICA) to identify the three RSNs. First,
we hypothesized that the FPN is more coupled to the DMN
during rest, and to the DAN during the MSIT. Second, we
predicted that the dynamic coupling between the FPN and DMN
during rest and between the FPN and DAN during task is less
expressed in older adults. Thus, finding age-related differences
during both rest and task would indicate that the functional
connectivity profile among these networks is stable across states.
If these differences were to vary from rest to task, it would
rather imply that functional connectivity changes in a state-
dependent manner. Third, we expected the DMN and DAN
to be negatively correlated during both states, but that the
degree of anticorrelation would be greater during the task. In
agreement with past work (Hampson et al., 2010; Rieckmann
et al., 2011; Hermundstad et al., 2014), we also examined possible
associations between DMN-DAN functional connectivity and
cognitive performance. Complementary analyses were carried
out to investigate whether resting cerebral blood flow (CBF)
within the DMN relates to the level of anticorrelation between the
DMN and DAN during the MSIT (Riedl et al., 2014). This would
clarify whether lower DMN neural activity during rest underlies
an impaired ability to achieve higher levels of anticorrelation
during a task.

MATERIALS AND METHODS

Participants
Twenty-nine younger (mean age 25.0 ± 3.4 years, range 20–31,
16 women) and 30 older (mean age 68.2± 2.6 years, range 65–74,
16 women) adults from Stockholm, Sweden were sampled.
All participants were right-handed, native Swedish-speakers,
had normal or corrected to normal vision and no history of

neurological illness. None of them reported or was diagnosed
with cognitive impairment. There were no significant differences
in years of education (young: 14.8 ± 2.1; old: 14.4 ± 3.7), the
Mini Mental Status Examination (MMSE; Folstein et al., 1975;
young: 29.3 ± 0.7; old: 29.0 ± 0.9), depressive symptoms as
assessed using the Swedish version of the Geriatric Depression
Scale (Brink et al., 1982; Gottfries, 1997; young: 1.4 ± 1.6;
old: 1.5 ± 2.5), or in the state scale of the State-Trait Anxiety
Inventory (Spielberger et al., 1983; young: 30.5 ± 5.4; old:
27.9 ± 8.0). We used a cutoff of 24 for MMSE (Folstein et al.,
1975) and performed additional behavioral analyses, where older
participants showed typical patterns, with worse performance
in working memory (p < 0.001), but better performance in
semantic memory (p < 0.001), compared with their younger
counterparts. All 59 subjects underwent 6 min of rs-fMRI and
57 subjects also completed the MSIT in the scanner. Three
persons (two old, one young) were excluded from analysis due to
low task performance (3 SD±mean). Another two older subjects
were excluded for not performing the task at all. One young
subject was excluded due to technical error. Thus, the effective
MSIT sample included 26 younger and 25 older participants.
All subjects gave written informed consent. The protocol was
approved by the Karolinska Institutet Ethics Committee in
accordance with the recommendations of the Declaration of
Helsinki.

Data Acquisition
Brain imaging data were acquired with a 3T fMRI Siemens
Magnetom TrioTim scanner at Huddinge Hospital, Stockholm,
Sweden, with a 32-channel head coil. Functional data were
obtained with a gradient-echo planar imaging (EPI) sequence
as follows: TR = 2.5 s, 39 slices (3.0 mm thick), voxel size
3 × 3 × 3 mm, FOV = 230 mm, flip angle = 90◦, TE = 40 ms.
Four dummy scans were obtained to allow for equilibration
of the fMRI signal. Structural high-resolution T1-weighted
images (200 slices, 1 mm thickness, FOV = 256 mm, voxel
size = 1 × 1 × 1 mm3) were collected after the functional images.

Participants underwent 6 min of rs-fMRI, during which
they were instructed to keep their eyes open and lie still.
In addition, they performed the MSIT (Bush et al., 2003),
a task that consists of detecting and reporting the number
that is different (target) from two other numbers (distracters)
presented simultaneously on a screen. It includes 16 blocks
of control and interference trials, which alternate during the
session. Within each block, 12 stimuli were presented for
2 s each. Participants were given a button box and told that
the keys corresponded to numbers 1, 2 and 3, from left to
right. They were instructed to indicate the number that was
different by pressing the key that spatially corresponded to
the target number, regardless of its position on the screen.
During control trials, distracters were always zero and the target
number corresponded to its position on the button box (e.g.,
the number 1 always appeared in the leftmost position). In
contrast, during interference trials, distracters were 1, 2, or 3
and the target never matched its position on the keyboard.
Participants were instructed to respond as accurately and quickly
as possible (Figure 1). Stimuli were presented on a computer
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FIGURE 1 | Multi-Source Interference task (MSIT; Bush et al., 2003). In
each trial, participants were asked to indicate the number that was different by
pressing the spatially corresponding key on the button pad.

screen that was seen by participants through a tilted mirror
attached to the head coil. E-prime (Psychology Software Tools,
Inc., Pittsburgh, PA, USA1) was used for presentation of stimuli
and responses were made on custom-built MRI-compatible
response pads (MAG Design and Engineering, Sunnyvale, CA,
USA).

CBF data were acquired using a pseudo-continuous arterial
spin labeling (pCASL) sequence with the following settings:
TE/TR = 18/3500 ms, 18 slices (6.0 mm thick), FOV = 230× 230,
flip angle = 90◦, labeling duration = 1600 ms, post-labeling
delay = 1170 ms, matrix size = 64 × 64, inter-slice gap = 0.9 mm,
bandwidth = 2790 Hz/pixel, with 70 control/label acquisitions.

Data Analysis
Preprocessing
Functional and structural images were preprocessed using
Statistical Parametric Mapping Software (SPM12; Wellcome
Department of Imaging Science, Functional Imaging Laboratory,
University College London). All functional images were first
corrected for differences in slice-time acquisition within each
volume using the middle slice as reference. The resulting slice-
timing corrected images were rigidly aligned to the first volume
to correct for head motion. These images were then despiked
with 3dDespike in AFNI2, which minimizes the effect of outliers
by eliminating spikes in the time-series signal. Despiking is very
similar to the scrubbing method proposed by Power et al. (2012),
but rather than removing the affected time points, the outliers
are replaced with estimates derived from a third-order spline
fit. Next, a within-subject rigid registration was conducted in
order to align functional and structural images. T1-weighted
images were then segmented into gray matter (GM) and white
matter (WM), and a group-specific template was created with
Diffeomorphic Anatomical Registration using Exponentiated Lie
Algebra (DARTEL; Ashburner, 2007). GM and WM images
were imported into the DARTEL space using the normalization

1www.pstnet.com/eprime
2http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dDespike.html

parameter previously generated during segmentation, followed
by resampling to isotropic voxels. A first template was produced
as a mean of GM/WM across all subjects. Then a deformation
from this template was computed to each of the subject-specific
GM/WM images. The inverse of the deformation was applied
to the subject-specific GM/WM images. A second template was
produced as the mean of the deformed subject-specific GM/WM
images. This included six iterative steps of increasingly improved
group-specific templates. The realigned fMRI and segmented
GM/WM images were then non-linearly normalized to a sample-
specific template, affine aligned to the Montreal Neurological
Institute (MNI) template, and smoothed using a 6 mm full-width
at half-maximum (FWHM) Gaussian filter. For smoothing, we
followed the theory of Gaussian random fields, according to
which reliable estimates of statistical significance can only be
obtained when smoothing kernels have at least twice the voxel
size (Worsley and Friston, 1995).

The pCASL postprocessing was based on scripts provided
in the ASL toolbox3. It included motion correction by rigid
body transformation, creation of a mean image, coregistration
between the mean image and anatomical T1, realigning the
pCASL images to match the mean, spatially smoothing the data
(6 mm FWHM Gaussian filter), and calculating a CBF map in
ml/100 g/min. The maps were spatially normalized in analogy
to the functional scans. Finally, a threshold map was used to
calculate subject specific CBF in the DMN. As a control analysis,
a similar procedure was undertaken to calculate CBF in the
primary visual network.

Statistical Analyses
ICA was applied to the resting-state preprocessed images using
the group ICA fMRI toolbox (GIFT v2.0a; Calhoun et al., 2001;
Allen et al., 2011). ICA is a multivariate data-driven technique
that decomposes the fMRI dataset into independent spatial maps
and respective time courses. This is done by first reducing
the intensity-normalized data from each subject using principal
component analysis (PCA), which decreases computational
complexity while keeping most of the information. The resulting
volumes were then temporally concatenated and PCA was
performed again. After these two steps of data reduction,
ICA was performed using the Infomax algorithm to identify
21 independent components (ICs), estimated by minimum
description length criteria (MDL), on a group level. Finally, a
back reconstruction using an improved version of dual regression
(GICA3, Erhardt et al., 2011) was carried out, and spatial maps
and corresponding time courses were computed for each subject.
After visually inspecting all 21 ICs and comparing their topology
to those of previous studies, 13 were considered to represent
relevant RSNs (Raichle et al., 2001; Damoiseaux et al., 2006;
Andrews-Hanna et al., 2007; Smith et al., 2009; Biswal et al., 2010;
Allen et al., 2011; Salami et al., 2014b). These networks exhibited
spatial overlap with RSNs identified in previous studies (Biswal
et al., 2010; Di and Biswal, 2014; Salami et al., 2014b), showed
peak activation in the GM, and had little to no overlaps with ICs
known to reflect vascular, ventricles, motion and susceptibility

3https://cfn.upenn.edu/∼zewang/ASLtbx.php
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artifacts. Out of the 13 relevant networks, we identified and
further analyzed the right and left FPN, DMN and the DAN.
The inter-network functional connectivity, which reflects the
degree of cross talk between two specific networks, was then
computed. This was carried out using Fisher’s z-transformed
Pearson correlation coefficients between pairs of time courses
that were previously detrended, despiked, and filtered using a
fifth-order Butterworth low-pass filter (f < 0.15). Importantly,
given that previous studies have shown that head motion in
the scanner can have a strong effect on functional connectivity
during rest (Power et al., 2012; Buckner et al., 2013), additional
preprocessing steps and control analyses were carried out in
order to distinguish noise sources from the signal of interest.
Outliers from subjects’ time courses were identified based on the
median absolute deviation and replaced with the best estimate
using third-order spline fit. Previous work has shown that this
method is efficient in reducing the effect of head motion from
ICA time courses (Allen et al., 2014; Geerligs et al., 2014a;
Salami et al., 2016). As a control analysis, an additional step
was carried out where 24-motion parameters using the Friston
model (Yan et al., 2013) were regressed out before performing
the ICA.

Because we were also interested in investigating the degree
of change in functional connectivity during the interference
resolution task, a constrained ICA (Calhoun et al., 2005)
was applied to the preprocessed MSIT fMRI images, using
the templates derived from the resting-state ICA analyses.
The inter-network connectivity between the components of
interest was also computed. Then, in order to assess whether
connectivity between these networks changes from rest to task, a
3 (connectivity: FPN-DMN; FPN-DAN; DMN-DAN) by 2 (state:
rest vs. task) repeated-measures analysis of variance (ANOVA)
was conducted. The ANOVA was first carried out for the
younger group only, to assess how inter-network connectivity
changes in a canonical sample composed by healthy young
individuals. This was followed by a 3 (connectivity: FPN-DMN;
FPN-DAN; DMN-DAN) by 2 (state: rest vs. task) by 2 (group:
young vs. old) ANOVA, in order to compare connectivity
differences between the two groups. When appropriate, results
were followed by post hoc t-tests (Bonferroni corrected for
multiple comparisons).

In addition, we calculated the degree of task-relatedness
for each of these networks with the temporal sorting option
in GIFT. This method uses a multiple regression fit to
each subjects’ ICA time courses. First, regressors modeling
both the control and interference conditions were computed
using SPM12, by convolving the ideal timing of the events
with a canonical hemodynamic response function. Then,
these regressors were fit to subjects’ time courses and the
average percent signal change was computed. Task-relatedness
was measured by analyzing the fit parameters. A network
would be task-related if the regressor parameter fit survived
a one-sample t-test (Calhoun et al., 2008). Finally, to test
for an association between functional connectivity and MSIT
performance, we computed change-change correlations for
inter-network functional connectivity (connectivity during
rest—connectivity during task) and MSIT accuracy (accuracy

in control condition—accuracy in interference condition). This
analysis was carried out for the FPN-DMN, FPN-DAN and
DMN-DAN. We also tested whether resting CBF in the DMN
was associated with the level of DMN-DAN anticorrelation
during task performance.

RESULTS

Cognitive Performance
A 2 (condition: control vs. interference) by 2 (group: young
vs. older) ANOVA was conducted on the accuracy data. The
analysis showed a main effect of condition (F(1,104) = 16.146,
p < 0.0001), a main effect of age (F(1,104) = 4.397, p = 0.038)
and a significant age × condition interaction (F(1,104) = 4.239,
p < 0.05). Older subjects’ were less accurate during interference
than during the control condition (p = 0.002), but this effect was
only at trend level in younger adults (p = 0.08). The older group
was also less accurate compared to the young during interference
(p < 0.05), but not during control (p = 0.9). A similar ANOVA
was run for latency for correct trials, showing significant main
effects of condition (F(1,108) = 108.912, p < 0.0001) and age
(F(1,108) = 21.830, p < 0.0001), but no interaction (F < 1).
Reaction times were longer for interference compared to control
trials for both groups (p < 0.0001), and longer for older adults
than for the young in both conditions (p < 0.05; for more details
see Salami et al., 2014b).

Mapping Resting-State Networks
ICA estimated a total of 21 components, 13 of which represented
RSNs. We identified the DMN, bilateral FPN and DAN
(Figure 2), by comparing the topology of all ICA components
with those of previous studies (Spreng et al., 2010; Di and Biswal,
2014; Salami et al., 2014b).

The two components identified as the DMN were averaged,
and consisted of brain regions traditionally known to be part
of this network such as the ventral medial prefrontal cortex
(vmPFC), inferior parietal lobule (IPL) and posterior cingulate
cortex (PCC). The FPN included the rostrolateral prefrontal
cortex (rlPFC), anterior extent of the inferior parietal lobule
(aIPL), and middle frontal gyrus (MFG). Finally, the DAN
consisted, among others, of the dorsolateral prefrontal cortex
(dlPFC) and superior parietal lobule (SPL). These networks had
little to no overlap with known artifacts or with each other
(Figure 3).

Inter-Network Connectivity in the Younger
Group
We first investigated whether the degree of functional
connectivity among the DMN, FPN (averaged across the
two hemispheres), and DAN changed from rest to the MSIT
in the group of younger subjects. This also served as a check
to assess whether functional connectivity levels fell within
the expected range. The ANOVA revealed a main effect
of connectivity (F(2,54) = 305.76, p < 0.0001), a main effect of
state (F(1,27) = 23.02, p < 0.0001) and a connectivity × state
interaction (F(2,54) = 44.67, p < 0.0001). Pairwise comparisons
showed that FPN-DMN connectivity was higher (t(27) = 7.34,
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FIGURE 2 | Networks correlation matrix during resting-state
(upper-case diagonal) and interference resolution (lower-case
diagonal) for (A) young and (B) old.

p < 0.0001) at rest compared to task, whereas the opposite
pattern was seen for the FPN and DAN, where functional
connectivity was higher (t(27) = −2.57, p = 0.016) during the
MSIT as compared to rest. Moreover, the level of DMN-DAN
anticorrelation also increased (t(27) = 5.13, p < 0.0001) from rest
to task.

In summary, younger adults had lower FPN-DMN and
higher FPN-DAN connectivity during the MSIT, as compared
to rest. They also showed a task-related increase in the level of
DMN-DAN anticorrelation. However, the degree of correlation
between the FPN and DAN was lower (r < 0.1) than expected
during both states, when compared to the other networks or
results found in previous studies (Spreng et al., 2010; Spreng and
Schacter, 2012; Figure 4).

We further examined possible reasons for low FPN-DAN
connectivity. The magnitude of the correlation between the
FPN and DAN was significantly different from zero, but quite
low when compared to other networks. Thus, we hypothesized
that the FPN—the network responsible for coupling itself with
the DMN or DAN according to task demands—could be
differentially modulated (i.e., engaged or disengaged) between
the right and left hemisphere given the nature of the
task.

To investigate this, a multiple regression fit with control and
interference conditions as regressors was carried out on subjects’
ICA time courses. We found that the right FPN (rFPN) was
strongly and positively related to both control and interference,
whereas the left FPN (lFPN) was not significantly associated with
any of the two conditions (Table 1 for results across groups).
The DAN and DMN were positively and negatively associated to
the task, respectively. Finally, the rFPN and DAN were the most
task-related networks in our study.

Results from the task-relatedness analysis are indicative of a
lateralized effect regarding FPN connectivity during the MSIT.
Hence, rather than analyzing connectivity with the averaged
bilateral FPN, we repeated the analyses for the rFPN and lFPN
separately (Figure 5, left panel). When including the rFPN, the
ANOVA showed a main effect of connectivity (F(2,54) = 160.89,
p< 0.0001), a main effect of state (F(1,27) = 38.27, p< 0.0001) and
a connectivity × state interaction (F(2,54) = 58.62, p < 0.0001).
In line with the initial results, these data also indicate that
rFPN-DMN connectivity was higher (t(27) = 10.25, p < 0.0001)
during rest compared to theMSIT, whereas connectivity between
the rFPN and DAN was higher during task (t(27) = −3.29,
p = 0.003) compared to rest. When the model included
the lFPN instead, results also showed a main effect of
connectivity (F(2,54) = 290.25, p < 0.0001), a main effect of state
(F(1,27) = 10.00, p = 0.004), and a connectivity × state interaction
(F(2,54) = 10.94, p < 0.0001). Connectivity between the lFPN
and DMN was again higher (t(27) = 2.53, p = 0.018) during rest
than during task. However this was not the case for connectivity
between the lFPN and DAN, which was not different between the
two states (t(27) = −0.71, p = 0.483).

In sum, similar effects to our previous analysis were
found regarding rFPN/lFPN connectivity with the DMN,
such that connectivity between the networks decreased from
rest to task. Likewise, connectivity between the rFPN and
DAN was also consistent with the initial results, showing
an increase from rest to task. However, connectivity between
the lFPN and DAN remained identical in both states. Thus,
in order to facilitate interpretation in the following analyses,
we averaged right and left FPN connectivity concerning the
DMN. Because connectivity between the FPN and DAN showed
distinct unilateral patterns, this could not be done for the
DAN.

Inter-Network Connectivity in the Younger
vs. Older Group
Our second aim was to investigate whether functional
connectivity changes among the DMN, FPN and DAN
were differentially expressed in young and older adults.
Hence, a 3 (connectivity) by 2 (state) by 2 (group) ANOVA
was conducted using the right lateralized and task-related
rFPN-DAN connectivity. This revealed a main effect of
connectivity (F(2,110) = 382.96, p < 0.0001), a main effect of state
(F(1,55) = 14.91, p < 0.0001), but not of group (F(1,55) = 1.90,
p = 0.174), as well as a connectivity × group interaction
(F(2,110) = 21.20, p < 0.0001), a state × group interaction
(F(1,55) = 7.57, p = 0.008), a connectivity × state interaction
(F(2,110) = 54.89, p < 0.0001) and a connectivity × state × group
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FIGURE 3 | (A) Maps of the default mode (DMN; red), bilateral frontoparietal control (FPN; yellow), and dorsal attention (DAN; blue), and (B) overlap among the three
networks.

interaction (F(2,110) = 6.74, p = 0.002). Specifically, FPN-DMN
connectivity was higher during rest than during the MSIT
for both the young (t(27) = 7.34, p < 0.0001) and the old
(t(28) = 4.43, p < 0.0001). The younger group had higher
connectivity levels during both rest (t(57) = −4.15, p < 0.0001)
and task (t(55) = −0.247, p = 0.017) when compared to the older
group. In summary, the older group showed significantly lower
connectivity during rest and the MSIT when compared to the
young, but exhibited the same pattern of results by decreasing
the degree of FPN-DMN connectivity during task performance.

Connectivity between the two task-related networks, the rFPN
and DAN, was higher during MSIT as compared to rest for
both young (t(27) = −0.33, p = 0.003) and old (t(28) = −3.12,
p = 0.004). Moreover, younger subjects had slightly higher
rFPN-DAN connectivity compared to the old, but this difference
did not approach conventional significance in either state (rest:
t(45.555) = −0.99, p = 0.329; MSIT: t(45.220) = −1.34, p = 0.186).
Hence, both young and old showed higher connectivity between
the rFPN and DAN during the MSIT than during rest, but there
were no age-related differences in either state.

Despite not being task-related, pairwise t-tests were carried
out in order to compare lFPN and DAN connectivity. During
rest, the younger and older groups’ connectivity was not
different (t(57) = 0.16, p = 0.872), but during the MSIT,
the old showed significantly higher connectivity (t(55) = 4.95,
p < 0.0001), compared to the young. Whereas the young group
showed no significant difference in lFPN-DAN connectivity

between rest and task (t(27) = −0.71, p = 0.483), the old
group showed an increase in functional connectivity during

FIGURE 4 | Functional connectivity among the DMN, FPN and DAN
during rest and the MSIT for the younger group. Connectivity between
the FPN and DMN significantly decreased from rest to task, whereas the
opposite trend can be seen for coupling between the FPN and DAN. The
DMN and DAN were significantly more anticorrelated during task performance
than during rest. ∗p < 0.05; ∗∗p < 0.001.
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TABLE 1 | Network task relatedness across both age groups.

Interference Control

t-value p-value t-value p-value

Default mode network (component 1) −9.748 1.145e-13 −5.834 2.821e-07
Default mode network (component 2) −6.151 8.596-08 −5.779 3.466e-07
Right frontoparietal network 7.679 2.614e-10 8.457 1.374e-11
Left frontoparietal network −1.528 0.132 −0.668 0.507
Dorsal attention network 11.175 6.999e-16 3.411 0.001

the MSIT (t(28) = −7.42, p < 0.0001). This indicates that
connectivity between the lFPN and DAN remained the same
during both states for the young, but increased during the task
for the old.

Finally, the level of DMN-DAN anticorrelation indicated that
the younger and older groups’ connectivity was not significantly
different during rest (t(57) = −0.14, p = 0.888), but that the
young had higher negative DMN-DAN connectivity compared
to the old during the MSIT (t(55) = 4.56, p < 0.0001). From
a different angle, connectivity levels did not differ between the
two states in the older group (t(28) = −1.48 p = 0.151), whereas

the degree of anticorrelation increased in the young during the
MSIT (t(27) = 5.13, p < 0.0001). As such, the young showed
greater task-related modulation in DMN-DAN anticorrelation
compared to the old (Figure 5).

Correlations with MSIT Performance and
Perfusion
To test for an association between functional connectivity and
MSIT performance, we computed change-change correlations
for inter-network functional connectivity (connectivity during

FIGURE 5 | Functional connectivity among the DMN, FPN and DAN during rest and the MSIT for younger and older adults. The young had higher
FPN-DMN connectivity than the old in both conditions. However, both groups showed a decrease in inter-network functional connectivity during the MSIT when
compared to rest. Both groups also showed an increase in right FPN (rFPN)-DAN connectivity during the MSIT compared to rest, but there were no differences
between young and old. Although there were also no differences between the groups in lFPN-DAN connectivity during rest, the old showed increased connectivity
during the MSIT, whereas the young group retained similar levels of (negative) connectivity. DMN-DAN connectivity levels did not significantly differ between the age
groups at rest, but the young showed increased negative connectivity during the MSIT, whereas the old did not. ∗p < 0.05; ∗∗p < 0.001.
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FIGURE 6 | The relation between DMN and DAN coupling and MSIT
accuracy. The graph shows the residuals of the change-change
age-partialed correlation between DMN-DAN connectivity (rest—task) and
accuracy during the MSIT (correct responses for control items—correct
responses for interference items).

rest—connectivity during task) and MSIT accuracy (accuracy in
control condition—accuracy in interference condition) for all
connectivity pairs (FPN-DMN, FPN-DMN and DMN-DAN).
Due to the relatively small sample size, these analyses were
carried out across all subjects, while controlling for age.
The increases in DMN-DAN anticorrelation were significantly
correlated with accuracy performance (r = −0.339, p = 0.015),
indicating that better interference resolution was associated with
a greater increase in DMN-DAN anticorrelation from rest to
MSIT (Figure 6). No other associations were found between
inter-network connectivity and performance (p > 0.05).

Finally, we investigated whether the degree of anticorrelation
between the DMN and DAN during task was related to resting
CBF in the DMN. The results showed that higher resting
CBF in the DMN was associated with a stronger DMN-DAN
anticorrelation during the MSIT (r = −0.30, p = 0.047, after
adjusting for age, DMN gray-matter volume, and CBF in the
visual cortex). The old had significantly lower global gray-matter
CBF than the young (41 ± 9 vs. 57 ± 12 ml/100 g/min,
p < 10−7). This indicates that high absolute DMN activity
during rest contributes to the ability to increase the level
of DMN-DAN anticorrelation during a task (Riedl et al.,
2014).

Motion and Age-Related Differences in
Connectivity
Previous studies have indicated that head motion can create
confounds in functional connectivity (Power et al., 2012;
Buckner et al., 2013). As such, we have already motion-
corrected subjects’ ICA time courses, which were then used

to compute inter-network connectivity. However, in order to
further investigate whether our results were confounded by
motion, we carried out an additional control analysis where
24-motion parameters using the Friston model were regressed
out, before the ICA—as opposed to motion correction on the
ICA time courses. This analysis revealed very similar results to
our previous findings (see Figure 7).

DISCUSSION

The primary aim of this study was to investigate state-dependent
changes in dynamic interaction patterns of three large-scale
brain networks in younger and older adults. By comparing
inter-network functional connectivity during rest and the MSIT,
we demonstrated that interactions within TPNs (i.e., FPN and
DAN) and between TPNs and the DMN differ between rest
and task in both young and old. Specifically, the FPN was
more coupled to the DMN during rest, and more coupled
to the DAN during the MSIT in both age groups. Past
research has shown increased functional connectivity between
the FPN and DMN during autobiographical planning and
between the FPN and DAN during visuospatial planning (Spreng
et al., 2010; Spreng and Schacter, 2012). Our results further
demonstrate that the interposition of the FPN between the
DMN and DAN represents a robust effect, and support a
switching role for the FPN by dynamically interacting with
one or the other depending on task demands. Past work
using graph theory has provided more direct evidence for
this switching function, by showing that the FPN includes
brain regions that flexibly and rapidly update their connectivity
in a task-dependent manner, but also that its connectivity
pattern shifts more than that of other networks across a
variety of tasks (Cole et al., 2013). Moreover, a study by
Spreng et al. (2013) identified FPN nodes that exhibit distinct
preferred connectivity with the DMN, DAN, or both. These
nodes changed their network affiliation and showed realignment
from rest to task, which suggests a more flexible connectivity
profile.

Our second aim was to investigate age-related differences
among the DMN, FPN and DAN. We found that older
adults had lower FPN-DMN functional connectivity during
both rest and the MSIT, but still exhibited greater FPN-DMN
connectivity at rest compared to task. A similar trend was
observed for interactions between the rFPN and DAN, with
older adults showing numerically lower connectivity values
for both states compared to the young, but these did not
reach conventional significance. Older adults also had greater
rFPN-DAN connectivity during the MSIT compared to rest.
These findings suggest that, similarly to what was observed
in younger adults, the FPN serves as a switch to actively
engage other networks and facilitate cognition in older adults.
This pattern is in line with previous studies indicating that
normal aging is accompanied by a lower degree of flexible
network interactivity (Spreng and Schacter, 2012; Chan et al.,
2014; Grady et al., 2016).

Additional analyses revealed that the DMN and DAN were
anticorrelated during both states for young and old, but that
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FIGURE 7 | Control analysis on functional connectivity levels among the DMN, FPN and DAN during rest and the MSIT for younger and older adults.
Connectivity between the rFPN and DMN decreased for both groups from rest to task. The younger also had higher connectivity between the lFPN and DMN during
the MSIT when compared to rest, whereas the old showed no connectivity differences between states. Importantly, there were no differences in rFPN-DMN
connectivity between groups during both states, whereas connectivity between the lFPN and DMN was higher for young during both rest and task. Hence, despite
exhibiting seemingly opposite effects, the same trend is still observed—an age-related difference that is present during one state is also present during the other and
vice-versa. In line with our previous findings, both groups showed an increase in rFPN-DAN connectivity during the MSIT compared to rest, and there were no
differences between groups. Young also showed negative connectivity between the lFPN and DAN, with no significant difference between rest and task, whereas the
old group’s connectivity increased during the MSIT. This is also consistent with our previous results, where young and old similarly increased rFPN-DAN connectivity
during the MSIT, but there were no age-related differences in either state. The same trends are also present for the lFPN and DAN, indicating that the young did not
change their connectivity levels from one state to the other, whereas the older group did. Finally, both groups had negative connectivity between the DMN and DAN,
but the young showed increased anticorrelation during the task while older subjects did not. Importantly, the correlation between DMN-DAN connectivity changes
and MSIT performance remained after regressing out motion (r = −0.408, p = 0.003). ∗p < 0.05; ∗∗p < 0.001.

the degree of anticorrelation increased from rest to the MSIT in
the young only. Several studies indicate that these two networks
subserve different cognitive functions, with the DMNbeingmore
engaged in internally-directed attention (Simons et al., 2008;
Spreng et al., 2010; Spreng and Schacter, 2012; Bluhm et al.,
2011; Gerlach et al., 2011; Leech et al., 2011; Gao and Lin, 2012;
Di and Biswal, 2014), and the DAN being more engaged in
externally-directed attention (Corbetta and Shulman, 2002; Fox
et al., 2005; Fransson, 2005; Corbetta et al., 2008; Fox et al., 2009;
Keller et al., 2015). Our results corroborate that DMN-DAN
anticorrelation transcends cognitive states. We also found that
changes in DMN-DAN connectivity levels between rest and

task were associated with MSIT accuracy, further supporting
its behavioral relevance. Changes in connectivity between
cognitive states have been associated with performance in the
past (Hermundstad et al., 2014); however studies investigating
the relationship between DMN-DAN anticorrelation and task
performance have mostly focused on memory (Hampson et al.,
2010; Rieckmann et al., 2011). Our results extend these patterns
to the domain of interference resolution. Furthemore, the degree
of anticorrelation during the MSIT was associated with CBF in
the DMN during rest. This suggests that DMN activity at rest
is a helpful indicator of the degree of change in DMN-DAN
connectivity.
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In contrast with previous studies, there were no age-related
differences in the level of anticorrelation between the
DMN and DAN at rest (e.g., Wu et al., 2011; Keller et al.,
2015). However, most of these studies report differences
in connectivity between the DAN and the anterior, but
not posterior, part of the DMN. Likewise, some previous
observations regarding age-related differences in anticorrelation
levels should be interpreted with caution due to the use of
global signal regression, a method that mitigates physiological
noise in resting-state but has been shown to mathematically
generate anticorrelations (Murphy et al., 2009). A recent study by
Spreng et al. (2016) has similarly demonstrated that DMN-DAN
anticorrelation is reduced in older adults during both rest and
task, which supports the notion that altered network dynamics
is a central feature of brain aging. Our results also showed
increased anticorrelation from rest to MSIT in the young only.
This finding is in agreement with past work showing that both
DMN deactivation and increased anticorrelation levels are
related to elevated task demands (Kelly et al., 2008; Hampson
et al., 2010). The lack of task modulation in the degree of
DMN-DAN anticorrelation in the older group is also in line with
the view that aging is accompanied by impaired flexible network
interactivity (Spreng et al., 2016).

Our task-relatedness analysis indicated that only the rFPN
was involved in MSIT performance. Connectivity between the
lFPN and DAN was not significantly different between the
age groups at rest, although the older group showed increased
lFPN-DAN connectivity during the task and the younger group
did not. This finding is in line with a previous study where
older adults showed increased activity in the left prefrontal cortex
(PFC) and parietal regions during sustained visual attention
(Cabeza et al., 2004), a necessary component when performing
the MSIT. Furthermore, some PFC regions that show lateralized
activation in young adults also show more bilateral activity
in older adults (Bäckman et al., 1997; Cabeza, 2002; Cabeza
et al., 2002). Likewise, previous research has found that older
subjects show increased bilateral functional connectivity in the
PFC during task performance (Grady et al., 2010; Rieckmann
et al., 2011). Thus, older adults might need increased bilateral
connectivity in order to adequately perform the task, although
this pattern could also reflect less selective recruitment of brain
networks, consistent with the concept of dedifferentiation in
cognitive aging (Li and Lindenberger, 1991).

The impact of task demands on functional connectivity was
also investigated using task-relatedness analyses, where we found
that the level of modulation in the three networks differed.
Whereas rFPN/DAN and DMN were positively and negatively
task-related, the lFPN was task-unrelated. Previous research has
indicated that the MSIT activates the cingulo-frontal-parietal
attention network bilaterally and does not show a lateralized
pattern of activation (Bush et al., 2003; Bush and Shin, 2006) like
the one found in our study. The current finding of lateralization
within the FPN contrasts with past work, but it should be
noted that previous MSIT studies examined activation, and
not connectivity. Moreover, sustained attention processes have
been associated with the right PFC, which provides a plausible
explanation for the lateralization effect found in the current study

(Pardo et al., 1991; Lewin et al., 1996; Cabeza and Nyberg, 2000).
Finally, whereas the rFPN showed little modulation between
conditions (i.e., interference vs. control), the DAN was more
involved during interference than control trials, indicating a
higher degree of modulation and increased recruitment when
task difficulty increased.

We found that age-related differences in functional
connectivity were not always consistent across cognitive
states, and might be dependent on task demands (Di et al., 2013;
Gonzalez-Castillo et al., 2015; but see Tavor et al., 2016). There
is a strong body of evidence relating aging to disruptions in
network interactions, but it remains unclear whether age-related
differences in RSNs are consistently found across cognitive
states. Previous research has found that age-related differences
in inter-network dynamics are not static across cognitive states
(Geerligs et al., 2015). However, this contrasts against other
studies showing that individual differences in cognitive tasks
may be a stable trait marker (Tavor et al., 2016), or that age
differences may be more readily observed when there are no
external demands on cognitive processing (Grady et al., 2016).
This work provides novel insights as to whether age-related
differences in network interactions can be easily identified
during rest, or whether networks should be momentarily
engaged in a cognitively demanding task to elicit patterns of
age-related differences. In our study, age-related differences in
connectivity were stable between rest and task for FPN-DMNand
FPN-DAN interactions (Tavor et al., 2016). This finding, along
with well-known age differences in cognitive control (Buckner,
2004; de Frias et al., 2009), suggests that the dynamic functional
connectivity of the FPN with other large-scale networks remains
similar across cognitive states and can be readily observed during
resting-state. In contrast, DMN-DAN connectivity showed a
distinct pattern in the two groups. Although young people
had increased negative connectivity during the MSIT, older
people had similar connectivity levels in both rest and task. This
indicates that age differences in the interactions between the two
networks function in a state-dependent manner. Previous studies
suggest that the DMN exhibits a general dynamic reorganization
of its functional connectivity pattern in a task-specific manner
(Gao et al., 2013; Elton and Gao, 2015). According to this view,
we would expect that the degree of DMN-DAN anticorrelation
would vary across cognitive states.

Despite alterations in the degree of modulation, functional
connectivity between the FPN and DMN/DAN remained
positive and was stable. In contrast, connectivity between
the DMN and DAN was negative and varied between
rest and the MSIT. These opposite trends could indicate
that DMN suppression is highly state-dependent, whereas
positive connectivity between other networks, particularly those
involving the FPN, has a more stable pattern across states.
Moreover, if we wish to argue that cognitive demands are
responsible for connectivity differences in young and old
from rest to the MSIT, we would expect similar effects when
comparing two tasks differing in cognitive load (Grier et al.,
2003; Caggiano and Parasuraman, 2004). This needs to be
further investigated across different cognitive domains and using
different measures of individual differences.

Frontiers in Aging Neuroscience | www.frontiersin.org 11 May 2017 | Volume 9 | Article 152

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Avelar-Pereira et al. Age-Related Differences in Dynamic Interactions

A limitation of this work is that we cannot address
all potentially relevant mechanisms by which changes
in cerebrovascular physiology in aging (e.g., changes in
neurovascular coupling) could impact connectivity measures.
There are many factors that can potentially confound group
differences in fMRI studies. Given its nature, the BOLD signal
is affected by elements that are unrelated to neural activity,
such as changes in cerebrovascular reactivity (CVR), CBF and
cerebral blood volume (CBV). Because aging is associated with
cerebrovascular physiological changes, controlling for such
differences is of particular importance when comparing age
groups. However, we did not collect information regarding
subjects’ vascular profile or compliance with the resting-state
protocol. We took this issue into account, by controlling
for resting-state fluctuation amplitude (RSFA) in additional
analyses that are not reported here. RSFA is a measure that gives
comparable results to CO2 challenges and breath-hold (BH)
tasks (Liu et al., 2013) and is capable of capturing differences
between younger and older participants (Kannurpatti et al.,
2011). As expected, older subjects had significantly lower
RSFA and therefore reduced CVR. However, the basic pattern
of age-related differences remained unaltered. This indicates
that neurovascular factors are not driving the main pattern in
our findings, although we cannot rule out the possibility that
these factors are, at least partly, responsible for our results.
Our findings could also be biased by scan length, because the
resting-state and task sessions had different durations (145 vs.
180 volumes). Still, this was not the case, as we ran the same
analyses using only the first 145 task volumes, and results were
identical.

Finally, previous work using the same pool of subjects has
shown that older persons have marked GM reductions in several
brain regions, particularly in anterior parts of the brain (Salami
et al., 2014b). There is also evidence that age-related differences
in GM andWMaffect the brain’s ability to engage and coordinate
large-scale functional networks, including the DMN and FPN
(Greicius et al., 2009; Horn et al., 2014; Marstaller et al., 2015).
Thus, it was expected that GM differences would account for part
of the results found in the present study. After controlling for
the effects of GM volume on functional connectivity, the overall
pattern of age-related differences was identical to the one found
before controlling for atrophy, with only FPN-DMN connectivity

showing a similar trend but not reaching statistical significance.
Indeed, if functional connectivity is a measure of brain integrity,
then structural brain changes should account for age-related
changes in interactions among large-scale networks (Marstaller
et al., 2015).

In summary, our results provide three main findings. First,
our analyses of inter-network connectivity support a model
in which the FPN dynamically interacts with the DMN or
DAN depending on cognitive state in both younger and older
adults. Second, the degree of FPN-DMN connectivity during
both rest and the MSIT was lower in older compared to
younger adults, whereas no age-related difference was observed
in FPN-DAN connectivity in either state. These data suggest
that dynamic interactions of the FPN are stable across cognitive
states. Third, the DMN and DAN were anticorrelated, and
the degree of anticorrelation was age-sensitive only during
the MSIT (and predictive of task performance), suggesting
that it varies in a state-dependent manner. In addition, low
DMN-DAN anticorrelation during task was related to low resting
metabolism in the DMN, providing further characterization of
the physiological underpinnings of these interactions.
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