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    Introduction 
 Cdks are heterodimeric enzymes with one catalytic and one regu-

latory subunit. Dimerization of these two subunits is essential for 

kinase activity. As the name suggests, some of the regulatory sub-

units are cyclins, including cyclin E and A, that are synthesized in 

a cell cycle – dependent manner. These cyclin – Cdk complexes 

play essential roles in controlling different phases of and the pro-

gression through the cell cycle ( Nurse, 2000 ;  Sherr and Roberts, 

2004 ). However, other regulatory subunits have been identifi ed 

that are expressed and function independently of the cell cycle 

( Nebreda, 2006 ). These include T-type cyclins and cyclin K, 

which associate with Cdk9 to form distinct positive transcription 

elongation factor b complexes and cyclin H – Cdk7, which are part 

of the general transcription factor complex transcription factor II H. 

These kinases are critical in regulating distinct steps in tran-

scription, including the phosphorylation of components of the 

mediator complex and the catalytic subunit of the RNA polymer-

ase II complex ( Zurita and Merino, 2003 ;  Marshall and Grana, 

2006 ). Furthermore, Cdk5 associates with two regulatory subunits, 

p35 and 39, and these complexes are expressed primarily in post-

mitotic neurons as well as in other nonproliferating cells. Cdk5 

has been attributed key functions during brain development, in-

cluding regulation of neuronal survival, cell migration during corti-

cal layering, neurite outgrowth, axon guidance, and synapse function 

( Dhavan and Tsai, 2001 ;  Nikolic, 2004 ;  Xie et al., 2006 ). 

 To obtain further insight into the role of Cdk-dependent 

regulation of cellular processes, we sought to identify novel 

substrates for such kinases. We chose cyclin E – Cdk2 because 

this kinase is an important regulator of the G1 to S-phase transi-

tion and is deregulated in a substantial fraction of human tumors 

( Musgrove, 2006 ). Indeed, elevated cyclin E expression has been 

linked to a poor prognosis in human breast cancer ( Keyomarsi 

et al., 2003 ). Furthermore, the cyclin E – Cdk2 kinase is activated 
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with recombinant baculoviral cyclin E – Cdk2 and  � -[ 32 P]ATP 

( Fig. 1  A  ).   The clones corresponding to 96 prominent substrates 

were sequenced and revealed 42 clones that expressed the ORF 

in frame with the N-terminal tag. These represented 26 different 

proteins, some known Cdk substrates, with potential phosphory-

lation sites and cyclin binding motifs ( Table I ).   These substrates, 

bacterially expressed HIS or GST fusion proteins, were verifi ed 

in in vitro kinase assays using different cyclin – Cdk complexes. 

Similar amounts of kinase activities were used as assessed with 

Rb and histone H1 as substrates ( Fig. 1  B  ). All proteins identi-

fi ed in the screen, except one (RPL14), were phosphorylated by 

cyclin E – Cdk2, demonstrating that these are true positive in vitro 

substrates ( Table I  and Fig. S1, available at http://www.jcb

.org/cgi/content/full/jcb.200707126/DC1). As expected, many 

of the cyclin E – Cdk2 substrates were also phosphorylated by 

cyclin A – Cdk2 and, strikingly, by cyclin D3 – Cdk4 but not by 

cyclin B – Cdk1 or cyclin D1 – Cdk4 ( Table I  and Fig. S1). 

We observed cyclin D3 phosphorylation of the purifi ed cyclin D3 – 

Cdk4 complex ( Fig. 1,  B  and C ; and Fig. S1), although D-type 

cyclins have not been described to be autophosphorylated. 

However, because this phosphorylation was completely repressed 

by p16 INK4A , an inhibitor of D-type kinase complexes, it is most 

likely mediated by Cdk4 (Fig. S1  A ). In this paper, we chose 

to further investigate SIRT2, a member of the Sirtuin family of 

NAD + -dependent deacetylases. 

 Phosphorylation of SIRT2 by Cdks 
 The fi ndings from the screen were verifi ed by phosphorylating 

a GST-SIRT2 fusion protein by the different purifi ed kinase com-

plexes ( Fig. 1  and Fig. S2, available at http://www.jcb.org/cgi/

content/full/jcb.200707126/DC1). SIRT2 was a substrate for 

cyclin E – Cdk2 and, to a lesser extent, cyclin A – Cdk2 ( Fig. 1 C ). 

In addition SIRT2 was weakly phosphorylated by cyclin D3 –

 Cdk4 and cyclin B – Cdk1 but not by cyclin D1 – Cdk4 ( Fig. 1 C ). 

Inspection of the human SIRT2 protein sequence revealed a sin-

gle consensus sequence for Cdks, S 331 PKK, which is C terminal 

of the catalytic domain ( Fig. 1  D  ) and is conserved in mouse 

SIRT2. Similar phosphorylation sites at comparable positions 

relative to the catalytic domains are found in the SIRT family 

members SIRT1, 6, and 7 ( Fig. 1  D  ) and are phosphorylated by 

Cdk2 in vitro (not depicted). To address whether S331 is phos-

phorylated by Cdk2, GST-SIRT2 fusion proteins with S331 mu-

tated to Ala, Asp, or Glu were phosphorylated with recombinant 

cyclin E – Cdk2 or cyclin A – Cdk2. Mutation of S331 abolished 

Cdk2-dependent phosphorylation ( Fig. 1  E  ; and Fig. S2, A – C). 

The reactions were specifi c because roscovitine, a Cdk inhibi-

tor, abolished SIRT2 phosphorylation (Fig. S2,  A  and  C).  In ad-

dition, S331 phosphorylation by cyclin E – Cdk2 in vitro was 

confi rmed by mass spectrometry analysis (Fig. S2  D ). 

 SIRT2 is highly expressed in the nervous system (Fig. S3, 

available at http://www.jcb.org/cgi/content/full/jcb.200707126/

DC1), which is in agreement with previous reports ( Li et al., 

2007 ;  Southwood et al., 2007 ). Similarly, in the nervous system, 

Cdk5 is strongly expressed in postmitotic neuronal cells, unlike 

Cdk2, which is down-regulated when neurons exit the cell cycle 

and differentiate ( Freeman et al., 1994 ). Therefore, we tested 

whether a p35 – Cdk5 complex could phosphorylate SIRT2. 

in response to several oncoproteins including MYC and the adeno-

viral E1A protein, supporting a role of this kinase in tumori-

genesis ( Amati et al., 1998 ;  Luscher, 2001 ). Among the cyclin E – 

Cdk2 substrates are proteins controlling cell cycle progression, 

the centrosome cycle, replication, and several transcriptional 

regulators ( Malumbres and Barbacid, 2005 ). Cdk2 not only 

associates with cyclin E but also with cyclin A, and the two com-

plexes share several substrates. In addition, Cdk2 and 5 show 

similar substrate specifi cities ( Dhavan and Tsai, 2001 ). In this 

paper we identify 26 cyclin E – Cdk2 substrates, including SIRT2, 

a member of the Sirtuin family that consists of seven members, 

SIRT1 – 7, in mammals ( Haigis and Guarente, 2006 ;  Michan and 

Sinclair, 2007 ). Sirtuins are class III histone deacetylases (HDAC) 

that require NAD +  as a cofactor and deacetylate Lys residues. 

Sirtuins can be found in different compartments within the cell 

regulating a variety of processes, including many aspects of 

transcription, the lifespan of organisms, neuroprotection, tumor 

suppression, differentiation, and infl ammation ( Haigis and 

Guarente, 2006 ;  Michan and Sinclair, 2007 ). SIRT2 is the only 

Sirtuin family member that is preferentially localized in the cyto-

plasm but, in addition, has also been implicated in nuclear func-

tions ( Dryden et al., 2003 ;  North et al., 2003 ;  Vaquero et al., 

2006 ;  Wilson et al., 2006 ;  North and Verdin, 2007a ). 

 Reversible acetylation of proteins at the  � -amino group of 

Lys residues has been recognized as an important posttransla-

tional mechanism to control nuclear protein function, including 

histones and transcription factors ( Kouzarides, 2000 ). In contrast, 

relatively little is known about acetylation/deacetylation of pro-

teins outside the nucleus. Recent evidence, however, suggests 

that several cytoplasmic proteins are acetylated ( Kim et al., 2006 ). 

Most notably,  � -tubulin is acetylated at Lys-40 (K40), a modifi -

cation that has been suggested to enhance microtubule stability 

( North et al., 2003 ). Although the acetyl transferases that mod-

ify K40 are not known, two deacetylases that physically inter-

act, SIRT2 and HDAC6, have been implicated in removing the 

modifi cation ( Hubbert et al., 2002 ;  Dryden et al., 2003 ;  North 

et al., 2003 ;  Zhang et al., 2003 ). It has been suggested that 

SIRT2 affects progression through mitosis in response to stress 

and that SIRT2 is regulated in mitosis by phosphorylation ( Dryden 

et al., 2003 ;  Inoue et al., 2007 ;  North and Verdin, 2007b ). 

 In this paper, we have identifi ed in SIRT2 a single Cdk2 and 5 

phosphorylation site, Ser-331 (S331), C-terminal of the catalytic 

domain. Phosphorylation at S331 inhibits the enzymatic activity 

of SIRT2. The functional analysis of SIRT2 and phosphorylation 

site mutants revealed that this enzyme interferes with cell adhesion 

in tumor cells, cell migration in fi broblasts, and neurite outgrowth 

and growth cone motility in neurons. Importantly, these SIRT2-

mediated effects are antagonized by Cdk-dependent phosphory-

lation at S331. Collectively, our fi ndings defi ne a posttranslational 

mechanism that regulates SIRT2 function both in vitro and in cells. 

 Results 
 Identifi cation of novel cyclin – Cdk 
substrates 
 To identify novel cyclin E – Cdk2 substrates, high-density protein 

arrays on polyvinylidine difl uoride fi lters were phosphorylated 
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 Figure 1.    Identifi cation of SIRT2 as a Cdk substrate.  ( A ) High-density protein arrays (two fi lters with 37,830 clones preselected for high protein expression 
by virtue of N-terminal 6xHIS tags [ Bussow et al., 1998 ]) were incubated with recombinant human cyclin E – Cdk2 and  � -[ 32 P]ATP, washed, and exposed to 
x-ray fi lm. Potential substrates appear as double spots, as indicated by circles. A portion of one fi lter is displayed. ( B ) cyclin – Cdk complexes were incubated 
with or without their respective substrates (Cdk4 complexes with GST-pRb 773-928  and Cdk2 and 1 complexes with histone H1) and  � -[ 32 P]ATP. Proteins were 
resolved by 7 – 17% SDS-PAGE and visualized by autoradiography ( 32 P, top) or Coomassie blue staining (CB, bottom). Kinase complexes are abbrevi-
ated (e.g., D1 – K4 for cyclin D1 – Cdk4). ( C ) Bacterially expressed GST-SIRT2 full-length fusion protein was phosphorylated with the indicated kinases as 
described in B. (D) Schematic comparison of  Saccharomyces cerevisiae  Sir2 with human SIRT1, 2, 6, and 7. The catalytic domains and the potential Cdk 
phosphorylation sites are indicated. ( E ) Bacterially expressed GST-SIRT2 fusion proteins, as indicated, were phosphorylated with 25 fcatal cyclin E – Cdk2. 
GST and histone H1 served as controls. Protein analysis was performed as in B. ( F ) The experiment was performed as in  E  with 3 fcatal of recombinant 
p35 – Cdk5. For a control, 25  μ M roscovitine was added to inhibit Cdk5 activity.   
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 Table I.    In vitro phosphorylation of potential cyclin E – Cdk2 substrates by different cyclin – Cdk complexes  

Potential cyclin E – Cdk2 substrate Phosphorylation  
 sites and cyclin  

 binding motifs in the RZPD clone

Phosphorylation of the  
 RZPD clone by kinases  a  

Gene ORF of  
 RZPD clone

Name/biological process min:  
 S/TP

cons:  
 S/TPXK/R RXL

D1 – K4 D3 – K4 E – K2 A – K2 B – K1

NUMA1  b  245 aa  
    C-term

Nuclear mitotic apparatus protein 1/  
    spindle apparatus organization

7 1 0  �  ± + +  � 

LOC201191 231 aa  
    C-term

Hypothetical protein  
    LOC201191/unknown

6 1 2  �  ± + +  � 

PIP5K1C 200 aa  
    C-term

Phosphatidylinositol-4-phosphate 5 kinase,  
    type I  � /phosphatidylinositol signaling

7 2 1  ± + + +  ± 

CCNL2 136 aa  
    C-term

cyclin L2 / RNA processing 7 3 2  �  �  ± +  ± 

RASL11B 118 aa  
    C-term

RAS-like, family 11, member B/signaling? 2 1 0  � + + +  � 

SIRT2 full-length  c  Sirtuin (silent mating type information  
    regulation 2 homologue) 2  
    ( S. cerevisiae )/ NAD + -dependent  
    histone/protein deacetylase

3 1 1  �  � + +  ± 

FLJ13111 full-length Hypothetical protein FLJ13111/unknown 4 2 4  �  ± + +  ± 

SUPT5H  b  120 aa  
    C-term

Suppressor of Ty 5 homologue  
    ( S. cerevisiae )/transcription

1 1 1  �  �  ±  �  � 

STMN2  b  full-length Stathmin-like 2/microtubule destabilization  
    in neuronal growth

2 1 1  � + + +  � 

LOC146909 114 aa  
    C-term

Hypothetical protein  
    LOC146909/unknown

1 0 1  � + + +  � 

EEF1G 211 aa  
    C-term

Eukaryotic translation elongation  
    factor 1 � /translation

2 1 1  �  ± + +  ± 

TRIT1 99 aa  
    C-term

tRNA isopentenyltransferase 1/  
    RNA modifi cation

3 1 1  � + + +  ± 

LOC388799 89 aa  
    C-term

Hypothetical protein  
    LOC388799/unknown

2 1 0  �  ± + +  ± 

STUB1 full-length STIP1 homology and U-box – containing  
    protein 1/protein turnover

4 1 3  � + + +  ± 

SRRM2 98 aa  
    central

Serine/arginine repetitive matrix 2/ 
    RNA processing

3 0 0  �  � + + +

TALDO1 full-length Transaldolase 1/metabolism 3 1 6  � + + +  � 

SFRS1 243 aa  
    C-term

Splicing factor, arginine/serine-rich 1  
    (splicing factor 2, alternate splicing  
    factor)/RNA processing

4 1 1  � + + +  � 

SNAPAP full-length SNAP-associated protein/exocytosis of  
    synaptic vesicles

2 1 2 +  ± +

LOC339287 90 aa  
    central

Hypothetical protein  
    LOC339287/unknown

5 4 1 + + + + +

FLJ12949 248 aa   
     C-term

Hypothetical protein FLJ12949/unknown 4 1 3  � + +  �  � 

MAP2 376 aa  
    C-term

MAP2/microtubule assembly  
    in neurogenesis

16 3 1  � + + +  � 

RPL14 211 aa  
    C-term

Ribosomal protein L14/translation 1 1 1  �  ±  �  �  � 

FNBP3 245 aa  
    C-term

Formin binding protein 3/splicing? 2 1 1  �  ±  ±  ±  � 

PRC1  d  full-length Protein regulating cytokinesis 1/  
    cytokinesis

5 2 2  � + + +  ± 

FLJ13305 162 aa  
    central

Hypothetical protein FLJ13305/unknown 4 0 3  � + +  ±  � 

ING5 full-length  c  Inhibitor of growth family, member 5/  
    p53 pathway, replication

2 1 3  �  � + +  � 

 a The kinases used are abbreviated (e.g., D1 – K4 for cyclin D1 – Cdk4). The substrates are phosphorylated strongly (+), weakly ( ± ), or not at all ( � ) by the respective kinase.

 b Previously reported Cdk substrate ( Stachora et al., 1997 ;  Gavet et al., 1998 ;  Sun and Schatten, 2006 ).

 c For ING5 and SIRT2, GST-tagged full-length proteins were used in the kinase assays.

 d Previously reported cyclin E – Cdk2 substrate ( Jiang et al., 1998 ).
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was detectable in HDFs) did not change, phosphorylation in-

creased ( Fig. 2 F ). This observation is in agreement with cyclin E – 

Cdk2 functioning as a SIRT2 kinase ( Fig. 1 E ), the sensitivity 

of SIRT2 phosphorylation to the cyclin E – Cdk2 inhibitor p27 

( Fig. 2 A ), the cell cycle analysis ( Fig. 2 C ), and the sensitivity 

of SIRT2 phosphorylation to roscovitine ( Fig. 2 E ). 

 To further strengthen the functional interaction of SIRT2 

with Cdk complexes, we analyzed whether these proteins inter-

acted physically. Coimmunoprecipitation experiments revealed 

that SIRT2 and cyclin E – Cdk2 interacted when coexpressed 

in HEK293 cells ( Fig. 2 G ) and cyclin E bound to SIRT2 in 

in vitro pulldown experiments (not depicted). Furthermore, TAP-

SIRT2, TAP-SIRT2-S331A, and TAP-SIRT2-H150Y, but not 

TAP-SIRT2-S331D, interacted with endogenous cyclin E in 

HEK293 cells stably expressing the SIRT2 proteins (Fig. S2 G). 

Similarly, p35 and Cdk5 were coimmunoprecipitated with 

SIRT2 upon overexpression in HEK293 cells ( Fig. 2 H ). Inter-

action of endogenous p35 – Cdk5 and SIRT2 was demonstrated 

by coimmunoprecipitation from P14 mouse brain extracts (hip-

pocampus and cortex;  Fig. 2, I and J ). Furthermore, in addition 

to previous reports showing SIRT2 expression mainly in oligo-

dendroglial cells ( Li et al., 2007 ;  Southwood et al., 2007 ), pri-

mary hippocampal neurons expressed SIRT2 throughout the 

cell body in the neurites and growth cones (Fig. S5, available 

at http://www.jcb.org/cgi/content/full/jcb.200707126/DC1). 

Moreover, SIRT2 colocalized with p35, the regulatory subunit 

of Cdk5 (Fig. S5, A – D), and SIRT2 expression overlapped with 

acetylated  � -tubulin in neuronal growth cones (Fig. S5, E – G). 

Thus p35, which has recently been shown to directly bind to 

microtubules ( Hou et al., 2007 ), colocalizes with SIRT2 and 

 � -tubulin. In summary, these fi ndings support our phosphorylation 

analysis and the notion that Cdk complexes, SIRT2, and  � -tubulin 

interact functionally. 

 Phosphorylation at S331 inhibits the 
catalytic activity of SIRT2 
 Next we assessed the functional relevance of S331 phosphory-

lation. No difference in the subcellular distribution of SIRT2 

and SIRT2-S331 mutants or the stability of these proteins could 

be observed (unpublished data). Importantly, however, S331 

phosphorylation affected the catalytic activity of SIRT2. GST-

SIRT2 showed robust NAD + -dependent deacetylase activity to-

ward core histones, which was blocked by nicotinamide ( Fig. 3  A  ).   

GST-SIRT2-S331A had comparable deacetylase activity when 

adjusted to protein concentrations ( Fig. 3,  A  and  B  ). In con-

trast, GST-SIRT2-S331D, a mutation that may mimic phos-

phorylation at S331, showed reduced activity ( Fig. 3,  A  and  B  ). 

All mutants with the active center His-150 (H150) changed to 

Tyr were catalytically inactive as reported previously ( Frye, 

1999 ). These fi ndings suggested that phosphorylation at S331 

inhibits the enzymatic activity of SIRT2. Indeed, when GST-

SIRT2 was incubated in the presence of cyclin E – Cdk2 or cy-

clin A – Cdk2, the catalytic activity of SIRT2 was repressed ( Fig. 3, 

 C  and  D  ). These kinase-dependent effects required S331 be-

cause GST-SIRT2-S331A was not inhibited. Moreover, rosco-

vitine reversed the repressive effect ( Fig. 3  C  ). It is noteworthy 

that although p35 – Cdk5 phosphorylated S331 ( Fig. 1  F  ), the 

Similar to cyclin E – Cdk2 and cyclin A – Cdk2 complexes, p35 –

 Cdk5 was capable of phosphorylating SIRT2 at S331 ( Fig. 1  F  ), 

suggesting that this site can be phosphorylated both in cycling 

and differentiated cells. 

 To corroborate the in vitro kinase assays, we analyzed the 

phosphorylation of SIRT2 in cells ( Fig. 2 ).   HA-tagged SIRT2 or 

SIRT2-S331A was expressed in HeLa cells and labeled with 

[ 32 P]orthophosphate. Although SIRT2 was phosphorylated, the 

S331A mutant was only poorly labeled ( Fig. 2 A ). Moreover, 

coexpression of the Cdk2 inhibitor p27 KIP1  abolished SIRT2 

phosphorylation ( Fig. 2  A  ). We also generated HEK293 cells 

stably expressing a tagged version of SIRT2 (N – tandem affi nity 

purifi cation [TAP] – SIRT2; Fig. S4, available at http://www.jcb

.org/cgi/content/full/jcb.200707126/DC1). The analysis of TAP-

SIRT2 isolated from exponentially growing cells by mass spec-

trometry confi rmed SIRT2 phosphorylation at S331 ( Fig. 2  B  ). 

In support of this, a peptide that contains S331 was identifi ed as 

phosphopeptide in a global screen ( Olsen et al., 2006 ). In addi-

tion, SIRT2 phosphorylation was high in cells blocked in S-phase 

and in prometaphase by hydroxyurea and nocodazole, respec-

tively, but low in cells blocked in metaphase by colcemide when 

analyzed by [ 32 P]orthophosphate labeling ( Fig. 2  C  ) and mass 

spectrometry (not depicted). This correlates with active cyclin E – 

Cdk2 and cyclin A – Cdk2 kinase complexes, implicating these 

kinases in SIRT2 phosphorylation. In summary, these fi ndings 

defi ne S331 as the major cell cycle – regulated Cdk-dependent 

phosphorylation site of SIRT2. 

 To expand on the observations described in the previous 

paragraph, we addressed whether endogenous SIRT2 is phos-

phorylated at Ser-331. We generated mAbs against a human 

SIRT2 Ser-331 phosphorylated peptide. The antibodies were 

screened on HA-SIRT2 and HA-SIRT2-S331A. Although mAb 

7G5 recognized both proteins, mAb 6B5 P  detected only HA-

SIRT2 (Fig. S2 E). In support of this, the epitope was lost when 

overexpressed HA-SIRT2 was phosphatase treated, indicating 

that mAb 6B5 P  is phosphospecifi c (Fig. S2 F). Importantly 

the 6B5 P  epitope was generated when bacterially expressed 

GST-SIRT2 was phosphorylated by cyclin E – Cdk2 ( Fig. 2 D ). 

We then addressed whether endogenous SIRT2 was phosphory-

lated at Ser-331. Because in multiple cell lines analyzed SIRT2 

levels were low and did not allow direct analysis by Western 

blotting, we examined Ser-331 phosphorylation upon immuno-

precipitation of endogenous SIRT2. HEK293 cells were arrested 

in S-phase using hydroxyurea to enhance cyclin E – Cdk2 – 

dependent phosphorylation and treated the cells for the last 2 h with 

roscovitine, a Cdk2 inhibitor. In HEK293 cells, the two described 

SIRT2 isoforms, a consequence of alternative splicing ( North 

and Verdin, 2007b ), were detected with the phosphospecifi c 

mAb 6B5 P  ( Fig. 2 E ). Roscovitine treatment reduced SIRT2 

phosphorylation by at least 60% and the 6B5 P  epitope was sen-

sitive to phosphatase treatment ( Fig. 2 E ). Reduced phosphory-

lation correlated with the appearance of SIRT2 protein species 

with slightly increased mobility ( Fig. 2 E , double bands). To ad-

dress cell cycle regulation, serum-starved primary human diploid 

fi broblasts (HDFs) were stimulated with serum and entered 

S-phase by 18 h as monitored by BrdU incorporation (unpublished 

data). Although overall levels of SIRT2 (only the larger isoform 
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 Figure 2.    SIRT2 is phosphorylated at serine 331 in cells and interacts with Cdk complexes.  ( A ) HEK293 cells were transiently transfected with plasmids 
encoding 10  μ g HA-SIRT2, 10  μ g HA-SIRT2-S331A, and 5  μ g p27, as indicated, and metabolically labeled with [ 32 P]orthophosphate. SIRT2 was then 
immunoprecipitated via its HA-tag. The top shows an autoradiography, the bottom shows Western blots for HA-SIRT2 (mAb 3F10) and p27 KIP1  (C-19). 
( B ) N-TAP-SIRT2 was purifi ed from HEK293 cells. The fragmentation spectrum of parent ion m/z 1144.5163, 2 + (mass accuracy, 2.8 ppm) is shown. 
Mascot searches against the Uniprot database identifi ed that this peptide unambiguously phosphorylated at position Ser-331 with a Mascot ion score of 
68 (Expectance value, 1.9*E-4). The phosphopeptide was sequenced eight times from two unique overlapping peptide sequences because of the pres-
ence of miscleaved tryptic sites. The y-ion fragmentation ladder starting from the C terminus is shown in red. The phosphorylation site was mapped by 
the detection of the y +  3  fragment ion in the linear ion trap at m/z 411.3, which corresponds to the sequence pSPK. ( C ) HEK293 cells were transiently 
transfected with a plasmid encoding 10  μ g HA-SIRT2 and treated with 200  μ M hydroxyurea, 400 ng/ml nocodazole, or 200 ng/ml colcemide for 20 h 
and then metabolically labeled with [ 32 P]orthophosphate. The SIRT2 analysis was performed as described in  A . White lines indicate that intervening lanes 
have been spliced out. (D) Bacterially expressed and purifi ed GST-SIRT2 or GST was phosphorylated by recombinant cyclin E – Cdk2 in the presence or 
absence of ATP as indicated. Half of the reactions were analyzed by Coomassie blue (CB) staining, the other half were subjected to Western blot analysis 
using the mAb 6B5 P  that is specifi c for Ser-331 phosphorylated SIRT2. (E) HEK293 cells were treated as indicated with hydroxyurea (HU) for 16 h and 
with roscovitine (Rosc) for the last 2 h. SIRT2 was immunoprecipitated using the polyclonal serum 748 from RIPA lysates of 6  ×  10 6  cells. The immuno-
precipitated proteins were phosphatase or mock treated and the proteins were analyzed by Western blotting with the indicated mAbs. Equal aliquots of the 
lysates were taken before immunoprecipitation and  � -tubulin expression was determined. (F) Primary HDFs were serum starved and then treated with 10% 
serum for the indicated times. Parallel samples were analyzed for BrdU incorporation, indicating that the cells started to enter S-phase 18 h after serum 
addition. SIRT2 was immunoprecipitated from lysates of roughly 4  ×  10 6  cells per sample and detected with the indicated mAbs. (G) HEK293 cells were 
cotransfected with Flag-SIRT2, cyclin E, and Cdk2 construct. Their expression was visualized in total cell lysates by Western blotting (right). Flag-SIRT2 was 
immunoprecipitated and the association of coexpressed cyclin E and Cdk2 analyzed by Western blotting (left). (H) The experimental setup and analysis 
was as in D. Constructs expressing Flag-SIRT2, HA-Cdk5, and myc-p35 were used. (I) Low-stringency lysates of P14 mouse brain were generated and Cdk5 
was immunoprecipitated. Coimmunoprecipitated SIRT2 was visualized by Western blotting. (J) The experiment was performed as in F. SIRT2 was immuno-
precipitated with two different polyclonal antisera (T749 and T809). For a control, p35 and Cdk5 were immunoprecipitated. Cdk5 coimmunoprecipitated 
with SIRT2 was monitored by Western blotting.   
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NAD + -dependent manner ( Fig. 3 G ). Finally, we coexpressed 

SIRT2 with cyclin E – Cdk2 or p35 – Cdk5 and measured HDAC 

activity of immunoprecipitated SIRT2. Both kinases inhibited, 

whereas p27 KIP1  slightly stimulated, the catalytic activity of SIRT2 

( Fig. 3  H  ). Collectively, our data demonstrate that phosphory-

lation at S331 represses the enzymatic activity of SIRT2. 

 SIRT2 regulates cell adhesion and cell 
migration 
 It had been suggested that SIRT2 affects passage through mito-

sis, possibly as a consequence of altered  � -tubulin acetylation 

( Dryden et al., 2003 ;  North et al., 2003 ). Therefore, we tested 

whether SIRT2 and mutants altered the cell cycle in HeLa and 

HEK293 cells. No systematic effects on cell cycle distribution 

and proliferation could be measured (Fig. S4). However, we 

poor catalytic activity and the instability of this commercially 

available complex did not allow us to directly test its in vitro ef-

fects on SIRT2 catalytic activity. However, because p35 – Cdk5 

also phosphorylates S331, it is highly likely that the deacetylase 

activity of SIRT2 would be inhibited. 

 Finally, we addressed whether SIRT2 expressed in mam-

malian cells was catalytically active. HA-SIRT2 and mutants were 

expressed in HEK293 cells, immunoprecipitated, and assayed 

for HDAC activity ( Fig. 3,  E  and  F  ). As for the bacterially ex-

pressed proteins, SIRT2 had comparable activities to SIRT2-

S331A, whereas the phospho-mimicking mutants were less 

 active when compared with input. In addition, nicotinamide in-

hibited the catalytic activity and SIRT2-H150Y was inactive 

( Fig. 3,  E  and  F  ). Furthermore, SIRT2 and SIRT2-S331A, but 

not SIRT2-H150Y, deacetylated  � -tubulin in brain extracts in a 

 Figure 3.    Phosphorylation at serine 331 inhibits the catalytic activity of SIRT2.  ( A ) The indicated bacterially expressed and purifi ed GST-SIRT2 fusion pro-
teins were used in HDAC assays. The release of radioactivity from  3 H-acetylated core histones was determined. The activity of GST-SIRT2 was set as 100%. 
Nicotinamide was used at 10 mM. Mean values and SD of three experiments are shown. ( B ) Coomassie blue staining of GST-SIRT2 fusion proteins used in  A . 
( C  and  D ) HDAC assays were performed as in  A . Before this, the GST-SIRT2 proteins were phosphorylated with recombinant cyclin A – Cdk2 and cyclin E – 
Cdk2 complexes. Nicotinamide and roscovitine were used at 10 mM and 25  μ M, respectively. Mean values and SD of three experiments are shown. 
( E ) HEK293 cells were transiently transfected with 10  μ g of plasmids encoding the indicated SIRT2 proteins. The HA-tagged proteins were immuno-
precipitated and the associated HDAC activity was determined as described in  A . The assays were performed in the presence of 20  μ M trichostatin A to 
inhibit class I or II HDACs that were potentially associated with the immunoprecipitates. Nicotinamide was used at 10 mM. A typical experiment is shown. 
( F ) Aliquots of the immunoprecipitates (10%) used in  E  were analyzed by Western blotting using mAb 3F10, which is specifi c for the HA-tag. ( G ) SIRT2 and 
SIRT2 mutants were expressed in HEK293 cells, immunoprecipitated, and assayed for  � -tubulin deacetylase activity using brain extracts as a source for 
substrate. Acetylation of  � -tubulin was determined by Western blotting. (H) The experiments were performed as described in  E . The relative activities were 
standardized to SIRT2 protein expression. Mean values and SD of an experiment performed in triplicate are shown.   



JCB • VOLUME 180 • NUMBER 5 • 2008 922

a lesser extent, by SIRT2 ( Fig. 5  D  ; and not depicted). In agree-

ment with SIRT2 being a novel Cdk5 effector, SIRT2-mediated, 

but not SIRT2-S331A-mediated, neurite outgrowth inhibition 

was rescued at least partially by p35 – Cdk5 ( Fig. 5 E ). 

 The overexpression fi ndings were complemented by KD 

of SIRT2, which resulted in a signifi cant increase of neurite 

length ( Fig. 5, F and G ). Notably, the number of neurons with 

very long neurites ( > 150  μ m) was increased almost threefold 

in SIRT2 KD cells ( Fig. 5  G  ). Finally, we also observed an in-

crease in total neurite number (on average 25%) per neuron upon 

SIRT2 KD (unpublished data), further stressing SIRT2 ’ s inhibi-

tory role in neurite outgrowth. To address potential off-target 

effects, we used a second mouse-specifi c  SIRT2  siRNA that 

also increased neurite length (unpublished data), whereas a 

human-specifi c  SIRT2  siRNA was indistinguishable from siLUC. 

In summary, these fi ndings demonstrate a decisive role of SIRT2 

in neurite outgrowth of primary neurons, which is in agreement 

with its role in oligodendroglial arborization ( Li et al., 2007 ). 

 SIRT2 impairs cytoskeletal growth cone 
dynamics stimulated by repulsive axon 
guidance cues 
 A well-established paradigm to study axon guidance in tissue 

culture is the so-called growth cone collapse assay. Members of 

the ephrin-A family trigger growth cone repulsion through 

stimulating EphA receptor tyrosine kinases, thereby preventing 

growth cones from turning into aberrant target areas of the brain 

( Knoll and Drescher, 2002 ;  Pasquale, 2005 ). Cdk5 is a key me-

diator of EphA receptor-mediated repulsion ( Cheng et al., 2003 ; 

 Fu et al., 2007 ). Consequently, we explored the role of SIRT2 in 

growth cone collapse. Hippocampal neurons revealed typical 

well-elaborated growth cones with fi nger-like fi lopodial and 

veil-like lamellipodial structures in response to Fc control pro-

teins ( Fig.  6 A  ).   In contrast, ephrin-A5-Fc induced a complete 

breakdown of the growth cone F-actin cytoskeleton within 

30 min, leaving the neurites with a retracted neurite shaft ( Fig.  6, 

A  and B ;  Knoll et al., 2006 ). Importantly the growth cones of neu-

rons expressing SIRT2 or SIRT2-S331A, but not SIRT2-S331

A-H150Y, SIRT2-S331E, or SIRT2-S331D, were resistant to 

ephrin-A5-Fc – induced collapse ( Fig. 6, A – C ; and not depicted). 

Thus, ephrin-A5-Fc collapsed 60 – 70% of the growth cones, an 

effect that was reduced to 30 – 40% by SIRT2 and SIRT2-S331A 

( Fig. 6 B ). In summary, the reduction in growth cone collapse 

by SIRT2 and SIRT2-S331A was  � 50 and 75%, respectively 

( Fig. 6 C ). Similar to the reduced  � -tubulin acetylation in the 

entire neuron ( Fig. 5 D ), we determined a reduction of acety-

lated  � -tubulin as compared with the control by 40 and 25% in 

response to SIRT2-S331A and SIRT2, respectively, in growth 

cones (not depicted). 

 F-actin staining was reduced 2.5-fold upon ephrin-A5-Fc 

treatment ( Fig. 6 D ). This could not be further enhanced by co-

expressing p35 – Cdk5, although the expression of this kinase 

complex slightly reduced F-actin staining in the absence of 

ephrin-A5-Fc. Importantly, and in accordance with the morpho-

logical assessment of growth cone collapse ( Fig. 6, A – C ), the 

expression of SIRT2 and SIRT2-S331A blocked the ephrin-A5-Fc – 

induced growth cone collapse as revealed by F-actin staining. 

 noticed cell detachment upon induction of SIRT2-S331A in 

HEK293 cells and analyzed this further. SIRT2 and SIRT2-

S331A resulted in a 2.5- and 4-fold increase, respectively, of 

detached cells ( Fig. 4,  A  and  B  ).   Importantly, the catalytically 

inactive mutant SIRT2-H150Y and the phospho-mimicking 

mutant SIRT2-S331D with reduced catalytic activity had no ef-

fect ( Fig. 4  B  ). SIRT2-mediated inhibition of cell adhesion 

 coincided with a reduced  � -tubulin acetylation ( Fig. 4  C   ) . Con-

versely, knockdown (KD) of SIRT2 using a siRNA that targets 

both human and mouse  SIRT2  increased substratum adhesion of 

transfected cells and resulted in an increase of  � -tubulin acety-

lation ( Fig. 4, D and E ). Cyclin E – Cdk2 or p35 – Cdk5 effi ciently 

inhibited SIRT2-induced cell detachment ( Fig. 4  D  ) but had no 

effect on SIRT2-S331A ( Fig. 4  F  ). To test whether SIRT2 also 

affected cell adhesion of primary cells, we expressed SIRT2 and 

mutants in mouse embryonic fi broblasts (MEFs). Similar to the 

observation in HEK293 cells, SIRT2 and SIRT2-S331A inhib-

ited attachment of MEF cells to laminin-coated coverslips in com-

parison with the catalytically inactive SIRT2-H150Y ( Fig. 4 G ). 

In addition to cell adhesion, SIRT2 function was explored in 

migration of MEF cells ( Fig. 4 H ). A mechanical scratch was 

applied to MEF monolayers transiently expressing SIRT2 or 

SIRT2 mutants and reinvasion of the cleared area by cells was 

monitored. In line with the results obtained in cell adhesion 

( Fig. 4, A – F ), SIRT2 slightly, and SIRT2-S331A signifi cantly, 

blocked migration of MEFs ( Fig. 4 H ). These fi ndings suggest 

that altering the SIRT2 activity in cells affects the interaction of 

cells with the substratum, possibly by altering the stability of 

microtubules because of differential acetylation. 

 SIRT2 overexpression inhibits neurite 
outgrowth 
 The intimate link between p35 – Cdk5 and SIRT2, as shown by 

the ability of Cdk5 to phosphorylate SIRT2 ( Fig. 1 F ), which is 

shown by coimmunoprecipitation studies ( Fig. 2, I and J ) and 

deacetylation assays ( Fig. 3 H ), suggests that SIRT2 functions 

as a novel downstream effector of Cdk5. Microtubules possess 

pivotal functions in regulating multiple aspects of neuronal mo-

tility, including migration, neurite outgrowth, and growth cone 

turning ( Dent and Gertler, 2003 ;  Gordon-Weeks, 2004 ). Cdk5 

has been implicated in all these processes ( Dhavan and Tsai, 

2001 ;  Nikolic, 2004 ). Therefore, we fi rst assessed the role of 

SIRT2 in neurite formation and protrusion ( Fig. 5 ).   Primary 

mouse hippocampal neurons were coelectroporated with SIRT2 

and GFP-expressing plasmids and cultured for 2 d on laminin to 

promote neurite outgrowth. The cells were then stained for acet-

ylated  � -tubulin and the neurite length of GFP-positive cells 

was determined ( Fig. 5 ). SIRT2 and, more profoundly, SIRT2-

S331A reduced neurite length, whereas SIRT2-H150Y, SIRT2-

H150Y-S331A, SIRT2-S331E, and SIRT2-S331D had no effect 

( Fig. 5,  A  and B ; and not depicted). Of note, quantifi cation of 

the neurite length ( Fig. 5  B  ) underestimated the consequence of 

SIRT2-S331A expression because in more than half of the cells, 

neurite formation was completely abolished, resulting in a 

rounded-up phenotype ( Fig. 5,  A  and  C  ). This was not observed 

for SIRT2, which can be phosphorylated and thereby inhibited. 

Acetylation of  � -tubulin was reduced by SIRT2-S331A and, to 
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ephrin-A5-Fc a strong effect on growth cones was observed 

( Fig. 6 E ). Growth cones of siSIRT2-treated neurons protruded 

signifi cantly less fi lopodia in comparison to siLUC control –

 treated cells. Thus, in cells in which SIRT2 was knocked down, 

a collapsed morphology was observed already in the absence of 

ephrin-A5-Fc. In support of this, the KD of SIRT2 also resulted 

Importantly, the effect of SIRT2, but not of SIRT2-S331A, was 

reverted by p35 – Cdk5 ( Fig. 6 D ). Because SIRT2 and SIRT2-

S331A stabilized growth cones upon ephrin-A5 treatment, we 

investigated the effect of SIRT2 KD on growth cones, expecting 

that reduced SIRT2 expression would sensitize these structures 

to ephrin-A5-Fc treatment. However, already in the absence of 

 Figure 4.    SIRT2 affects cell attachment and mobility.  ( A ) HEK293 cells were transiently transfected with plasmids encoding 0.5  μ g EGFP –  � -tubulin, 20  μ g 
HA-SIRT2, or 20  μ g HA-SIRT2-S331A and 20  μ g of a siRNA-expressing plasmid (siSIRT2). The cells from equal aliquots of the culture supernatants were 
analyzed by phase contrast and fl uorescence microscopy. ( B ) The percentage of transfected cells (EGFP positive) of the adherent and the detached cell 
population was determined as in A. Displayed is the percentage of transfected cells that were detached. Mean values and SD of three experiments are 
shown. ( C ) HEK293 cells were transfected with plasmids expressing the indicated SIRT2 proteins and a plasmid coding for CD4. Transfected cells were 
selected using magnetic beads coated with CD4-specifi c antibodies. Equal amounts of cell lysates were analyzed by Western blotting for  � -tubulin acety-
lation. ( D ) HEK293 cells were transiently transfected as in  A,  but with the following amounts of plasmids: 20  μ g siSIRT2, 20  μ g siLUC, 10  μ g HA-SIRT2, 
5  μ g Cdk5, 0.5  μ g cyclin E, 0.5  μ g Cdk2, and 0.5  μ g EGFP –  � -tubulin. The analysis was performed as described in  B . Mean values of two experiments 
are shown. (E) HEK293 cells were transiently transfected with plasmids expressing siSIRT2, siLUC, and CD4.  � -Tubulin acetylation was analyzed in lysates 
of CD4-positive cells. The levels of SIRT2 were determined after immunoprecipitation (polyclonal serum 749) and Western blot analysis (mAb 7G5). ( F ) The 
experiment was performed as described in  D . Mean values of two experiments are shown. (G) MEFs were transfected with plasmids expressing the indi-
cated SIRT2-GFP fusion proteins. Trypsinized cells were replated on laminin-coated coverslips for 30 min. Nonadherent and adherent cells were counted. 
Mean values and SD of three independent experiments are displayed. ( H ) MEFs were transfected with the indicated expression plasmids. Confl uent cell 
layers were scratched and the ratio of migrating versus nonmigrating transfected cells was determined. Mean values and SD of three to fi ve experiments 
are shown. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001.   
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Cdks phosphorylate Ser-331 within a Cdk consensus sequence 

of SIRT2 that is conserved in several Sirtuin family mem-

bers ( Figs. 1, 2 , and S2). Mechanistically, phosphorylation at 

this site represses the enzymatic activity of SIRT2 ( Fig. 3 ), 

re presenting the fi rst account of a posttranslational modifi cation 

linked to SIRT2 enzymatic activity. Recently, the comparable 

site in an alternatively spliced version of SIRT2 was identifi ed 

as cyclin B – Cdk1 substrate but no function was assigned to this 

modifi cation ( North and Verdin, 2007b ). This may be because 

of the relative low activity of cyclin B – Cdk1 toward SIRT2 in 

comparision to the Cdk2 complexes as observed both in vitro 

and in cells ( Figs. 1 and 2 ). 

 To date, two SIRT2 substrates,  � -tubulin and histone H4, 

have been described ( Dryden et al., 2003 ;  North et al., 2003 ; 

in an  � 25% reduction in F-actin content in growth cones in the 

absence of ephrin-A5 ( n  = 100 growth cones each; unpublished 

data), which is consistent with morphological alterations ob-

served in these growth cones ( Fig. 6 E ). In summary, these fi nd-

ings suggest strongly that the EphA-stimulated growth cone 

collapse is mediated at least in part by the phosphorylation and 

thereby repression of the deacetylase activity of SIRT2. 

 Discussion 
 Sirtuins have received considerable attention because of their role 

in aging, neuroprotection, and gene transcription ( Haigis and 

Guarente, 2006 ;  Michan and Sinclair, 2007 ). We identifi ed SIRT2 

in a phosphorylation screen with recombinant cyclin E – Cdk2. 

 Figure 5.    SIRT2 modulates neurite outgrowth 
of hippocampal neurons.  ( A ) Hippocampal 
neurons were coelectroporated with constructs 
expressing the indicated SIRT2 proteins and 
a GFP vector and cultivated for 2 d in vitro, 
followed by staining for acetylated  � -tubulin. 
Arrowheads identify some of the GFP-express-
ing cells. Bars, 50  μ m. ( B ) Quantifi cation of ex-
periments exemplifi ed in  A . The neurite length 
was determined in response to the expressed 
proteins indicated. The neurite length of neu-
rons electroporated with the parental vector 
was set to 100%. Only neurons with measur-
able neurites were taken into account. Relative 
neurite length is expressed in percentage of 
control (set to 100%). ( C ) Neurons without any 
detectable neurite growth were determined 
in response to the indicated SIRT2 proteins. 
( D ) The level of acetyl- � -tubulin in SIRT2-S331A –
 expressing and control electroporated neurons 
was compared. A total of 60 neurons (20 in 
each of three independent experiments) were 
captured and acetylated  � -tubulin levels mea-
sured using AxioVision software. The values 
from control cells were set to 100%. ( E ) Neu-
rite length was measured, as in A, in response 
to coexpressed p35 – Cdk5. (F) Neurons were 
coelectroporated with vectors expressing GFP 
and the indicated siRNAs. The neurite length of 
neurons electroporated with siLUC was set to 
100%. Relative neurite length is expressed in per-
centage of control (set to 100%). ( G ) The neurites 
were classifi ed into four length groups, from 
very short (0 – 50  μ m) to very long ( > 150  μ m). 
The percentage of neurons within each group is 
displayed. Error bars represent SD. **, P  <  0.01; 
***, P  <  0.001.   
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lation is associated with stable microtubules ( Dent and Gertler, 

2003 ;  Westermann and Weber, 2003 ). We used multiple assays 

to investigate a role for SIRT2 in cell motility, including adhe-

sion, migration, neurite outgrowth, and growth cone collapse 

( Figs. 4 – 6 ). All the aforementioned processes share signaling 

through focal contacts leading to attachment/detachment of 

cells from their substratum. Because microtubules and focal ad-

hesions show extensive crosstalk ( Ezratty et al., 2005 ), it is pos-

sible that  � -tubulin deacetylation also affects the activities of 

focal adhesions. An increase in microtubule dynamics because 

of a reduction in  � -tubulin acetylation might modulate focal 

adhesion turnover and thereby control cell motility. In neu-

rons, an important cross talk between dynamic microtubules 

and actin fi laments takes place at the central/peripheral growth 

cone interface to regulate target-directed advancement of the 

growth cone ( Dent and Gertler, 2003 ). Microtubules have been 

shown to be crucially involved in both neurite outgrowth and 

chemotactic sensing of guidance cues in the surrounding of 

navigating growth cones ( Gordon-Weeks, 2004 ). In neurons, 

acetylated microtubules are polarized toward the starting point 

 Vaquero et al., 2006 ). SIRT2 deacetylates histone H4 at Lys-16 

during G 2 /M, during which a subfraction of SIRT2 associates 

with chromatin. Deacetylation of H4K16 was suggested to be 

relevant for effi cient chromatin condensation ( Vaquero et al., 

2006 ). The lack of SIRT2 results in a decrease in S-phase and 

increase in G 1 -phase in MEFs without apparent effect on mitosis. 

In contrast, in human tumor cells overexpression of SIRT2 de-

layed exit from mitosis, probably because of altered  � -tubulin 

acetylation ( Dryden et al., 2003 ). Recently, SIRT2 was shown 

to inhibit mitotic slippage in cells treated with mitotic spindle 

drugs ( Inoue et al., 2007 ;  North and Verdin, 2007b ), suggesting 

a role in genetic stability. In agreement with this, SIRT2 is down-

regulated in certain tumors ( Hiratsuka et al., 2003 ;  Matsushita 

et al., 2005 ;  Voelter-Mahlknecht et al., 2005 ;  Inoue et al., 2007 ). 

Our own analysis did not reveal any reproducible effects on 

mitosis in response to SIRT2, SIRT2 mutants, or KD of SIRT2 

in tumor cell lines in the absence of stress (Fig. S4). 

 We provide evidence that SIRT2 impairs cell motility, at 

least in part by infl uencing microtubule dynamics, which is a 

function regulated by Cdk phosphorylation.  � -Tubulin acety-

 Figure 6.    SIRT2 overexpression impairs 
ephrin-A – mediated growth cone collapse.  
( A)  Hippocampal neurons were coelectroporated 
with constructs expressing the indicated SIRT2 
proteins and a GFP vector. The cells were culti-
vated on laminin for 2 d and then treated with 
1  μ g/ml ephrin-A5-Fc or Fc for 30 min and 
subsequently stained for F-actin. (B) The per-
centage of collapsed growth cones was quanti-
fi ed by morphological criteria. ( C ) Summary of 
the overall change in the growth cone collapse 
rate. The percentage of growth cone collapse 
in response to ephrin-A5-Fc was subtracted 
from the response to Fc alone. (D) Neurons 
were coelectroporated with constructs express-
ing the indicated proteins. The cells were then 
stained for F-actin and the fl uorescence intensity 
of individual growth cones was determined. 
Untreated growth cones contain high F-actin 
levels, which are decreased upon ephrin-A5 
treatment. The mean values and SD of 50 or 
more individual growth cones/conditions are 
displayed. (E) Neurons were coelectroporated 
with constructs expressing siSIRT2 or siLUC. 
Growth cones were stained for  � -tubulin (left, 
red) and F-actin (left, green). Quantifi cation of 
the mean number of fi lopodia/growth cones 
after siSIRT2 or siLUC treatment is shown on 
the right. (F) Model of SIRT2 function and regu-
lation by Cdk complexes. For details, see Dis-
cussion. Error bars represent SD. **, P  <  0.01; 
***, P  <  0.001.   
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different aspects of tumor cell biology, including elevated cell 

migration and cell cycle progression. 

 Materials and methods 
 Cells, transfections, and assays 
 HEK293, MEF, and HeLa cells were cultured in DME supplemented with 
penicillin/streptomycin and 10% FCS. Transient transfection assays were 
performed as described previously ( Luscher-Firzlaff et al., 2006 ). HEK293 
Flp-In T-REx 293 cells (Invitrogen) were stably transfected with pcDNA5/
FRT/TO/N-TAP-SIRT2 or -SIRT2-S331A by coexpressing the Flp recombinase. 
Cell lysates of HDFs were obtained from J. Baron and U. Linzen (Rheinisch-
Westf ä lische Technische Hochschule Aachen University, Aachen, Ger-
many). Preparation and electroporation of primary hippocampal cultures 
were performed as described previously ( Knoll et al., 2006 ). In brief, 
hippocampi of P1-P3 mice were incubated in trypsin-EDTA at 37 ° C for 
10 min, followed by washing in HBSS and resuspending in prewarmed 
DME/10% horse serum (HS). The tissue was triturated using fl ame-polished 
Pasteur pipettes and spun down for 5 min at 600 rpm and the pellet was 
reconstituted in DME/HS. After counting, the cells were pelleted and then 
resuspended in mouse neuron Nucleofector solution (Amaxa) as recom-
mended by the manufacturer. A total of 3  μ g DNA (2.25  μ g of the desired 
construct and 0.75  μ g of permuted EGFP) was used for electroporation per 
sample. Cultures were plated in neurobasal medium supplemented with 
B27 supplement (Invitrogen) for 2 d in vitro. The signifi cance of experimen-
tal results was determined by  t  test (two sided), with one asterisk indicating 
P  <  0.05, two asterisks P  <  0.01, and three asterisks P  <  0.001. 

 To determine the detached cells, transiently transfected HEK293 
cells were identifi ed by analyzing EGFP-positive cells. 2 d after transfec-
tion, the number of transfected detached and transfected adherent cells 
was counted, and from this the rate of detachment was determined. 

 For cell migration, 10 5  MEFs were plated in one well of a 24-well 
plate, followed by transfection with Lipofectamine for 6 – 8 h in Optimem 
(0.6  μ g SIRT2 construct plus 0.2  μ g GFP/well). The next day, a scratch was 
applied and cell migration into the cleared area was monitored 12 and 
24 h afterward. The number of GFP-positive cells in and outside the scratch 
was determined along with bright fi eld recording. 

 To determine the effect of SIRT2 on  � -tubulin acetylation in cells, 
HEK293 cells were cotransfected with plasmids expressing SIRT2 and the 
human CD4 antigen with a truncated cytoplasmic domain (pMACS4.1; 
Miltenyi Biotec) at a ratio of 3:1. CD4-positive cells were selected using 
magnetic beads coated with antibody specifi c for CD4 according to the 
manufacturer ’ s instruction (Dynabeads CD4; Invitrogen). Selected cells 
were lysed in RIPA buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% 
NP-40, 1% deoxycholate, 0.1% SDS, 7  μ g/ml aprotinin, and 20 mM 
 � -glycerophosphate), and  � -tubulin, acetylated  � -tubulin, and SIRT2 were 
detected by immunoblotting. 

 Plasmid constructs 
 All SIRT2 constructs and Cdk5 were generated by recombining the PCR-
amplifi ed ORF into pDonR201 of the Gateway cloning system (Invitrogen) 
by virtue of attB1 and attB2-mediated BP-clonase reaction. A subsequent 
LR-recombination reaction with Gateway-compatible pGex4T2 and pE-
VRF0-HA resulted in GST- and HA-tagged expression constructs. Site-
directed mutagenesis was performed using the quick change protocol 
(Stratagene) to generate the S331A, S331D, S331E, H150Y, and S331A-
H150Y mutants. All constructs were verifi ed by DNA sequencing. pCMV-
EGFP-tubulin was cloned by standard procedures. For constructs expressing 
siRNA specifi c for SIRT2, the sequence 5 � -GATCCCCGTT CACAGCCTAG 
AATATATTCA AGAGATATAT TCTAGGCTGT GAACTTTTTG GAAA-3 � was 
cloned into pSUPER (provided by R. Bernards, Netherlands Cancer Insti-
tute, Amsterdam, Netherlands). This sequence is identical for both human 
and mouse. For a mouse-specifi c siSIRT2, the sequence 5 � -GATCCCCCTT 
CCACCGCGCT TCTTCTTTCA AGAGAAGAAG AAGCGCGGTG G A A G-
TTTTTG GAAA-3 �  was used. Additional constructs have been described 
previously ( Rottmann et al., 2005 ;  Luscher-Firzlaff et al., 2006 ). 

 Preparation of active cyclin – Cdk complexes 
 Expression and purifi cation of human cyclin D, A, and E in complexes with 
Cdk2 and 4 from insect cells coinfected with recombinant baculoviruses 
were performed as previously described ( Sarcevic et al., 1997 ). Baculo-
viruses expressing cyclin B and Cdk1 were provided by D. Morgan (Univer-
sity of California, San Francisco, San Francisco, CA). The activities of 
Cdk4 or Cdk2 and 1 complexes were measured using pRb 778-928  or histone 

of the fi rst nerve fi ber protrusion ( de Anda et al., 2005 ). It is 

possible that deacetylation of  � -tubulin might block directed 

protrusion of a neurite, which would be consistent with our 

observation that SIRT2 inhibits neurite outgrowth ( Fig. 5 ). 

The most dramatic effects were observed with nonphosphory-

latable SIRT2-S331A. 

 Cdk5 is essential for neurite outgrowth during neuronal 

differentiation ( Nikolic et al., 1996 ) and is required, together 

with its regulatory subunits, for the cytoarchitecture of the cen-

tral nervous system ( Dhavan and Tsai, 2001 ). Cdk5 has been 

implicated in the regulation of the actin and microtubule net-

work by phosphorylating several proteins associated with 

these cytoskeletal components, including p27 KIP1 , PAK1, FAK, 

doublecortin, and microtubule-associated proteins (MAPs) like 

MAP1B and tau ( Nikolic et al., 1998 ;  Xie et al., 2003 ;  Drewes, 

2004 ;  Tanaka et al., 2004 ;  Kawauchi et al., 2006 ). Of interest is 

the analysis of p27 KIP1 , which is a substrate of both Cdk2 and 5. 

However, different sites are phosphorylated. Cdk2 modifi es 

Thr-187, stimulating degradation, and Cdk5 phosphorylates 

Ser-10, enhancing stability in a cell type – specifi c manner. 

The latter is observed in neurons and is necessary for neuronal 

migration ( Kawauchi et al., 2006 ). In other situations, the precise 

function of Cdk5-dependent phosphorylation may be less well 

understood; however, in general, stabilization of microtubules 

is observed. It is noteworthy that Cdk5 was previously shown to 

be an important downstream effector of the EphA receptor 

( Cheng et al., 2003 ;  Fu et al., 2007 ). Hence, the EphA-Cdk5-

SIRT2 signaling cascade might ensure full growth cone collapse. 

In this respect, Cdk phosphorylation and thereby inactivation of 

SIRT2-mediated  � -tubulin deacetylation might contribute to-

ward maintaining stable microtubules. Besides  � -tubulin, we 

cannot rule out additional SIRT2 substrates that might contrib-

ute to the cell motility phenotypes reported here. Indeed, the 

 recent identifi cation of several cytoplasmic proteins, which 

are acetylated ( Kim et al., 2006 ), suggests that SIRT2 and other 

cytoplasmic deacetylases will have additional substrates that 

will be important to defi ne in the future. 

 Cyclin E – Cdk2 is implicated in the development of hu-

man tumors ( Musgrove, 2006 ). The identifi cation of SIRT2 as a 

novel substrate and its role in cell motility suggests that cyclin E – 

Cdk2 can regulate distinct aspects of the cytoskeleton. This 

raises the question of how these kinases get access to cytoskele-

tal components because both cyclin E – Cdk2 and cyclin A – Cdk2 

are predominantly nuclear. A recent study demonstrates that 

both kinase complexes shuttle between the nuclear and cytoplas-

mic compartments, enabling access to cytoplasmic substrates 

( Jackman et al., 2002 ). In addition to its interaction with SIRT2 

( Fig. 2 ), a role of Cdk2 in microtubule dynamics is supported 

by the identifi cation of stathmin-like 2 (STMN2 or SCG10; 

 Grenningloh et al., 2004 ;  Morii et al., 2006 ) and MAP2 ( Dehmelt 

and Halpain, 2004 ) as potential substrates ( Table I ). STMN2 

and MAP2 infl uence microtubule stability, are regulated by 

Cdk5, and affect neurite outgrowth ( Dent and Gertler, 2003 ). 

Collectively, these fi ndings suggest that cyclin E – Cdk2, acti-

vated by proliferation signals or oncogenic mutations, regulates 

microtubule dynamics by phosphorylating several substrates as-

sociated with microtubules ( Fig. 6  F  ). This could be relevant for 
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tial search criteria were applied: 20 parts per million (ppm) for the paren-
tal peptide and 0.5 D for fragmentation spectra and a fi xed carbamidomethyl 
modifi cation for cysteines. Oxidation of methionine, deamidation (gluta-
mine and asparagine), and phosphorylation (serine, threonine, and tyro-
sine) were searched as variable modifi cations. Parent ion masses were 
internally calibrated by MSQuant (http://msquant.sourceforge.net) to ob-
tain accurate masses better than 5 ppm. Fragmentation spectra of phospho-
peptides were manually verifi ed. 

 Antibodies, immunoprecipitation, and Western blotting 
 The polyclonal anti-SIRT2 T749 and T809 antisera were raised against a 
bacterially expressed GST-SIRT2 fusion protein (Eurogentec). The following 
antibodies are commercially available from the indicated sources: Cdk2 
pAb H-298, Cdk5 pAb C-8, cyclin E pAb M-20, GFP pAb (FL), p27 pAb 
C-19, p35 pAb C-19, and SIRT2 mAb A-5 (Santa Cruz Biotechnology, 
Inc.); HA-tag mAb 3F10 (Roche); and acetyl- � -tubulin mAb 6–11-B-1 and 
 � -tubulin mAb B-5-1-2 (Sigma Aldrich). Low stringency immunoprecipita-
tions and coimmunoprecipitations and Western blotting were done as 
described previously ( Vervoorts et al., 2003 ). mAbs specifi c for Ser-331 
phosphorylated human SIRT2 were generated against the synthetic peptide 
 NPSTSAS( phosphorylated )PKKSPPPAKDEARTTEREKPQ  in Lou/C rats. 

 HDAC assay 
 Immunoprecipitated material was washed in SIRT2 deacetylase buffer 
(50 mM Hepes, pH 7.5, 10 mM MgCl 2 , 10 mM NaF, 10 mM  � -glycerophos-
phate, 0.2 mM DTT, and 25  μ M ATP), which is identical to the kinase buffer. 
Both immunoprecipitated material and recombinant SIRT2 were resuspended 
in 50  μ l SIRT2 deacetylase buffer containing 1 mM NAD +  (Sigma-Aldrich) 
and  3 H-acetylated chicken reticulocyte core histone ( � 7.5  μ g correspond-
ing to 12,000 cpm per reaction; obtained from P. Loidl, Innsbruck Medical 
University, Innsbruck, Austria). The reactions were performed in the pres-
ence of 20  μ M trichostatin A to block potentially copurifi ed HDAC activities 
at 37 ° C for 60 min. The acetyl-group of  O -acetyl-ADP-ribose was hydro-
lysed by adding 15  μ l of 1 N NaOH at room temperature for 20 min, 
followed by adding 185  μ l of 0.1 M HCl and 0.16 M acetic acid. 
Released [ 3 H]acetate was extracted in 750  μ l ethyl acetate and counted 
( Borra et al., 2004 ). Deacetylation of brain-derived  � -tubulin was performed 
with 25  μ g of P3-P4 mouse forebrain lysate essentially as described previ-
ously ( North et al., 2003 ). 

 Immunocytochemistry 
 Cultures were fi xed with PBS containing 4% paraformaldehyde and 5% su-
crose for 15 min followed by washing and permeabilization in PBS with 
0.1% Triton X-100 for 5 min. The samples were blocked in PBS with 2% 
BSA and incubated with primary antibodies for 1 h. Primary antibodies 
were used as follows: rabbit anti-SIRT2 (1:500), mouse anti-SIRT2 (1:50; 
Santa Cruz Biotechnology, Inc.), rabbit anti-p35 (1:50; Santa Cruz Bio-
technology, Inc.), mouse anti –  � -tubulin (1:1,500; Sigma-Aldrich), and 
mouse anti – acetylated  � -tubulin (1:1,500). Secondary antibodies conju-
gated to Alexa488, 546, or 660 (1:1,000; Invitrogen) were applied for 1 h 
along with Texas red phalloidin (Invitrogen) to highlight fi lamentous actin. 
After washing with PBS and staining with DAPI for 5 min, coverslips were 
mounted with mowiol. Images of cells were acquired at room temperature 
on a microscope (Axiovert; Carl Zeiss, Inc.) using either a 20 ×  Plan-Neo-
fl uar 0.5 NA (Carl Zeiss, Inc.) or a 63 ×  Plan-Neofl uar 1.3 NA (Carl Zeiss, 
Inc.) lens without oil. A camera (AxioCam; Carl, Zeiss Inc.) with AxioVision 
4.6 software (Carl Zeiss, Inc.) for deconvolution and Photoshop CS (Adobe) 
for adjusting contrast and brightness was used. 

 Colocalization of SIRT2 and p35 expression was performed by ana-
lyzing z stacks using AxioVision 4.6 software. Fig. S5 D is a typical result 
obtained from one individual section of the z-stack series. Fields 1 and 2 
contain pixels of SIRT2 and p35, respectively, not colocalizing, whereas 
area 3 reveals pixels overlapping (area 4 contains largely background 
signals surrounding the cells; Fig. S5 D). 

 Neurite outgrowth and growth cone collapse assays 
 Acid-treated coverslips (diameter, 13 mm) were coated with 100  μ g/ml 
poly- L -lysine (Sigma-Aldrich) in borate buffer at 37 ° C for 1 h, followed by 
washing and incubating with 20  μ g/ml mouse laminin (Invitrogen) in HBSS 
at 37 ° C for 3 – 4 h. After additional washing steps, coverslips were kept in 
DME with 10% HS at 37 ° C until used. Neurons were plated at a density of 
5  ×  10 3   �  2  ×  10 4  cells per coverslip and stained after 2 d of in vitro cul-
ture. For growth cone collapse assays, 2-d-old cultures were incubated at 
37 ° C for 30 min with 1  μ g/ml of preclustered ephrin-A5-Fc with 10  μ g/ml 
anti – human IgG, Fc-specifi c, for 30 min (Sigma-Aldrich) or Fc alone fol-
lowed by staining for F-actin and microtubules. 

H1, respectively. 1 catal of cyclin – Cdk activity incorporates 1 mol/s of 
phosphate in 30  μ l of kinase buffer (50 mM Hepes, pH 7.5, 10 mM 
MgCl 2 , 0.01% Tween-20, 10 mM NaF, 10 mM  � -glycerophosphate, 1 mM 
orthovanadate, 0.01% BSA, and 25  μ M ATP) containing 5  μ g pRb 778-928  or 
histone H1 and 25  μ M ATP. The incorporation of phosphate was linear 
over the incubation time of 30 min. The p35 – Cdk5 complex was obtained 
from Millipore. 

 Solid phase phosphorylation 
 High-density protein arrays enriched for high expression of His 6 -tagged 
proteins were obtained from the German Resource Center for Genome Re-
search (hEx1 library; http://www.rzpd.de). For phosphorylation cloning, 
fi lters were rehydrated and the cell debris was washed off twice in 20 mM 
Tris-Cl, pH 7.5, 0.5 M NaCl, and 0.5% Tween-20 for 10 min each. Further 
processing steps were three incubations in 20 mM Tris-Cl, pH 7.5, 0.5 M 
NaCl, 20 mM Tris-Cl, pH 7.5, 0.5% Tween-20, 10 mM EDTA, 1 mM EGTA, 
1 mM DTT, 0.2 mM PMSF, and 3% BSA for 10 min each. Filters were 
briefl y equilibrated in kinase buffer and then incubated in the same buffer 
at room temperature for 1 h. Next, the fi lters were subjected to phosphory-
lation by incubation in kinase buffer supplemented with 2.5 pcatal/ml cy-
clin E – Cdk2 and 200 kBq/ml  � -[ 32 P]ATP at 30 ° C for 90 min. Finally, fi lters 
were washed in 50 mM Hepes, pH 7.5, 10 mM MgCl 2 , 250 mM NaCl, 
and 0.2 mM PMSF and exposed to x-ray fi lm for autoradiography. 

 In vitro kinase assays, in vivo labeling, and phosphatase assays 
 In vitro phosphorylation of purifi ed GST fusion proteins was performed as 
described previously ( Sarcevic et al., 1997 ), except that incubations were 
at 30 ° C for 30 min. For in vivo labeling, HEK293 cells were transiently 
transfected and, 2 d later, metabolically labeled in phosphate-free DME 
supplemented with 10% dialyzed FCS, 20 mM sodium bicarbonate, 18 mM 
Hepes, pH 7.5, and 10 – 20 MBq of [ 32 P]orthophosphate for 2 h. The labeled 
cells were lysed in RIPA buffer. The HA-tagged SIRT2 proteins were immuno-
precipitated with  � -HA mAb (3F10) and protein G – Agarose. The precipitates 
were washed four times in the same buffer and separated by SDS-PAGE on 
12% gels ( Luscher-Firzlaff et al., 2006 ). 

 For phosphatase treatment, cells were lysed in RIPA buffer and SIRT2 
was immunoprecipitated using polyclonal antisera and washed. Immobi-
lized proteins were resuspended in 50 mM Tris-HCl, pH 8.5, and 1 mM 
MgCl 2 . The probes were then incubated in the presence of 0.7 U of bacte-
rial alkaline phosphatase (Sigma-Aldrich) at 30 ° C for 30 min. The re actions 
were stopped by adding SDS sample buffer. 

 Phosphopeptide identifi cation by nanoliquid chromatography tandem 
mass spectrometry 
 Proteins were treated with DTT and iodoacetamide and digested in gel by 
trypsin. Before nanoliquid chromatography tandem mass spectrometry 
analysis, all trypsin-digested samples were purifi ed and desalted using C 18  
STAGE tips ( Rappsilber et al., 2003 ). 

 Peptide identifi cation experiments were performed using a nano-
HPLC 1100 nanofl ow system (Agilent Technologies) connected online to a 
7-Tesla linear quadrupole ion trap – Fourier transform mass spectrometer 
(Thermo Fisher Scientifi c). Peptides were separated on 15 cm of 100  μ m 
ID PicoTip columns (New Objective, Inc.) packed with 3  μ m Reprosil C18 
beads (Dr. Maisch, GmbH) using a 90-min gradient from 90% buffer A/
10% buffer B to 65% buffer A/35% buffer B (buffer A contains 0.5% 
acetic acid and buffer B contains 80% acetonitrile in 0.5% acetic acid) 
with a fl ow rate of 300 nl/min. Peptides eluting from the column tip were 
electrosprayed directly into the mass spectrometer with a spray voltage of 
2.1 kV. The mass spectrometer was operated in the data-dependent mode 
to sequence the four most intense ions per duty cycle. In brief, full-scan 
mass spectrometry spectra of intact peptides (m/z 350 – 2,000) with an auto-
mated gain control accumulation target value of 10 6  ions were acquired 
in the Fourier transform ion cyclotron resonance cell with a resolution of 
50,000. The four most abundant ions were sequentially isolated and frag-
mented in the linear ion trap by applying collision-induced dissociation us-
ing an accumulation target value of 20,000 (capillary temperature, 200 ° C; 
normalized collision energy, 30%). A dynamic exclusion of ions previously 
sequenced within 180 s was applied. All unassigned charge states were 
excluded from sequencing. A minimum of 500 counts was required for 
mass spectrometry 2 selection. Data-dependent neutral loss scanning of 
phosphoric acid groups was enabled for each mass spectrometry 2 spec-
trum among the three most intense fragment ions. 

 RAW spectrum fi les were converted into a Mascot generic peak list 
by DTASupercharge (http://msquant.sourceforge.net). Peptides and pro-
teins were identifi ed using the Mascot algorithm (Matrix Science) to search 
a local version of the UNIprot database (release 48.0). The following ini-
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