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O ne-half of patients with heart failure (HF)
have a preserved ejection fraction (HFpEF),
and there is no proven effective treatment

(1). The traditional thinking has been that left ventric-
ular (LV) diastolic dysfunction caused by hyperten-
sive ventricular remodeling causes the clinical
syndrome of HFpEF. More recent data suggest that
it is not so simple, and that other systemic processes
such as inflammation, oxidative stress, and fibrosis
play important roles in the pathophysiology (2,3). It
is therefore hoped that interventions targeting
inflammation and fibrosis might be effective to treat
HFpEF.

Cell-based therapy for HF patients with reduced
ejection fraction has been under investigation for
nearly 2 decades, with mixed results to date (4). More
recently, cardiosphere-derived cells (CDC) have
emerged as a novel cell-based approach to treat
various cardiac diseases (5). Unlike bone marrow–

derived cells, CDCs are harvested directly from the
heart via endomyocardial biopsy. These cells are
cultured and plated to yield CDCs, which can then be
injected by intracoronary infusion. CDCs are believed
to exert pleiotropic salutary effects in the heart in
addition to their stem cell–like regenerative behaviors
(5). Although there is great enthusiasm that cell ther-
apies could help patients where cardiomyocyte loss is
the problem (like HF with reduced ejection fraction), it
remains unclear whether patients with cardiovascular
diseases without marked cardiomyocyte loss (like
HFpEF) might also derive benefit.
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In this issue of JACC: Basic to Translational Science,
Gallet et al. (6) report exciting new data describing
the effects of CDCs in an animal model considered by
some to replicate human HFpEF. Dahl salt-sensitive
(DS) rats age 7 weeks were fed a high-salt diet for 6 to
7 weeks to induce hypertension, with resultant con-
centric hypertrophy and diastolic dysfunction. These
54 rats were then randomly assigned to receive either
allogenic CDCs or sham therapy, and were followed by
echocardiography 1 and 4weeks later to assess changes
in Doppler parameters of diastolic function. At the
completion of the study, diastolic function was
assessed using gold standard conductance catheter-
based techniques, followed by tissue harvesting for
genetic and protein analysis. A separate cohort (n¼ 18)
was fed a low-salt diet to serve as a control group.
High-salt fed DS rats displayed hypertension,
concentric LV hypertrophy, and diastolic dysfunc-
tion by echocardiography, indicating a HFpEF-like
phenotype (6). Following intervention, the CDC-
treated rats displayed an improvement in the Doppler
E/A ratio, suggesting improved diastolic function that
was subsequently confirmed invasively by enhanced
relaxation relative to placebo-treated animals. In
addition to positive effects on relaxation, CDC-treated
animals displayedmore compliant ventricles,manifest
by a shallower slope in the LV end-diastolic pressure
volume relationship. The salutary effects of CDC were
accompanied by decreased LV fibrosis and inflamma-
tion and increased myocardial capillary density.

Intriguingly, these favorable changes occurred
without a decrease in blood pressure or cardiac hy-
pertrophy, suggesting a direct beneficial effect on
myocyte function (6). This is important because it
suggests that structural reverse remodeling is not
necessary to see functional benefits, as has tradi-
tionally been believed. CDC therapy was associated
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with improved survival and also resulted in a
decrease in circulating inflammatory cytokines as
well as a reduction in genetic expression of markers
of inflammation and fibrosis, providing intriguing
mechanistic insight. The authors conclude that CDCs
reverse HFpEF in rats by decreasing fibrosis and
inflammation even in the absence of changes in LV
load or chamber remodeling (6).

The multitude of positive effects observed from
just a single dose of CDC therapy in this model is truly
staggering (6). Previous studies testing cell therapy in
rats after myocardial infarction have demonstrated an
improvement in myocardial compliance (7), but no
infarct was induced in the current study. Although
the results certainly support further study, there are a
number of important caveats to consider. One ques-
tion is how well this rat model recapitulates what is
seen in human HFpEF. In addition to hypertension,
the DS rat model is characterized by significant renal
dysfunction, causing massive volume overload, pro-
teinuria, and cachexia. This is not typical of what is
usually seen in human HFpEF, so one questions
whether these benefits in rats will extend to what is
seen in people with HFpEF in the community.

In fact, there is no widely-accepted animal model
of human HFpEF, which is not surprising given the
enormous complexity of this disorder. One key
ingredient in human HFpEF is cardiovascular senes-
cence, and it is very difficult to recreate this in an
animal model. The authors demonstrate that diastolic
dysfunction is present in the DS model (6), but it is
now well-established that HFpEF is characterized by
multiple other pathophysiological abnormalities
beyond diastolic dysfunction alone (3), including
systolic limitations (8–11), chronotropic incompe-
tence (10,12), endothelial dysfunction (10), right heart
and pulmonary vascular dysfunction (13–15), and
abnormalities in the periphery (16,17). Indeed, it has
been suggested that the tremendous mechanistic
heterogeneity in HFpEF requires more rigorous sub-
phenotyping to get the right treatment to the right
patient (18,19). It would be interesting to see if CDCs
might affect these other crucial components in the
pathophysiology.

The data from Gallet et al. (6) suggest that
improvement in fibrosis is a key component for the
beneficial effects from CDC in the DS model. Howev-
er, recent data have raised questions regarding the
centrality of myocardial fibrosis in the pathophysi-
ology of HFpEF. In a human autopsy study, histo-
pathological fibrosis was not markedly different
between HFpEF and control hearts (present in 58%
vs. 43%, median area of fibrosis 9.6% vs. 7.1%), sug-
gesting that factors other than interstitial fibrosis
(such as intrinsic cardiomyocyte stiffness) may be
more relevant (20).

Given this complexity, it may seem overly opti-
mistic to think that a therapy like CDCs will work for all
patients experiencing HFpEF. However, a subgroup of
people who had inflammation and fibrosis play the
dominant role may be in the best position to derive
benefit from this promising therapy. Perhaps this is the
group to enroll first in early phase trials. Right now, we
can say that cell therapy appears to work for rats with
diastolic dysfunction.We do not know if cell therapy is
going to work for people with HFpEF, but the data
fromGallet et al. (6) is giving us new hope that it might.
Now it is time to find out. Stay tuned!
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