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As permanent residents of the normal gut microbiota, bifidobacteria have evolved to adapt
to the host’s immune response whose priority is to eliminate pathogenic agents. The
mechanisms that ensure the survival of commensals during inflammation and maintain the
stability of the core component of the normal gut microbiota in such conditions remain
poorly understood. We propose a new in vitro approach to study the mechanisms of
resistance to immune response factors based on high-throughput sequencing followed
by transcriptome analysis. This approach allowed us to detect differentially expressed
genes associated with inflammation. In this study, we demonstrated that the presence of
the pro-inflammatory cytokines IL-6 and TNFa to the growth medium of the B. longum
subsp. longum GT15 strain changes the latter’s growth rate insignificantly while affecting
the expression of certain genes. We identified these genes and performed a COG and a
KEGG pathway enrichment analysis. Using phylogenetic profiling we predicted the
operons of genes whose expression was triggered by the cytokines TNFa and IL-6 in
vitro. By mapping the transcription start points, we experimentally validated the predicted
operons. Thus, in this study, we predicted the genes involved in a putative signaling
pathway underlying the mechanisms of resistance to inflammatory factors in
bifidobacteria. Since bifidobacteria are a major component of the human intestinal
microbiota exhibiting pronounced anti-inflammatory properties, this study is of great
practical and scientific relevance.

Keywords: Bifidobacterium longum, RNA sequencing, transcriptome, pro-inflammatory cytokines, inflammatory
process, transcription start site
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INTRODUCTION

Bifidobacteria are a key component of the commensal gut
microbiota conferring considerable health benefits and
supporting the normal functioning of the host organism (1).

Bifidobacteria exert many immunomodulatory properties
that became the subject of many in vitro and in vivo studies
(2). As the predominant component of the commensal
microbiota of infants (3), bifidobacteria contribute significantly
to the formation of the human immune system in the early stages
of postnatal development (4, 5). The key factor in this process,
ostensibly, is the ability to communicate with the immune
system, which results in the regulation of both anti-
inflammatory and pro-inflammatory cytokines and other
factors of the immune response (2, 6).

As permanent residents of the normal gut microbiota,
bifidobacteria have evolved to adapt the host’s immune
response whose priority is to eliminate pathogenic agents. The
mechanisms that ensure the survival of commensals during
inflammation and maintain the stability of the core component
of the normal gut microbiota in such conditions remain
poorly understood.

Today, researchers have published a few works dedicated to the
study of these mechanisms in commensal microorganisms. In
one study, the authors suggested that the modification
of lipopolysaccharides is a putative mechanism of such
stability (7). The modification of lipopolysaccharides by the
putative membrane-associated phospholipid phosphatase
(BT1854 in B. thetaiotaomicron) increased the resistance to
antimicrobial peptides of representatives of Bacteroidetes. Among
actinobacteria, only C. aerofaciens became more resistant to
antimicrobial peptides (7). Thus, the resistance mechanisms in
bifidobacteria have not been studied. Since orthologs of the
gene encoding the phosphatase BT1854 were not found in
Bifidobacterium genomes [data not shown], we suspected that
other genes could be involved in an altogether different pathway,
which accounts for the formation of resistance in bifidobacteria.

Microorganisms can sense signaling molecules of the host’s
immune system and respond to them by changing their growth
rate as well as other characteristics (8). This is corroborated by
the fact that interleukin-1 (IL-1) (9), interleukin-2 (IL-2) (10),
granulocyte-macrophage colony-stimulating factor (GM-CSF)
(10), interleukin-6 (11), interferon-g (IFNg) (12), and tumor
necrosis factor a (TNFa) (13) all affect bacterial growth. The
pronounced response of microorganisms to cytokines and other
signaling molecules of the immune system implies changes in the
transcription of genes involved in this response. Whole
transcriptome analysis is one way to identify these genes.

Microarray-based technology, once the main tool to carry out
transcriptome analysis, was replaced later by next-generation
RNA-sequencing (RNA-Seq) technology. Today, RNA-seq is
best suited for analyzing the fluctuating cellular transcriptome.
Bacterial RNA-seq studies have refined considerably our
understanding of bacterial gene expression (14). Today, studies
on bifidobacteria using this technology are lacking. For example,
transcriptome studies were performed: to identify candidate
genes involved in the response to oxygen treatment in
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B. longum BBMN68 (3%, v/v) (15); to identify the genes and
operons that are actively transcribed in B. breveUCC2003 during
logarithmic growth (16); to examine strain-specific responses to
tetracycline in B. animalis subsp. lactis Bl-04 and HN019 (17); to
understand the utilization and metabolism of xylo-
oligosaccharide in B. adolescentis 15703 and to identify the key
regulatory-related genes (18); to identify genes potentially
involved in the response to linoleic acid exposure in B.
breve DSM 20213 (19); to analyze the changes in the gene
expression profile following the exposure of the industrial
probiotic strains B. longum JDM301 to acid and JDM301AR
(20) to unravel the physiological bases accounting for these
differences by pinpointing the transcriptional responses of B.
longum NCC2705 and D2957 to sublethal H2O2 exposure (21).

In the present study, we performed transcriptome analysis of the
B. longum subsp. longum GT15 strain to investigate the
mechanisms lying behind the response of bifidobacteria to
signaling molecules of the immune system. B. longum represents
one of the most prevalent species of the Bifidobacterium genus in
the gut microbiota of both infants and adults (22, 23). The genome
of B. longum subsp. longum GT15 was sequenced and characterized
by us earlier (24).

Previously we characterized the fn3 gene in Bifidobacterium
genomes (25). The gene encodes a protein containing motifs
complementary to the cytokine binding region of the gp-130
receptor. The ligand family of this human cytokine receptor
includes IL-6 and other cytokines belonging to the IL-6 group
(26). In addition, we previously confirmed the ability of FNIII
domains of this protein to specifically bind to the cytokine TNFa
(27). Therefore, we opted for the pro-inflammatory cytokines IL-6
and TNFa to assess the influence of immune response factors on
the expression of B. longum subsp. longum GT15 genes.

The lists of differentially expressed genes (DEGs) revealed by
the transcriptome analysis can potentially help us identify the
genes involved in the mechanisms of resistance of commensal
microorganisms, namely bifidobacteria, to pro-inflammatory
immune factors.
MATERIALS AND METHODS

Bacterial Strain and Growth Condition
In this work, we used the B. longum subsp. longum GT15 strain
whose genome was sequenced and submitted to GenBank and
assigned the accession no. CP006741 earlier (28). The cultivation of
B. longum subsp. longum GT15 was carried out in Lactobacillus
MRS Broth culture medium (HiMedia, India) supplemented with
0.5%cysteine (HiMedia, India).B. longum subsp. longumGT15was
culturedat 37°Cunderanaerobic conditions (HiAnaerobicSystem-
Mark III, AnaeroHiGas Pack 3.5L; HiMedia, India).

Exposure to Pro-Inflammatory Cytokines
Awater solution of lyophilized recombinant human cytokines IL-6
and TNFa (Thermo Fisher Scientific, USA) was added to the
experimental samples to a final concentration of [100pg/ml],
[1ng/ml] and [10ng/ml]. B. longum subsp. longum GT15 grown
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Veselovsky et al. Bifidobacterium Longum Resistance to Inflammatory Factors
in MRS-cys supplemented with an equal amount of water without
cytokines was used as the control (10, 11). This experiment was
conducted at 37°C under anaerobic conditions. Using a SmartSpec
Plus spectrophotometer (Bio Rad), we measured the OD600
starting from timepoint 0 and ending at 24 h. The experiment
was carried out in three biological replicates.

RNA Extraction and Sequencing and
Annotation
B. longum subsp. longum GT15 cells were collected in the middle
of the log-phase in both experimental and control conditions.
The cells were treated with RNA Protect Bacteria Reagent
(QIAGEN). Total RNA extraction and purification was
performed using the RNeasy Mini Kit (QIAGEN). Removal of
residual gDNA was performed using the TURBO DNA-free Kit
(Invitrogen) and the RNase-Free DNase Set (QIAGEN). The
concentration and quality of the extracted RNA were checked
using the Quant-iT RiboGreen RNA Assay Kit (Thermo Fisher
Scientific) and the Agilent RNA 6000 Pico Kit (Agilent
Technologies), respectively.

Total RNA (2 µg) was used for library preparation. Ribosomal
RNA was removed from the total RNA using the RiboZero rRNA
Removal Kit (Bacteria) (Epicentre/Illumina, Madison, USA) and
libraries were prepared using the NEBNext® Ultra II Directional
RNA Library Prep Kit (NEB), according to the manufacturer
protocol. Subsequently, RNA cleanup was performed with the
RNA Clean XP kit (Beckman Coulter, Brea, USA). The library
underwent a final cleanup using the Agencourt AMPure XP
system (Beckman Coulter, Brea, USA) after which the libraries’
size distribution and quality were assessed using a high
sensitivity DNA chip (Agilent Technologies). Libraries were
subsequently quantified by Quant-iT DNA Assay Kit, High
Sensitivity (Thermo Fisher Scientific). Finally, equimolar
quantities of all libraries (12 pM) were sequenced by a high
throughput run on the Illumina HiSeq using 2×100 bp paired-
end reads and a 5% Phix spike-in control. Before loading the
cBot system, the libraries were incubated at 98°C for 2 min and
then cooled on ice to improve the hybridization of GC-rich
sequences. The dataset of RNA-Seq analysis was deposited to the
NCBI under the project name PRJNA628664.

Data Processing and Analysis
Data processing and analysis were performed as previously
described (29). Quality control of raw reads was carried out with
FASTQC v0.11.5. Adaptors were trimmed with the Trimmomatic
v0.33 tool. The Kallisto v0.46.0 software was used for mapping of
reads and estimation of transcript abundance. Differential
expression analysis was performed using edgeR v3.26.8 package,
integrated in theDegust v4.1.1 web-tool. Only genes with count per
million (CPM)≥ 1were analyzed further. Geneswere filtered based
on false discovery rate cutoff (FDR) ≤ 0.05 and minimum
expression fold change (FC) ≥ 1. The plots were generated using
the ggplot2 package in R. DEGs were then subjected to enrichment
analysis of COG functions and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. Bedtools genomecov (30) was used
for coverage calculation. Using the moving average, coverage
Frontiers in Immunology | www.frontiersin.org 3
distribution tables were obtained. Data visualization was
performed using GNU/R (31).

Phylogenetic Profiling
Phylogenetic profiling included the identification of ortholog
groups for Bifidobacterium genomes, the construction of binary
vectors that indicate their presence (1) or absence (0) across
several genomes, the construction of a matrix of pairwise
distances between vectors, and the grouping of phylogenetic
profiles (PP). The construction of PP was performed using the
program OrthoFinder v.2.3.7 (32). A matrix of pairwise
distances between PP was obtained using values based on
the Jaccard Similarity Metric. PPs were constructed based on
certain criteria: the distance values in a matrix of pairwise
distances be minimal, genes must locate nearby and on the
same strain, and all genes in the group must be downregulated
or upregulated. Custom Python v.3.7.5 scripts have been used
for the analysis (https://github.com/LabGenMO/phylo-
profiling/blob/master/Identification%20of%20connected%
20genes.ipynb).
Preparation of 5′-Enriched Libraries for
Transcriptional Start Sites Identification
and Sequencing
Libraries for transcription start site (TSS) identification were
prepared as described earlier (33) with some modifications. To
prepare 5′-enriched libraries, we enriched whole transcriptome
RNA by depleting ribosomal RNA (rRNA) using standard
protocol RiboMinus (Thermo Fisher Scientific). mRNA was
fragmented with Zn2+, end-repaired with T4 polynucleotide
kinase according to the manufacturer protocol (Thermo Fisher
Scientific) and treated with Terminator exonuclease (Epicentre/
Illumina, Madison, USA). This procedure enriched RNA with
5’-triphosphate protected fragments. Then, the RNA was
cleaned up with KAPA Pure Beads in a ratio of 1.8 to 1 and
treated with RNA 5’ Pyrophosphohydrolase (RppH) (NEB)
to remove the pyrophosphate groups and cleaned up again.
The strand-specific libraries for Illumina sequencing
were constructed from the obtained RNA. RNA was ligated
with ds-adapters with protruding inner ends containing a
random hexameric sequence (5’ ds-adapter sequences: RNA
oligo 5’-AGUUCUACAGUCCGACGAUC-3’ and 5’-NNNN
NNGATCGTCGGA-3’; 3’ ds-adapter sequences: kinated oligo
5’-pTGGAATTCTCGGGTGCCAAGG-3’ and 5’-GAGAA
TTCCANNNNNN-3’) using T4 DNA ligase (Thermo Fisher
Scientific). Then, cDNA was generated using 5’-GGCACCC
GAGAATTCCA-3’ primer and Maxima H Minus Reverse
Transcriptase (Thermo Fisher Scientific) according to the
manufacturer protocol. cDNA was clean up with KAPA Pure
Beads, amplified with RNA PCR Index Primers from TruSeq
Small RNA kit and was cleaned up using KAPA Pure Beads.
Libraries were quantified by Quant-iT DNA Assay Kit, High
Sensitivity (Thermo Fisher Scientific). The quality of libraries
was evaluated using Bioanalyzer 2100 with high sensitivity DNA
chip (Agilent Technologies).
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https://github.com/LabGenMO/phylo-profiling/blob/master/Identification%20of%20connected%20genes.ipynb
https://github.com/LabGenMO/phylo-profiling/blob/master/Identification%20of%20connected%20genes.ipynb
https://github.com/LabGenMO/phylo-profiling/blob/master/Identification%20of%20connected%20genes.ipynb
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Veselovsky et al. Bifidobacterium Longum Resistance to Inflammatory Factors
Finally, equimolar quantities of all libraries (12 pM) were
sequenced by high-throughput sequencing on Illumina HiSeq
using 2×100 bp paired-end reads and a 5% PhiX spike-in control.

Identification of Transcriptional Start Sites
Quality control on raw reads was carried out with FASTQC
v0.11.5. Adaptors were trimmed using Trimmomatic v0.33.
Bowtie2 was used to align short reads (34). SAM files
processing was performed by samtools (35). Identification of
TSS and subsequent analysis were performed from sam files with
BAC-Browser (36) with standard parameters.
RESULTS

Pro-Inflammatory Cytokines Have Little
Effect on Growth of B. Longum Subsp.
Longum GT15 Strain
To test the effects of pro-inflammatory cytokines on the growth of
the bacterial culture, B. longum subsp. longum GT15 was
incubated with various concentrations of IL-6 and TNFa while
OD600 values were measured at different timepoints. The OD600
measurements under experimental and control conditions formed
the growth curves of B. longum subsp. longum GT15 (Figure S1).
We showed that the presence of IL-6 [100pg/ml] and TNFa [10
ng/ml] in the growth medium led to moderate changes in the
growth rate of the culture (Figure S1). We used those same
cultures for the subsequent transcriptome analysis.

Differences in Gene Transcription Profiles
To further understand the mechanism underlying the response
of bifidobacteria to inflammation, we applied Illumina-
Frontiers in Immunology | www.frontiersin.org 4
sequencing technology for sequencing the whole transcriptome
from three independent biological replicates of B. longum subsp.
longum GT15 at the exponential growth phase (Figure 1).

A total of 12,602,595, 11,947,362, and 12,045,570 unique reads
were obtained for the samples supplemented with the pro-
inflammatory cytokines IL-6 [100pg/mL] and TNFa [10ng/mL]
and a reference sample without pro-inflammatory cytokines
(control), respectively. After filtering out poor quality reads, the
number of effective reads mapped to the genome of B. longum
subsp. longum GT15 was reduced to 11,283,525, 10,683,238, and
10,794,398, respectively. Genes that were significantly differentially
expressed (based on a fold change of at least two [log 2 ratio <−1
or >1] and a t-test P-value < 0.001) in response to the presence of
cytokines were singled out: a total number of 130 DEGs in the
sample of B. longum subsp. longum GT15 grown with IL-6
compared to the control sample, including 68 downregulated and
62 upregulated genes and a total number of 1017 DEGs for the
sample of B. longum subsp. longum GT15 grown with TNFa
compared to the control sample, among which 505 genes were
downregulated and 512 genes – upregulated (Figure 2, Tables S1).

The fold change (FC) in the expression of genes affected by
the exposure of B. longum subsp. longum GT15 to IL-6 varied
within the range −2>FC<2. In the case of exposure to TNFa, the
FC in the expression of 992 genes fell within the range −2>FC<2
and the FC in expression of 25 genes was above 2. The levels of
expression of these 25 genes (upregulated and downregulated)
are presented in Table 1.

One of the most differentially expressed 25 genes was
BLGT_RS08205, a ROK family glucokinase, encoding the
NagC family transcriptional regulator. This gene is involved in
many processes: carbohydrate metabolism (glycolysis/
gluconeogenesis, galactose metabolism, starch and sucrose
FIGURE 1 | Genome visualization shows the transcriptional map of B. longum subsp. longum GT15.
November 2020 | Volume 11 | Article 595877
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metabolism, amino sugar and nucleotide sugar metabolism);
biosynthesis of other secondary metabolites (streptomycin
biosynthesis, neomycin, kanamycin and gentamicin biosynthesis.
Among the remaining genes, seven genes (BLGT_RS08190,
BLGT_RS02975 , BLGT_RS01310 , BLGT_RS08485 ,
BLGT_RS02915, BLGT_RS03250, BLGT_RS04525) encoded
transporters involved in signaling and cellular processes, two
genes (BLGT_RS03890, BLGT_RS00625) were involved in
genetic information processing and the genes BLGT_RS03150,
BLGT_RS08190, BLGT_RS01265, BLGT_RS08920 were involved
in glutathione metabolism, membrane transport, signal
transduction and translation, respectively.

KEGG Pathway Mapping of DEGs
The biologically significant DEGs were further analyzed by
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
As predicted by KEGG, 34 pathways were altered by IL-6 (Figure
3A, Table S2) and 87 pathways were altered by TNFa (Figure
3B, Table S2). A detailed representation of these pathways is
given in Figure 3.

The TNFa-induced genes were involved in cyanoamino acid
metabolism (3 (overexpressed genes)/4 (genes in the pathway)),
glutathione metabolism (4/7), nitrogen metabolism (4/6),
tyrosine metabolism (3/4), glyoxylate and dicarboxylate
metabolism (10/14), oxidative phosphorylation (10/12),
Frontiers in Immunology | www.frontiersin.org 5
arginine biosynthesis (9/12), propanoate metabolism (7/12), 2-
oxocarboxylic acid metabolism (10/21), fatty acid biosynthesis
(5/7), fatty acid metabolism (5/7), folate biosynthesis (5/7),
pyruvate metabolism (8/15), valine, leucine and isoleucine
degradation (4/6), ABC transporters (21/54), glycerolipid
metabolism (3/7), RNA degradation (6/10), arginine and
proline metabolism (5/10), nicotinate and nicotinamide
metabolism (5/13), novobiocin biosynthesis (2/4), pentose
phosphate pathway (6/17). The TNFa-suppressed genes were
involved in beta-Lactam resistance (4/7), fructose and mannose
metabolism (2/4), RNA polymerase (2/4), bacterial secretion
system (6/9), base excision repair (3/7), glycerophospholipid
metabolism (3/6), lysine biosynthesis (6/11), peptidoglycan
biosynthesis (7/17), protein export (7/12), DNA replication (6/
13), homologous recombination (11/22), monobactam
biosynthesis (3/4), sulfur metabolism (2/2), terpenoid backbone
biosynthesis (5/9) (Figure 3B).

Functional Annotation of DEGs
The differentially expressed genes were grouped into functional
categories according to the Clusters ofOrthologous Groups (COG)
classification system. COG categories H (coenzymemetabolism), E
(amino acid transport andmetabolism), G (carbohydrate transport
and metabolism), C (energy production and conversion), O
(posttranslational modification, protein turnover, chaperones)
A

B

FIGURE 2 | Global differentially expressed genes (DEGs) in B. longum subsp. longum GT15 resulting from (A) exposure to IL-6, (B) exposure to TNFa. Red dots:
DEGs; blue dots: not DEGs.
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had a high number of upregulated genes after TNFa treatment
compared to controls (Figure 4) whereas F (nucleotide transport
and metabolism), U (intracellular trafficking, secretion, and
vesicular transport), M (cell wall/membrane/envelope biogenesis),
T (signal transduction mechanisms) L (replication, recombination
and repair), K (transcription) J (translation, ribosomal structure
and biogenesis) had a high number of downregulated genes after
TNFa treatment compared to controls (Figure 4).

In addition, many genes in categories O (posttranslational
modification, protein turnover, chaperones) and E (amino acid
transport and metabolism) were also downregulated upon
exposure to IL-6.

Evolutionarily Stable Groups of Genes and
Transcriptional Organization of DEGs
Weusedphylogeneticprofiling to identifyputativeoperons among the
DEGs.We benefited from the open-source RefSeq database to analyze
130 genome sequences belonging to different Bifidobacterium species
(TableS3).Aphylogeneticprofile (PP) is abinaryvectordescribing the
presence or absence of the coding sequence of a protein in a set of
genomes of a group of organisms (37). It has been proposed that genes
involved in the same biological pathway, especially genes in operons,
are subjected to the same gain and loss evolutionary events. Therefore,
genes with similar PPs are potential functional partners.

Pairs of genes having similar PPs (Jaccard distance less than
0.001), located on the same strand within 10,000 nucleotides, and
having the same sign of differential (negative or positive)
expression, were grouped together. Such groups were labeled as
potential operons (Table S4, Figure 5).
Frontiers in Immunology | www.frontiersin.org 6
Tovalidate the predicted operons involved in the response to the
pro-inflammatory cytokines IL-6 and TNFa in B. longum subsp.
longum GT15, we carried out de novo identifications of
transcriptional start sites (TSS). To carry out this task, we
prepared RNA libraries enriched with 5’-fragments of mRNA and
sequenced them using the high-throughput Illumina technology.
TheTSSweremappedwith single-nucleotide resolution.The search
for potential TSSs yielded total of 410 in B. longum subsp. longum
GT15. Out of those, 38 TSSs belonged to operons of DEGs after
exposure to TNFa, and 7 TSSs belonged to operons regulating
DEGs resulting from exposure to IL-6 (Table S3, Figure 5).

Thus, we predicted and then experimentally validated the
operons of genes whose expression was affected by the cytokines
TNFa and IL-6 (Figure 5).
DISCUSSION

As the analysis of differentially expressed genes showed, TNFa
altered the expression of a higher number of genes than IL-6. This
maybedue to the difference in the concentrations ofused cytokines.
According to earlier studies, the response of bacteria to treatment
with cytokinesmaybecomedose-dependent after reaching a certain
concentration (38). It is also possible that B. longum subsp. longum
GT15 reacts differently to those two types of cytokines. Since
cytokines are small peptide signaling molecules, the cytokine-
mediated response of bacterial cells appears to be the result of
interaction with receptor-like structures. Bacterial sensors enabling
the recognition of immune signals have been described for
pathogenic microorganisms (8). Moreover, we previously
confirmed the ability of FNIII domains of this protein to
specifically bind to cytokine TNFa but not IL-6 (27). Different
cytokines, acting as ligands to specific receptors, could activate in
bacterial cells different signaling pathways consisting of a different
number of genes.

The results obtained in the in vitro experiment are subject to two
different interpretations. One possible interpretation is that the
response of B. longum subsp. longum GT15 to the pro-
inflammatory cytokines is an adaptive reaction to stress aimed at
maintaining normal functioning. Another interpretation is that the
response of B. longum subsp. longum GT15 is intended to quench
inflammation in the host organism, particularly in the gut. The
cytokine-triggered release of mediators such as short-chain fatty
acids, antioxidants, and other molecules that regulate the level of
pro-inflammatory cytokines, supports well this hypothesis.

Nagasawa’s and Yu’s study highlighted the important role of
hsp20 in reducing inflammation. The heat shock protein 20
(HSP20/HSPB6) belongs to the HSP family (HSPB) of small
proteins with monomeric molecular masses ranging from 15 to
30 kDa. Overexpression of hsp20 leads to a marked decrease in
TNF-a expression (39, 40). The transcription of the gene encoding
hsp20, BLGT_RS00625, was upregulated 5-fold in the B. longum
subsp. longum GT15 strain exposed to TNFa. Since the response of
B. longum subsp. longum GT15 could be directed at bringing down
TNFa levels, we suspect this mechanism to be one of themany ways
used by bifidobacteria to dampen inflammation.
TABLE 1 | Significantly upregulated and downregulated genes (FC≥ 2) upon
exposure of B. longum subsp. longum GT15 to TNFa compared to controls
by RNAseq.

Gene no Annotation Log2 (FC)

BLGT_RS00625 Hsp20/alpha crystalline family protein 5,10
BLGT_RS00855 Hypothetical protein 2,18
BLGT_RS01135 PEGA domain-containing protein 2,37
BLGT_RS01265 Uridylyltransferase 2,02
BLGT_RS01310 Sugar ABC transporter substrate-binding protein 2,20
BLGT_RS02915 ABC transporter substrate-binding protein 2,04
BLGT_RS02940 LacI family DNA-binding transcriptional regulator 2,32
BLGT_RS02975 Sugar ABC transporter substrate-binding protein 2,87
BLGT_RS03150 LamB/YcsF family protein 2,13
BLGT_RS03250 Zinc ABC transporter solute-binding protein 3,19
BLGT_RS03890 CarD family transcriptional regulator −2,18
BLGT_RS04345 YccF domain-containing protein −2,15
BLGT_RS04350 Hypothetical protein −2,17
BLGT_RS04520 DUF4418 family protein −2,24
BLGT_RS04525 ABC transporter permease −2,12
BLGT_RS07100 SPFH domain-containing protein 2,02
BLGT_RS07650 DedA family protein −2,02
BLGT_RS07990 AmmeMemoRadiSam system protein B 2,03
BLGT_RS08190 Sugar ABC transporter substrate-binding protein 2,10
BLGT_RS08205 ROK family glucokinase −2,08
BLGT_RS08485 Sugar ABC transporter permease 2,04
BLGT_RS08615 Circularly permuted type 2 ATP-grasp protein 2,78
BLGT_RS08920 tRNA-Met −2,11
BLGT_RS09910 Signal recognition particle sRNA small type 2,16
BLGT_RS09925 Hypothetical protein −2,25
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A B

FIGURE 3 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differentially expressed genes (DEGs): (A) IL-6 vs. control;
(B). TNFa vs. control. The names of KEGG pathways are placed along the Y-axis. The X- axis represents the values of the Delta. Downregulated genes are
shown in red color. Upregulated genes are show in blue color.
FIGURE 4 | Relative abundance of transcripts grouped into Clusters of Orthologous Groups (COG) functional categories. Functional classification of genes with
statistically significant increase (green bar for TNFa and yellow bar for IL-6) or decrease (red bar for TNFa and gray bar for IL-6) in mRNA level compared to controls.
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The transcription of ABC transporters (BLGT_RS02915,
BLGT_RS02975 , BLGT_RS03250 , BLGT_RS04525 ,
BLGT_RS08190, BLGT_RS08485) showed over two-fold
upregulation. This can be explained by the cell’s struggle to
maintain homeostasis during inflammation. An increase in the
expression of ABC transporters, which facilitates the influx of
sugars, leads to their accumulation in the cell followed by
increased synthesis of ATP. In addition, a gene encoding Zinc
ABC transporter (BLGT_RS03250) was 3,19-fold upregulated.
Effective zinc absorption is crucial to an adequate response of the
host’s immune system. One strategy adopted by the immune
system is to decrease the concentration of zinc, iron and
manganese (41–43). Therefore, TNF-a can stimulate the
sequestration of zinc by bifidobacteria while it is still available.

The DedA family protein encoded by BLGT_RS07650 was
also downregulated (Table 1). This protein has been shown to
increase sensitivity of bifidobacteria to temperature and pH (44,
45). Hypersensitivity to temperatures can account for the
increased expression of BLGT_RS00625.

Glutathione carries out many functions in biological systems
among which are antioxidant activity, immune stimulation and
cellular detoxification. Glutathione helps maintain the
intracellular redox homeostasis, which ensures the protection
of cells against oxidative damage. Most of the biological
functions of glutathione depend on the conversion of reduced
glutathione (GSH) to its oxidized form by the enzyme
glutathione peroxidase and its transformation back to GSH by
glutathione reductase. Glutathione, a potent reducing agent in
the cell cytoplasm, is crucial for imparting antioxidant properties
to bacteria. Glutathione defends cells against oxidative radicals,
which pose a serious threat to the survival and performance of
bacterial cells. Thus, both GSH synthesis and buildup in the cell
could be correlated with the antioxidant potential of bacteria and
their ability to grow in an aerobic environment, although other
factors are also involved (46). The protective mechanism of GSH
is suggested to be either its sacrificial action which prevents the
rapid fall of intracellular pH or glutathionylation of the enzyme
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) which
helps keeping the glycolysis rate under control. Epithelial cells
require a continuous supply of GSH for proper functioning. It
has been shown that exogenously supplied GSH not only
maintains the necessary level in the intestine, but also provides
protection against oxidizing agents such as tert-butyl
hydroperoxide or menadione (47).

Ammonia has often been used as a marker of colonic bacterial
protein metabolism. It is generally considered a potentially toxic
metabolite causing direct damage to colonocytes. Nevertheless,
ammonia is the main source of nitrogen for bacteria (48).
Therefore, exposure to TNFa can signal to bifidobacteria an
increase in the concentration of ammonia leading to increased
expression of genes, involved in nitrogen metabolism. Similarly,
the expression of genes involved in the metabolism of amino
acids such as valine, leucine, arginine and proline could rise. The
increased expression of genes involved in fatty acid metabolism
could reflect the demand for acquiring resources for cell wall
reparation during inflammation.
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Recently, fecal metabolome analysis of 987 samples revealed
altered pathways related to amino acid metabolism (e.g. aminoacyl-
tRNA biosynthesis pathway, arginine biosynthesis pathway, and
valine, leucine and isoleucine biosynthesis pathway), which
correlated with changes in the core microbiome and inflammation
(49, 50). Therefore, the changes in the expressionof genes involved in
biosynthesis and degradation of amino acids, in particular arginine,
valine, leucine, and isoleucine, require a closer look in a future study.

Exposure to TNFa has also stimulated the expression of genes
involved in propanoate metabolism. Propionate is potentially
one of the main metabolites accounting for the probiotic action
of bifidobacteria. Previously, propionate was shown to reduce
inflammation by lowering blood pressure at the site of
inflammation (51).

According to functional analysis, exposure to TNFa altered
mainly the expression of genes included in energy pathways. This
may be explained by the accumulation of resources caused by
inflammation and activation of ATP-dependent ABC
transporters to maintain homeostasis. Overall, IL-6 did not
affect the expression of functional groups.

The observed effects of cytokines on B. longum subsp. longum
GT15 were cumulative and prolonged, features that are
conducive for the adaptation to the new conditions.
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