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Abstract

Many bioactive natural products are produced as ‘‘secondary metabolites’’ by plants, bacteria, and fungi. During the middle
of the 20th century, several secondary metabolites from fungi revolutionized the pharmaceutical industry, for example,
penicillin, lovastatin, and cyclosporine. They are generally biosynthesized by enzymes encoded by clusters of coordinately
regulated genes, and several motif-based methods have been developed to detect secondary metabolite biosynthetic
(SMB) gene clusters using the sequence information of typical SMB core genes such as polyketide synthases (PKS) and non-
ribosomal peptide synthetases (NRPS). However, no detection method exists for SMB gene clusters that are functional and
do not include core SMB genes at present. To advance the exploration of SMB gene clusters, especially those without
known core genes, we developed MIDDAS-M, a motif-independent de novo detection algorithm for SMB gene clusters. We
integrated virtual gene cluster generation in an annotated genome sequence with highly sensitive scoring of the
cooperative transcriptional regulation of cluster member genes. MIDDAS-M accurately predicted 38 SMB gene clusters that
have been experimentally confirmed and/or predicted by other motif-based methods in 3 fungal strains. MIDDAS-M further
identified a new SMB gene cluster for ustiloxin B, which was experimentally validated. Sequence analysis of the cluster
genes indicated a novel mechanism for peptide biosynthesis independent of NRPS. Because it is fully computational and
independent of empirical knowledge about SMB core genes, MIDDAS-M allows a large-scale, comprehensive analysis of SMB
gene clusters, including those with novel biosynthetic mechanisms that do not contain any functionally characterized
genes.
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Introduction

Chemists have been deciphering the chemical structures of

natural products for a century and a half. Many of these natural

products are produced as ‘‘secondary metabolites’’ by plants,

bacteria, and fungi. During the middle of the 20th century, several

secondary metabolites from fungi revolutionized the pharmaceu-

tical industry. These include the antibiotic, penicillin; the

cholesterol-level lowering compound, lovastatin; and the immune

suppressor, cyclosporin. Other fungal secondary metabolites have

achieved notoriety, such as aflatoxin [1]. In the late 20th century,

with the advent of gene cloning, it became apparent that fungal

secondary metabolites are biosynthesized by clusters of coordi-

nately regulated genes. Such gene clustering is rare in eukaryotes.

In spite of limited number of secondary metabolites identified

from a single species, sequencing the genomes of filamentous fungi

has revealed far more than the expected numbers of secondary

metabolite biosynthetic (SMB) genes. The numbers of SMB genes

encoding polyketide synthases (PKSs) and non-ribosomal peptide

synthetases (NRPSs) range from 17–35 and 14–24, respectively, in

the individual genomes of eight Aspergillus species [2]. To identify

potential secondary metabolites (SMs) in filamentous fungi,

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e84028



various bioinformatics tools, including SMURF [3], antiSMASH

[4,5], CLUSEAN [6], and the method described by Andersen et

al. [7], have been developed and successfully applied. The basic

concept underlying these tools is the existence of SMB gene

clusters, which typically contain approximately 20 genes, including

the so-called core genes of PKS, NRPS, or dimethylallyl

tryptophan synthases (DMATs). These methods are completely

dependent on the known sequence motifs of the core genes;

therefore, they can only be used to detect SMB gene clusters that

include these core genes. In addition, they cannot distinguish

functional clusters from silent or cryptic clusters in fungi [8]

because they do not incorporate transcriptomics data.

Many secondary metabolites with important medicinal activities

have scaffold structures that are mostly synthesized by the core

genes of PKS or NRPS, but there are also others independent of

those core genes such as oxylipins, a derivative of fatty acids [9].

We recently discovered the SMB gene cluster for kojic acid (KA),

which is the representative secondary metabolite of Aspergillus

oryzae [10,11]. The KA cluster could not be detected by

conventional methods due to the lack of the core genes. KA was

discovered in 1907 and has been used industrially [12], but its

biosynthetic gene cluster was found only recently. This fact

indicates the extreme difficulty in identifying SMB gene clusters

without any core genes.

Comparative genomics has shed light on the characteristics of

SMB genes that localize to so-called non-syntenic blocks (NSBs)

[13–15]. NSBs harbor genes that have roles in the transport and

metabolism of various compounds [13] and are highly divergent

between species [16–18]. Two-thirds of the genes in NSBs are not

homologous with any genes with known functions [13]. Consid-

ering our limited knowledge regarding SMB genes and their high

level of diversity, it can be speculated that the significant

accumulation of unknown genes on NSBs is due to the presence

of a large number of SMB genes on NSBs. In support of this

hypothesis, the KA gene cluster is located in an NSB [11].

To enhance the exploration of SMB gene clusters in fungal

genomes, especially those without core genes, we have developed

MIDDAS-M, a motif-independent de novo detection algorithm for

secondary metabolite gene clusters. We used virtual gene cluster

generation on an annotated genome sequence integrated with

highly sensitive and accurate scoring for the cooperative

transcriptional regulation of cluster member genes. MIDDAS-M

accurately predicted 38 SMB gene clusters in 3 fungal strains that

have been experimentally confirmed and/or predicted by other

motif-dependent methods. In addition, we discovered a novel

SMB cluster with a potentially new mechanism of cyclic peptide

biosynthesis using MIDDAS-M. The cluster was experimentally

validated to perform ustiloxin B biosynthesis. Because it is fully

computational and independent of empirical knowledge about

SMB core genes, MIDDAS-M permits a large-scale, comprehen-

sive analysis of SMB gene clusters, including those with novel

biosynthetic mechanisms that do not contain any functionally

characterized genes.

Results

MIDDAS-M algorithm
The algorithm depends on the concurrent expression of SMB

cluster member genes. First, all possible gene clusters (virtual

clusters, VCs) are identified in a previously gene-annotated

genome by moving a frame with a given cluster size (ncl) from 3

to 30 genes (Fig. 1A). The cluster induction ratio (M score) for a

VC is calculated by summing the induction ratios of all genes in

the VC. For a given gene, the induction ratio is determined by

dividing the expression level of the gene in an SM-producing

condition by the expression level in a non-SM-producing

condition. The Mi,ncl score for each VC, which begins at gene i

with cluster size ncl, was determined according to the following

equation:

Mi,ncl~
Xizncl{1

k~i

mk{m

sm

ð1Þ

where mk is the induction ratio of gene k, and m and sm are the

mean and the standard deviation of all m values, respectively. As

shown in Equation 1, each m value should be normalized by Z-

score transformation before the summation. M scores are

evaluated for each ncl from 3 to an appropriate upper limit (30

in this study). Using this procedure, the M scores of ‘‘non-real’’

clusters in which genes are not co-regulated should have low

absolute values because positive values are cancelled out by

negative values, and vice versa. In contrast, M scores of ‘‘real’’

SMB clusters show significantly high absolute values because the

genes in the cluster are regulated concurrently (Fig. 1B).

SMB cluster candidates exhibit relatively high M scores, but the

background noise from pseudo-positive VCs remains high

(Fig. 2B). To help distinguish between VCs that are SMB clusters

and those that are not, M scores deviating from the normal

distribution are magnified by statistical treatment. The magnified

score, vi,ncl, was evaluated for each Mi,ncl at each ncl using the

following equation:

vi,ncl~{
Mi,ncl{Mncl

sM,ncl

� �d

log Pi,ncl ð2Þ

where Mncl and sM,ncl are the mean and the standard deviation,

respectively, of all M scores at ncl, d is a positive odd integer as an

order of the moment (set as 3 in this study), and Pi,ncl is the

occurrence probability of Mi,ncl in the distribution of all M scores at

ncl. The moment expresses the magnitude of deviation from

standard distribution, being emphasized as the order d increases.

An SMB cluster candidate with Mi,ncl largely deviated from the

mean value shows a large absolute value of vi,ncl, because of the

large Z-score (the content in the parenthesis of Equation 2) and the

logarithmic Pi,ncl (,,1) converging to minus infinity. The v score

shows a positive or negative value when the gene cluster is induced

or repressed, respectively.

For each starting gene, the ncl showing the largest v value (vmax)

is chosen as the cluster size. This step contributes to the high

sensitivity of MIDDAS-M by surveying clusters of different sizes.

Finally, the clusters showing the largest vmax among overlapping

VCs (sub-clusters of a candidate cluster) are defined as the

‘‘unique’’ cluster (detailed explanation with an example is

described in the ‘‘MIDDAS-M computation’’ section of the

Supplementary Method in Appendix S1). MIDDAS-M also

automatically generates the candidate clusters from all possible

pairwise comparisons of transcriptomes from several or more

culture conditions. This allows comprehensive de novo predictions

using large-scale transcriptome datasets based on a variety of

culture conditions. See Supplementary Method, the ‘‘MIDDAS-M

computation’’ section in Appendix S1 for further details.

MIDDAS-M is available for use at the following server (http://

133.242.13.217/MIDDAS-M).

MIDDAS-M: Sensitive Detection of SMB Gene Clusters

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e84028



Accurate detection of experimentally validated SMB
gene clusters

MIDDAS-M was applied to the filamentous fungus A. oryzae for

the detection of the KA gene cluster. This metabolite is an

inhibitor of pigment formation in animal tissues and is therefore

used as a skin-whitening compound in cosmetics [19,20]. The KA

cluster was recently found to be composed of only three genes,

none of which encodes a PKS, NRPS, or other core SMB enzyme.

Instead, the three genes encode an oxidoreductase, a Zn(II)2-Cys6

(C6)-type transcription factor, and a major facilitator superfamily

transporter [10,11]. KA production is typically observed after 3 to

4 days of inoculation of A. oryzae in liquid growth media, and can

be stopped by adding a small amount of sodium nitrate to the

medium [21,22].

Figure 2 shows the results of MIDDAS-M analysis for three A.

oryzae transcriptomes in the relative transcription observed under

KA-inducing vs. KA-non-inducing conditions in two-color DNA

microarray experiments; 4 vs. 2 days, 7 vs. 4 days, and without vs.

with nitrate. Among the 12,084 genes of A. oryzae [13], 5,046 genes

with expression in all three datasets were used for the analysis. The

M scores for the 7/4-day dataset are normally distributed when

the cluster size ncl = 1, but the symmetry was lost, and the top of

the distribution slid to the left, when ncl = 3 and 5, accompanied by

the emergence of large M scores outside of the normal distribution

(Fig. 2A). MIDDAS-M emphasizes this deviation of the SMB

cluster candidates through Equation 2, enabling their sensitive

detection. In the 7/4-day dataset, a distinct single peak emerged in

the vmax score from the gene induction ratio (m value) as

designated by a red arrow in Fig. 2B. The gene cluster

corresponding to this peak was composed of three genes,

AO090113000136, AO090113000137, and AO090113000138,

which were exact matches to the three KA biosynthetic genes

[10,11]. The highly sensitive and specific detection of the KA gene

cluster, which has a small cluster size of 3 and does not include any

core genes, indicates that MIDDAS-M has strong potential as a

motif-independent predictor of SMB gene clusters. In the 4/2-day

Figure 1. Principle of the MIDDAS-M algorithm. (A) Virtual cluster (VC) generation for SMB gene cluster detection. Gene clusters on a genome
are evaluated comprehensively by a moving window with a specific cluster size; the cluster size can be changed from 3 to 30 or another appropriate
size. (B) Schematic representation of MIDDAS-M. Candidate SMB gene clusters show large deviations from the standard deviation after summing the
induction ratios of member genes and statistical enhancement. (C) Flow chart of the MIDDAS-M algorithm.
doi:10.1371/journal.pone.0084028.g001

MIDDAS-M: Sensitive Detection of SMB Gene Clusters

PLOS ONE | www.plosone.org 3 December 2013 | Volume 8 | Issue 12 | e84028



and without/with nitrate datasets, only small vmax signals were

observed, indicating that the increase of KA productivity in the

two datasets was not due to the transcriptional induction of the

genes responsible for KA biosynthesis.

MIDDAS-M was also tested for Fusarium verticillioides using a

time series of four transcriptomes obtained from mycelia grown in

the liquid medium used to induce fumonisin production [23]. This

fungus is a plant pathogen that produces mycotoxins and is

phylogenetically distantly related to Aspergillus. A comprehensive

comparison of the 4 transcriptomes followed by the MIDDAS-M

prediction yielded several distinct peaks of vmax, of which 5

corresponded to the known SMB gene clusters for fumonisin [24],

perithecium pigment [23], fusaric acid [23], bikaverin [25], and

fusarin [23] (Fig. 3). Although the size of the predicted SMB gene

cluster for fusaric acid was three-fold larger than the experimen-

tally validated clusters, the others were almost correct in size

(Table 1). This result clearly illustrates the high sensitivity of

MIDDAS-M in detecting functional SMB clusters.

The cluster harboring fusaric acid biosynthetic genes (peak c in

Fig. 3B) was predicted to have 17 genes (FVEG_125192F-

VEG_12535) by MIDDAS-M, whereas the cluster size reported

by Brown et al was 5 (FVEG_125192FVEG_12523) [23] (Table 1,

Fig. S2 in Appendix S1). The gene expression profile in this region

suggests existence of another cluster adjacent to the fusaric acid

gene cluster with a few additional genes in between (Fig. S2 in

Appendix S1). One of the remarkable features of MIDDAS-M is

the potential to predict a gene cluster even though it includes a

small number of genes that are not co-regulated with other cluster

member genes. This enables sensitive detection of gene clusters

from the dataset containing inaccurate data points due to their low

expression levels and/or biological fluctuation under the same

condition. It is thought that this characteristic led to the prediction

of the above cluster much longer than the actual size by combining

the two clusters into one. In addition to detecting the five clusters

noted above, this analysis revealed two other VCs with high vmax

scores (y1 and y2 in Fig. 3B). They were not predicted by SMURF,

and were composed of 3 and 4 genes, respectively, the latter of

which included an NRPS-like enzyme (Fig. 3B, Table S2 in

Appendix S1). To assign peaks to their corresponding compounds,

detailed analysis of the linkage between the gene cluster expression

and compound productivity is necessary.

Large-scale detection of SMB gene clusters by MIDDAS-M
To demonstrate the fully computational and motif-independent

features of MIDDAS-M for the comprehensive analysis of SMB

gene clusters, we employed a systematic pairwise comparison of A.

flavus 28 transcriptome datasets from a variety of cultivation

conditions (GSE15435 [26], Fig. 4A). MIDDAS-M detected 240

candidate clusters with the threshold of 0.05 for the statistical

Figure 2. Behavior and performance of MIDDAS-M in A. oryzae. (A) Histograms of M scores at ncl = 1, 3, 5, 7, and 10 in the transcriptomes at 7
vs. 4 days of cultivation in kojic acid (KA)-production medium. The symmetry broke at a cluster size of 3 because of the emergence of large M scores
due to the induction of the KA cluster genes. Arrows at the termini of the x-axis indicate the smallest and the largest values. (B) Emergence of a vmax

peak by MIDDAS-M from the raw induction ratio. The x-axis designates relative position of the genes on the A. oryzae RIB40 genome when eight
chromosomes are concatenated into one. The y-axis scales are the same for all three datasets in the same raw. The vmax peak indicated by the red
arrow corresponds exactly to the three genes responsible for KA production.
doi:10.1371/journal.pone.0084028.g002
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likelihood of false positives (vmax $1,016.7) in a total of 378 pairs

of datasets. The results included all 4 experimentally-validated

clusters, those for aflatoxin, aflatrem, cyclopiazonic acid, and KA

(Table 1). Using the datasets above, twenty-seven of the 55 clusters

predicted by SMURF were detected by MIDDAS-M (Table 1).

Secondary metabolites tend to be produced under only limited

culture conditions; in other words, SMB genes are silent under

most conditions. In addition, many SMB-like gene clusters may

have possibly lost their functions. For example, A. oryzae has the

gene cluster homologous to that for aflatoxin in A. flavus, but never

produces the compound due to mutations both inside and outside

the cluster [27]. SMURF, which uses only genome sequence

information, predicts clusters regardless of their silence or non-

functionality. In contrast, MIDDAS-M excludes non-functional

SMB gene clusters in defined culture conditions. Similarly,

MIDDAS-M predicted 35 of the 76 candidate clusters predicted

by antiSMASH (the column D in the ‘‘antiSMASH.AF’’ sheet in

Appendix S2). Certain peaks were detected under only limited

combinations of conditions, illustrating the utility of MIDDAS-M

for the comprehensive analysis of culture conditions that induce

rarely expressed SMB genes (Fig. 4B). For example, the peak

circled in Fig. 4B detected only in a limited conditions, composed

of AFLA_035680 through AFLA_035720, was not detected either

by SMURF or by antiSMASH.

The detected peaks were highly localized to NSBs (702 detected

cluster genes out of 969 total; see Table S3 in Appendix S1). This

result is in good agreement with the fact that the genes related to

secondary metabolite biosynthesis, transport, and catabolism (Q-

genes), identified in the EuKaryotic Orthologous Groups (KOG)

[28,29] on NSBs [13]. In addition, the detected gene clusters were

enriched for Q-genes compared with the whole genome,

regardless of their inclusion of core genes (SMURF+/2)

(Fig. 5A). Genes annotated as cytochrome P450 enzymes, which

constitute a large enzyme family often involved in SMB gene

clusters [30], represent 1.1% of the 13,471 genes in the A. flavus

genome, and are contained in 9.1% of the 240 unique clusters

detected by MIDDAS-M. The P450 gene content in the detected

gene clusters increased drastically to .60%, by applying threshold

vmax $15,800 (Fig. 5B), although the number of clusters

decreased exponentially along with increasing the threshold of

vmax score (24 clusters when vmax $10,000, Fig. S3 in Appendix

S1). SMB clusters are often regulated by C6-type transcription

factors [31], and major facilitator superfamily (MFS) transporters

are often present in SMB clusters [32]. These two genes also

appear more frequently in the clusters as the threshold increased.

Among 240 candidate SMB gene clusters detected by MIDDAS-

M with the threshold of 0.05 false positive rate, 89% (213) were

not detected by SMURF (Table S3 in Appendix S1), and this

tendency continued when vmax .10,000 (71% or 17 in 24). These

results strongly suggest that MIDDAS-M detected clusters of

SMBs even when the clusters did not include the core genes.

Detection of the KA cluster is the typical example. The ustiloxin B

biosynthetic gene cluster, which was first detected by MIDDAS-M

and experimentally-validated in this study, is another good

example. These two clusters are both lacking known core genes,

thus have never been predicted by the existing software tools based

on sequence information of core genes, such as SMURF and

antiSMASH (see detail in the next section). Use of high threshold

of vmax and gene functional information will increase accuracy of

predicting SMB gene clusters, though it may fail to detect novel

SMB clusters.

Identification of a novel ustiloxin B gene cluster by
MIDDAS-M

The comprehensive analysis of A. flavus transcriptomes by

MIDDAS-M revealed a pair of culture conditions (cracked maize

at 28uC versus 37uC) that showed 3 distinct peaks: the first peak

corresponded to the aflatoxin biosynthetic gene cluster; the second

peak to a putative cluster (designated cluster a) consisting of 18

genes (AFLA_0949402AFLA_095110; gene ID interval = 10 in

most cases); and the third peak to a putative cluster (cluster b)

consisting of 5 genes (AFLA_0392002AFLA_039240) (Fig. 6A).

To identify the compounds produced by clusters a and b, we

constructed three types of A. flavus deletion mutants for each

cluster using pyrG as a selectable marker. For cluster a, mutant

DAF_a had 13 genes (DAFLA_0949402AFLA_095060) deleted,

mutant DAF_a_4960 had one gene (DAFLA_094960) deleted, and

mutant DAF_a_5040 had one gene (DAFLA_095040) deleted. For

cluster b, mutant DAF_b had five genes (DAFLA_0392002A-

FLA_039240) deleted, mutant DAF_b_9210 had one gene

(DAFLA_039210) deleted, and mutant DAF_b_9230 had one

gene (DAFLA_039230) deleted (Fig. S1 and Table S1 in Appendix

Figure 3. Clear detection of known SMB gene clusters in F.
verticillioides by MIDDAS-M. (A) Expression levels of each gene on
the F. verticillioides genome in 4 samples of a transcriptome time series
at 24, 48, 72, 96 h in liquid fumonisin-inducing media. The highest value
of the 4 expression levels was plotted for each gene. (B) Absolute
maximum cluster scores (|vmax|) by the comprehensive pair-wise
calculation (4C2) for each gene detected from the same transcriptome
data as A. The step line plot in gray denotes the individual
chromosomes. The peaks designated by a through e correspond to
the 5 experimentally validated SMB clusters: a, fumonisin; b, perithe-
cium pigment; c, fusaric acid; d, bikaverin; e, fusarin. Two peaks to which
any known gene clusters do not correspond were designated as y1 and
y2.
doi:10.1371/journal.pone.0084028.g003
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Table 1. Experimentally-validated or SMURF-annotated SMB gene clusters detected by MIDDAS-M.

Fungus Compound/SMURFa vmax Gene IDb Cluster size Source

MIDDAS-Mc Otherd

A. oryzae Kojic acid 9544 AO090113000136 - AO090113000138 3 3 [10,11]

F. verticillioides Bikaverin (Cluster 7) 11708 FVEG_03379 – FVEG_03383 4 6 [25], SMURF

Fumonisin (Cluster 3) 9780 FVEG_00316 – FVEG_00329 14 15 [24], SMURF

Fusaric acid (Cluster 27) 6398 FVEG_12519 – FVEG_12535 17 5 [23], SMURF

Fusarin 840 FVEG_11078 – FVEG_11086 9 9 [23], SMURF

Perithecium pigment (Cluster
9)

12533 FVEG_03696 – FVEG_03699 6 4 [23], SMURF

Cluster 10 1700 FVEG_05526 – FVEG_05530 5 10 SMURF

Cluster 24 866 FVEG_11927 – FVEG_11931 5 7 SMURF

A. flavus Aflatoxin (Cluster 54) 99087 AFLA_139150 - AFLA_139320 18+5 29 [37], SMURF

24302 AFLA_139370 – AFLA_139410

Aflatrem 3670 AFLA_096380 - AFLA_096400 (ATM1) 3 3 [44]; Blastn, E0.0

(Cluster 14) 8984 AFLA_045490 - AFLA_045540 (ATM2) 6 5

Cyclopiazonic acid 36281 AFLA_139460 – AFLA_139490 4 3 [45]

Gliotoxin-like (Cluster 22) 32872 AFLA_064380 – AFLA_064590 22 26 Annotation, SMURF

Kojic acid 8273 AFLA_096030 - AFLA_096060 4 3 [10,11]; Blastp, E0.0

Ustiloxin B 21857 AFLA_094940 – AFLA_095110 18 ? This study

Cluster 3 7369 AFLA_005320 - AFLA_005350 4 8 SMURF

Cluster 5 1960 AFLA_006170 - AFLA_006190 3 7 SMURF

Cluster 7 5193 AFLA_009980 - AFLA_010030 6 8 SMURF

Cluster 8 9341 AFLA_010600 - AFLA_010630 4 10 SMURF

Cluster 10 18356 AFLA_023000 – AFLA_023040 5 15 SMURF

Cluster 17 1423 AFLA_054370 – AFLA_054390 3 25 SMURF

Cluster 18 1072 AFLA_060030 - AFLA_060050 3 15 SMURF

Cluster 19 26351 AFLA_060660 - AFLA_060700 5 9 SMURF

Cluster 20 2079 AFLA_062820 - AFLA_062900 9 18 SMURF

Cluster 21 8227 AFLA_064260 - AFLA_064330 8 21 SMURF

Cluster 23 5702 AFLA_066690 – AFLA_066720 4+6 33 SMURF

2888 AFLA_066890 - AFLA_066940

Cluster 24 4508 AFLA_069320 - AFLA_069340 3 10 SMURF

Cluster 25 4219 AFLA_070860 – AFLA_080890 4+4 26 SMURF

5148 AFLA_070910 - AFLA_070950

Cluster 27 2012 AFLA_082140 - AFLA_082160 3 14 SMURF

Cluster 33 5797 AFLA_101700 - AFLA_101770 8 6 SMURF

Cluster 36 1026 AFLA_105410 – AFLA_105450 5 5 SMURF

Cluster 37 13236 AFLA_108550 – AFLA_108580 4 18 SMURF

Cluster 41 2503 AFLA_116130 – AFLA_116150 3+3 26 SMURF

1331 AFLA_116170 – AFLA_116190

Cluster 44 6277 AFLA_118390 – AFLA_118410 3 11 SMURF

Cluster 45 2494 AFLA_118940 – AFLA_119000 7 19 SMURF

Cluster 46 4420 AFLA_119080 - AFLA_119120 5 6 SMURF

Cluster 47 12300 AFLA_121470 - AFLA_121540 8 8 SMURF

Cluster 49 1429 AFLA_128030 - AFLA_128110 9 13 SMURF

Cluster 53 2813 AFLA_137830 – AFLA_137860 4+3 15 SMURF

1844 AFLA_137890 – AFLA_137910

The detection threshold is .95th quantile (false positive rate 0.05).
The most induced combinations of culture conditions are listed in Appendix S2.
aClusters with numbers are those predicted by SMURF. The list of the predicted gene clusters can be downloaded from http://jcvi.org/smurf/precomputed.php.
bGene IDs are for annotated genome sequences in GenBank (A. oryzae, F. verticillioides, and A. flavus) as described in Appendix S1.
cTwo numbers are described when the predicted clusters are divided into two regions and represent the corresponding clusters.
dCluster size experimentally validated or predicted by SMURF (refer to Source in detail).
doi:10.1371/journal.pone.0084028.t001
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Figure 4. SMB gene cluster detection by MIDDAS-M in A. flavus. (A) A 3D view of the vmax scores for all genes and combinations of culture
conditions. Comprehensive detection of SMB gene clusters was performed on all 378 pairwise combinations of culture conditions from 28
transcriptomes. The gray and green areas denote blocks of synteny and non-synteny, respectively, with the A. nidulans genome. The positions of
gene clusters possessing PKS and NRPS core genes predicted by SMURF are shown in orange and blue, respectively. The chemical structures of four
A. flavus secondary metabolites are shown at the positions of corresponding SMB gene clusters; the ustiloxin B gene cluster was first identified in this
paper. (B) Magnified view of the area on chromosome 2 corresponding to the black square in A. As an example, a yellow circle designates the peak
observed specifically at particular positions, from which conditions for producing the corresponding compound were determined.
doi:10.1371/journal.pone.0084028.g004

Figure 5. Frequency of SMB-related genes in clusters detected by MIDDAS-M. (A) Ratios of SMB-related genes (Q-genes) detected by KOG
analysis with the cluster genes detected by MIDDAS-M (hatched bars) and all the genes in the corresponding genome (gray bars). (B) The proportion
of clusters containing genes annotated as P450 enzymes (pink), C6 transcription factors (blue), and major facilitator superfamily members (green)
were calculated for detected clusters with the threshold score of vmax in A. flavus. The value is plotted to a vmax of 18,350, at which 10 clusters remain
to be detected.
doi:10.1371/journal.pone.0084028.g005
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S1). The deletion mutant lacking the entire aflatoxin cluster and

the pyrG revertant were also constructed as positive controls. After

solid cultivation of the 7 deletion mutants and the control strain

(pyrG revertant) on cracked maize at 28uC for 7 days, water-soluble

metabolites were analyzed by high-performance liquid chroma-

tography-mass spectrometry (HPLC-MS). By comparing metab-

olite profiles between mutants, we found a negative ion spectrum

at m/z 644.2 with a retention time (RT) of 8.9 min that was

absent only in water extracts from the three deletion mutants

corresponding to cluster a (Figs. 6B, 6C). Ultra-performance liquid

chromatography-high-resolution mass spectrometry (UPLC-

HRMS) showed that the accurate mass of the corresponding ion

was 646.240 [M+H]+ and 644.231 [M-H]2 with UV absorption at

290, 250, and 209 nm. By searching an organic compound

database, we found that these measurements corresponded to

ustiloxin B (C26H39N5O12S; MW 645.681). Ustiloxin B was first

isolated as a water-soluble component of false smut balls on rice

panicles infected by the fungus Ustilaginoidea virens [33–35]. The

HPLC-purified compound from the water extract of the control

strain (pyrG revertant) was compared with a ustiloxin B standard

using UPLC-HRMS. The two compounds showed identical mass

spectra with an RT of 1.61 min (Fig. 6D) as well as identical peaks

in the extracted ion chromatogram at m/z 644.231 [M-H]2 and

in the UV spectra at 290, 254, and 220 nm (Fig. 6E). These results

provide the first evidence that the genes AFLA_094960 and

AFLA_095040 are responsible for ustiloxin B biosynthesis,

indicating that cluster a, composed of AFLA_094940 through

AFLA_095110, is a ustiloxin B biosynthetic cluster.

Based on its chemical structure, ustiloxin B is likely character-

ized as a non-ribosomal peptide. One of the genes responsible for

producing ustiloxin B, AFLA_095040, was putatively annotated as

an NRPS-like enzyme in the NCBI database (gene ID: 7917917).

However, the AFLA_095040 gene contains only the catalytic

domain of a pyridoxal 59-phosphate-dependent enzyme from

aminotransferase family-5, which must be involved in reactions

other than non-ribosomal peptide bond biosynthesis (Fig. S4 in

Appendix S1 and the ‘‘ust’’ sheet in Appendix S2). Moreover,

none of the NRPS-specific catalytic domains (A, C, PCP, or TE)

were found in any genes in or near the cluster (AFLA_0949302A-

FLA_095170), as determined by a BLAST [36] search against the

UniProtKB database [37,38]. Accordingly, the cluster was not

detected by SMURF (http://jcvi.org/smurf/precomputed.php),

antiSMASH (the ‘‘antiSMASH.AF’’ sheet in Appendix S2), or

other currently available conventional SMB gene cluster predic-

tion methods, which use catalytic domain sequence motif

information. This result clearly indicates that MIDDAS-M has

potential use as a motif-independent predictor of functional SMB

gene clusters.

Discussion

In this work, we described the first sequence motif-independent

algorithm for the discovery of functional fungal SMB gene clusters

based on a combination of whole genome sequence data and

transcriptome information. To achieve this novel and fully

computational approach, we combined an algorithm to generate

comprehensive virtual gene clusters on a genome of interest with

the statistical processing of signal enhancement based on deviation

from a standard distribution for transcriptional induction or

repression of a cluster. First, we confirmed that our algorithm,

MIDDAS-M, accurately detected experimentally validated SMB

gene clusters, including the fumonisin, aflatoxin/sterigmatocystin,

and KA clusters, from DNA microarray datasets obtained under

culture conditions associated with the production and non-

production of these compounds. In contrast to the former 3

clusters, the KA gene cluster does not include any genes

considered as core SMB genes, such as PKSs, NRPSs, DMATs,

or terpene cyclases (TCs). The KA gene cluster predicted by

MIDDAS-M was the sole candidate with a correct cluster size.

Nine gene disruption experiments were required to identify this

cluster without MIDDAS-M prediction in our previous work using

the same transcriptomes [11].

The fully computational and motif-independent feature of

MIDDAS-M allowed for the comprehensive analysis of SMB gene

clusters based on expression differences in a given pair of multiple

transcriptomes. Because little is known about SMB gene clusters

other than those containing PKS, NRPS, TC, and DMATS, the

validation of the MIDDAS-M results is extremely difficult.

Nonetheless, based on the MIDDAS-M prediction, we identified

the first SMB gene cluster for ustiloxin B, the non-ribosomal

peptide-like compound that inhibits microtubule assembly [35], in

A. flavus. Although ustiloxin B was identified more than 20 years

ago, the ustiloxin B biosynthetic gene cluster had remained

unknown until the present study. The lack of the NRPS catalytic

domains A, C, PCP, and TE in all genes both in the cluster and

within 10 adjacent genes outside the cluster strongly suggests a

novel mechanism for cyclic peptide biosynthesis. Our further

deletion experiments and sequence analysis revealed that at least 3

genes with unknown functions (AFLA_094970, AFLA_094980,

and AFLA_094990) may be involved in the peptide bond synthesis

and cyclization of the compound, supporting the idea above (data

not shown). However, there still remains a possibility that

additional gene encoding an NRPS for the ustiloxin biosynthesis

may be located distantly from the cluster.

MIDDAS-M enables the highly sensitive identification of SMB

gene clusters, but the predicted cluster sizes may be smaller than

the actual cluster sizes in some cases. For example, the aflatoxin

gene cluster of A. flavus is composed of 29 genes from

AFLA_139150 through AFLA_139440 [39,40], but MIDDAS-

M detected 23 genes, AFLA_139150 through AFLA_139410

(excluding AFLA_139330 – AFLA_139360). This discrepancy is

most likely due to the Z-score transformation at each ncl used to

normalize M scores before enhancement. When information from

a candidate gene cluster(s) is included at a certain ncl, the standard

deviation used for the denominator in Z-score transformation

increases. As a result, the M score(s) of the strongly positive gene

cluster tend to be smaller at the correct size. This factor does not

affect the detection sensitivity of cluster positions but does affect

the cluster boundary detection. One potential solution for this

problem is to use another algorithm, such as co-expression

analysis, for the precise prediction of cluster boundaries after the

sensitive detection of cluster candidates by MIDDAS-M.

There are more than 100,000 fungal species in nature [41] that

are potential producers of bioactive compounds [31]. Because

fungal SMB genes are highly divergent [16,42,43], even fungal

species closely related to those that have already been sequenced

are worth sequencing to discover new SMB genes. We have

confirmed that MIDDAS-M performs equally well when using

transcriptomes from RNA-seq data in a comparative performance

with DNA microarray for SMB gene cluster detection. MIDDAS-

M enables the comprehensive exploration of functional SMB

genes in fungal genomes by effectively utilizing the vast amount of

available genome and transcriptome information, which will

accelerate the discovery of biosynthesis or other functional

categories of genes in the future.

MIDDAS-M: Sensitive Detection of SMB Gene Clusters

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e84028



Supporting Information

Appendix S1 Experimental details pertaining to the algorithm

execution using transcriptome data, gene disruption, and the

identification of ustiloxin B.

(DOCX)

Appendix S2 The comprehensive MIDDAS-M prediction data

for F. verticillioides (the ‘‘F.verticillioides’’ sheet) and A. flavus (the

‘‘A.flavus’’ sheet), the functional annotations of genes in or near

the ustiloxin B cluster found by BLAST against UniProtKB (the

‘‘ust’’ sheet), and the result of antiSMASH prediciton for A. flavus

in comparison to that of MIDDAS-M (the ‘‘antiSMASH.AF’’

sheet).

(XLSX)
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Figure 6. Identification of the ustiloxin B cluster in A. flavus based on the MIDDAS-M prediction. (A) MIDDAS-M results from a
combination of culture conditions in maize at 28uC versus 37uC. The leftmost distinct peak corresponds to the aflatoxin gene cluster. The other two
peaks were designated as clusters a and b. The step line plot in gray denotes the chromosomes. (B) Peaks at a retention time of 8.9 min detected in
the extracted ion chromatograms of m/z 644.260.1 in negative ion mode were not observed in the A. flavus deletion mutants of the genes in cluster
a (red). Chromatograms are for medium only (blue, negative control), the control strain (pyrG revertant, black), the aflatoxin cluster deletion mutant,
and three mutants with deletions in cluster b (gray). (C) The mass spectra at of the 8.9 min retention peaks in the control strain (above) and the
deletion mutant DAF_a (below). The MS peak of m/z 644.2 in the control strain was not present in the deletion mutant. (D) Comparison of the mass
spectra for ustiloxin B and the compound with m/z 644.2 (in negative ion mode) isolated from the control strain. (E) Comparison of the
chromatograms of the ustiloxin B reference standard and the compound isolated in this study. The extracted ion chromatogram of m/z 644.23 in
negative ion mode and UV chromatograms at 290, 254, and 220 nm are indicated.
doi:10.1371/journal.pone.0084028.g006
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