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Steroid hormones that serve as vital compounds are necessary for the development and
metabolism of a variety of organisms. The neverland (NVD) family genes encode the
conserved Rieske-type oxygenases, which are accountable for the dehydrogenation
during the synthesis and regulation of steroid hormones. However, the His-tagged
NVD protein from Caenorhabditis elegans expresses as inclusion bodies in Escherichia
coli BL21 (DE3). This bottleneck can be solved through refolding by urea or the
introduction of a maltose-binding protein (MBP) tag at the N-terminus. Through further
research on purification after the introduction of a MBP tag at the N-terminus, the
CD measurement and fluorescence-based thermal shift assay indicated that MBP was
favorable for the NVD proteins’ solubility and stability, which may be beneficial for
the large-scale manufacture of NVD protein for further research. The structural model
contained the Rieske [2Fe–2S] domain and non-heme iron-binding motif, which were
similar to 3-ketosteroid 9 α-hydroxylase.

Keywords: neverland, maltose-binding protein, refolding, soluble expression, structural model-3-

INTRODUCTION

Sterol derivatives mediate a wide range of growth, development, and evolution in most living
species (Thummel and Chory, 2002). In insects, the steroid hormone ecdysone plays an essential
role in the developmental transitions and egg production (Huang et al., 2008). The flies could not
reach the adult stage when the synthesis for lathosterol was disabled by shutting down the NVD
gene using the RNA interference (RNAi) in vivo. This matter can be solved by supplementing
the standard food or lathosterol on time (Lang et al., 2012). The sterol metabolites also had many
important properties, mostly related to the biosynthesis and regulation of amino acids and vitamins
(Romero et al., 2005), which are involved in cholesterol homeostasis and synthesis of vitamin D3.

The metabolites of vitamin D3 (cholecalciferol) have raised a great concern due to its
biological effects and physiological properties, such as calcium metabolism and phosphate
homeostasis, regulation of immune responses, promotion of insulin secretion, and stimulation
of cell proliferation and differentiation (Di Rosa et al., 2011). The vitamin D3 was synthesized
in humans, and most of the vertebrate animals on the skin, in which the 7-dehydroxycholesterol
(7-DHC) was converted into pre-vitamin D3 via ultraviolet (UV) irradiation at wavelengths of 290–
320 nm and, meanwhile, followed by a thermal isomerization to form vitamin D3 spontaneously
(Tripkovic et al., 2012). The high incidence of renal bone disease, osteomalacia and osteoporosis,
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was reported to be associated with the malabsorption of
calcium, which is caused by a deficiency of vitamin D3
(Kanis, 1999). Compared with the chemosynthesis of 7-DHC
using cholesterol (Dugas and Brunel, 2006), the bioconversion
of cholesterol into 7-DHC has attracted more attention
with regioselectivity and no pollution for the environment
(Yoshiyama et al., 2006; Wollam et al., 2011; Yoshiyama-
Yanagawa et al., 2011; Lang et al., 2012). The reaction can
be catalyzed by the evolutionarily conserved Rieske-domain
oxygenase neverland (NVD), which contains a Rieske [2Fe–
2S] cluster binding domain to function as an electron acceptor
and electron transfer, and a highly conserved non-heme
iron-binding center as a catalytic domain (Yoshiyama et al.,
2006). Several Rieske-domain oxygenase genes from reptiles,
insects, nematodes, and deuterostome species had been reported
including Anolis carolinensis (protein ID XP_003230725.2),
Anopheles gambiae (protein ID EAA04927.5) (Holt et al., 2002),
Bombyx mori (protein ID BAE94192.1) (Yamanaka et al., 2005),
Caenorhabditis elegans (protein ID CAA98235.2) (Rottiers et al.,
2006), Ciona intestinalis (protein ID BAK39961.1) (Yoshiyama-
Yanagawa et al., 2011), Drosophila melanogaster (protein ID
ABW08586.1) (Warren et al., 2002), Danaus plexippus (protein
ID OWR46621.1) (Zhan et al., 2011), Danio rerio (protein ID
BAK39960.1) (Yoshiyama et al., 2006), Gallus gallus (protein
ID XP_425346.2) (Yoshiyama et al., 2006), Hemicentrotus
pulcherrimus (protein ID BAK39963.1) (Yoshiyama-Yanagawa
et al., 2011), Rhodococcus rhodochrous (kshA, protein ID
ADY18310.1) (Petrusma et al., 2011), Spodoptera littoralis
(protein ID ADK56283.1) (Iga et al., 2013), Pseudomonas
fluorescens (prnD, protein ID AAB97507.1) (Lee et al., 2005),
Podarcis muralis (protein ID XP_028576239.1), Pseudonaja
textilis (protein ID XP_026568371.1), and Xenopus laevis (protein
ID BAK39959.1) (Yoshiyama-Yanagawa et al., 2011). The family
proteins are an essential regulator of cholesterol metabolism
and steroidogenesis.

In addition, NVD from Caenorhabditis elegans (CeNVD)
were identified in the metabolic pathway of cholesterol, and
genetic evidence has demonstrated that the NVD gene plays
a vital role in the larval development and adult aging in
the ecdysteroid biosynthesis (Rottiers et al., 2006; Yoshiyama-
Yanagawa et al., 2011). However, there have been a few reports
about the effective heterologous expression and production
system of the NVD family proteins in vitro. Here, we verified
that the NVD protein was expressed as inclusion bodies with
His-tag (Zhu et al., 2019b), and a small amount of soluble
protein was obtained, even though it was further refolded by urea.
Subsequently, we introduced the maltose-binding protein (MBP)
to enhance the soluble expression and purification of CeNVD in
Escherichia coli BL21 (DE3), and the thermostability of CeNVD
was also improved.

MATERIALS AND METHODS

Materials
The neverland gene from Caenorhabditis elegans (CeNVD) was
chemically synthesized in pET-28a(+) (Novagen, Madison, WI,

United States) vector by GENEWZ (Suzhou, China) after codon
was optimized. The DNA fragment of 1,110 bp was PCR
amplified using gene-specific primers, which contain the EcoRI
and HindIII restriction sites at the 5′- and 3′-terminal, and was
cloned into the pMal-c2X (New England Biolabs, Beverly, MA,
United States) plasmid vector, which contains an N-terminal
MBP-tag and sequence. The E. coli BL21 (DE3) (Novagen,
Darmstadt, Germany) strain was employed as a heterologous
expression host.

Expression and Purification
The recombinant plasmid was transformed into an E. coli
BL21 (DE3) strain and grown in a Luria–Bertani (LB)
medium supplemented with kanamycin (50 µg/ml) or ampicillin
(100 µg/ml) with a shaking of 220 rpm at 37◦C. When the
optical density at 600 nm (OD600) reached 0.6–0.8, 0.5 mM,
isopropyl-β-D-thiogalactopyranoside (IPTG) was added to the
culture, and the recombinant cells were cultivated with a shaking
of 160 rpm at 16◦C for 16–18 h to induce the protein expression.
After cultivation, the recombinant cells were harvested by
centrifugation at 5,000 × g for 15 min at 4◦C and washed twice
with PBS (pH 8.0) (Sun et al., 2019).

In order to purify the CeNVD_pET-28a(+), the washed
cells were resuspended in a 30-ml lysis buffer A (20 mM
Tris–HCl, 20 mM imidazole, 500 mM NaCl, and 1 mM
dithiothreitol, pH 8.0) containing 0.5 mg/ml lysozyme and
1 mM phenylmethanesulfonyl fluoride (PMSF) and disrupted
using a sonicator (Sonic Dismembrator Model 100, Pittsburgh,
PA, United States) on ice bath for 20 min, the unbroken cells
and cell debris were removed by centrifugation at 20,000 × g
for 30 min at 4◦C, the supernatant was applied to a nickel-
nitrilotriacetic acid (Ni-NTA) agarose affinity chromatography
matrix (QIAGEN, Hilden, Germany), and pre-equilibrated with
lysis buffer A. After washing the open column with 10-ml
of lysis buffer A extensively, the bound protein was eluted
with a 10-ml elution buffer A (20 mM Tris–HCl, 300 mM
imidazole, 300 mM NaCl, and 1 mM dithiothreitol, pH 8.0)
(Mao et al., 2018).

For purification of the CeNVD_pMal-c2X, the amylose resin
was applied to the fixed MBP_CeNVD fusion protein. The
unbound protein was washed with lysis buffer B (20 mM Tris–
HCl, 500 mM NaCl, 1 mM EDTA, and 1 mM dithiothreitol, pH
8.0), and the target protein was eluted with 10 ml of elution buffer
B (20 mM Tris–HCl, 20 mM maltose, 500 mM NaCl, 1 mM
EDTA, and 1 mM dithiothreitol, pH 8.0) (Zhu et al., 2019b).
Then the protein was further purified by an anion exchange
chromatography employing a Resource Q column (column
volume: 6 ml, flow rate: 4 ml/min, GE Healthcare, Stockholm,
Sweden) on the ÄKTA system (GE Healthcare, Sweden) (Sun
et al., 2018). The purified enzyme was eluted with a linear
gradient between 0 and 1 M NaCl at a flow rate of 3 ml/min.
Subsequently, the MBP tag was digested using a Factor Xa
Protease (New England Biolabs, Beverly, MA, United States) at
4◦C for 12 h and then loaded on an amylose resin to remove
the MBP tag and undigested protein. The flow-through buffer
containing the target protein was collected and concentrated for
further experiments.
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Western Blot Analysis of
CeNVD_pET-28a(+)
After the centrifugation of the disrupted CeNVD_pET-28a(+),
the cleared supernatant and precipitant were loaded on SDS–
PAGE gels, then all the protein molecules was transferred to
a PVDF membrane and blocked in a PBST buffer (PBS pH
8.0, 0.02% Tween-20) containing a 1% bovine serum albumin
(BSA) for 2 h, followed by incubation in an anti-His-tag mouse
monoclonal antibody (Abcam, Cambridge, United Kingdom),
which was diluted in a blocking buffer (PBST pH 8.0, 1% BSA)
at the indicated concentrations of 1:5,000 for 12 h at 4◦C.
After washing with PBST for four times, the membrane was
protected from light and incubated with the HRP-conjugated
secondary antibody (HRP-conjugated goat anti-mouse IgG,
Tiangen Biochemical Technology, Beijing, China) at a dilution
of 1:1,000 and room temperature for 2 h. After washing, the
target protein was trapped by the HRP-DAB chromogenic
substrate kit (Tiangen Biochemical Technology, Beijing, China),
and the immunoreactive band was digitally scanned using an
Odyssey Infrared Imager (LI-COR Bio-science, Lincoln, NE,
United States) (Wan et al., 2016).

The Refolding of Denatured Protein
The CeNVD_pET-28a(+) cells were collected and resuspended
in lysis buffer C (20 mM Tris–HCl, 20 mM imidazole, 500 mM
NaCl, 8 M urea, and 1 mM DTT, pH 8.0), and then disrupted
and centrifuged as mentioned above. The cleared supernatant
containing the denatured enzyme was refolded by sequential
dialysis with a gradient descent of urea concentrations (7, 6, 5,
4, 3, 2, 1, 0.5, 0 M), then trapped on a pre-equilibrated Ni-NTA
superflow resin (QIAGEN, Hilden, Germany), and washed with
lysis buffer D (20 mM Tris–HCl, 20 mM imidazole, 500 mM
NaCl, 1 mM dithiothreitol, 0.5 mM GSSG, 3 mM GSH, and
500 mM arginine, pH 8.0). The refolded protein was eluted with
elution buffer D (20 mM Tris–HCl, 300 mM imidazole,300 mM
NaCl, 0.5 mM GSSG, 3 mM GSH, 500 mM arginine, and
1 mM dithiothreitol, pH 8.0) (Qin et al., 2017a). The protein
concentration of each purification step was measured via the BCA
protein assay kit (Solarbio, Beijing, China) (Qin et al., 2017b).

Molecular Mass Determination
The molecular weight of the native CeNVD was measured by a gel
filtration chromatography using a Superdex200 Increase 10/300
GL column on the ÄKTA system (GE Healthcare, Sweden) (Zhu
et al., 2019a). The target enzyme was eluted with a buffer (20 mM
Tris–HCl, 150 mM NaCl, and 1 mM DTT, pH 8.0) at a flow rate
of 1 ml/min with aldolase (158 kDa), conalbumin (75 kDa) as
calibration proteins (GE Healthcare).

Circular Dichroism Measurements
The circular dichroism (CD) spectra was determined using
a MOS-450 CD spectropolarimeter (Biologic, Claix, Charente,
France). The protein sample was loaded into a 1-cm path-length
quartz cuvette in which 0.1 mg/ml of protein was dissolved in PBS
(pH 8.0), and the CD data were recorded in the far-UV band of
190–250 nm at room temperature for an average of four times

scan with a rate of 1 nm/s, a bandwidth of 0.1 nm, and a step
resolution of 0.1 nm (Zhu et al., 2019c). Analysis of the protein
secondary structure was performed with the program BeStSel1

(Micsonai et al., 2015, 2018).

Fluorescence–Based Thermal Shift
Assay
The thermal stability of CeNVD was characterized via the
fluorescence-based thermal shift assay using a 48-well assay
plate real-time PCR instrument (Bio-Rad, Hercules, CA,
United States). Reaction samples were conducted in three
replicates that contained 0.4 mg/ml of protein and 100× SYPRO
Orange dye in PBS buffer (pH 8.0). The temperature was
increased with a linear gradient of 20–90◦C at 0.5◦C/30 s, and
the minimal value was regarded as the melting temperature (Tm)
(Mao et al., 2020a).

Structure Modeling of CeNVD
The three-dimensional (3D) homology model of CeNVD
was generated by the SWISS-MODEL (swissmodel.expasy.org/)
(Guex and Peitsch, 1997) using a template of 3-ketosteroid 9
α-hydroxylases from R. rhodochrous (PDB ID: 4QDF, 2.43 Å)
(Penfield et al., 2014), which shared a 30% sequence identity
with CeNVD. Then the generated models were visualized and
analyzed using the PyMoL software2.

RESULTS AND DISCUSSION

Sequence Alignment and Phylogenetic
Analysis
The phylogenetic tree of Rieske oxygenase from various
microorganisms revealed that the evolutionary relationship of
CeNVD was similar to that of C. intestinalis (Figure 1A)
with 41.8% amino acid sequence identity. It showed the lower
sequence identity of 30.2% with B. mori. BLAST and sequence
analysis indicated that the NVD from C. elegans shared a
higher sequence identity with X. laevis (45.7%), D. rerio (44.9%),
G. gallus (44.0%), C. intestinalis (41.8%), and A. gambiae
(40.3%). Amino acid sequence alignment and analysis with
the homologous proteins displayed that the family proteins
contained two evolutionally conserved domains, Rieske [2Fe–
2S] domain (C-X-H-X16-17-C-X2-H) and non-heme iron-
binding motif [Fe(II); E/D-X3-D-X2-H-X4-H]. The conserved
residues in CeNVD contained C122, H124, C143, H146 in the
Rieske domain, and E230, D234, H237, H242 in the Fe (II)
domain (Figure 1B).

Heterologous Expression and
Purification of CeNVD Recombinant
Enzyme
The CeNVD_pET28a(+) was expressed in E. coli BL21 (DE3)
and purified by the His-trap affinity chromatography. SDS-PAGE

1http://bestsel.elte.hu
2http://www.pymol.org

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 October 2020 | Volume 8 | Article 593041

http://swissmodel.expasy.org/
http://bestsel.elte.hu
http://www.pymol.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-593041 October 15, 2020 Time: 19:11 # 4

Mao et al. Characterization of CeNVD

FIGURE 1 | Sequence alignment and phylogenetic tree of Caenorhabditis elegans (CeNVD) with family enzymes. (A) The phylogenetic analysis of Rieske
oxygenases from different species. (B) Multiple alignment of CeNVD with other Rieske oxygenases; the green triangle (N) and orange asterisk (?) were responsible for
the Rieske [2Fe–2S] domain (C-X-H-X16-17-C-X2-H) and non-heme iron-binding motif [Fe(II); E/D-X3-D-X2-H-X4-H], respectively. The alignment was prepared using
the program ESPript 3.0 service (http://espript.ibcp.fr/ESPript/ESPript/).

and Western blot analysis demonstrated that the target protein
appeared as a single band with a molecular mass of approximately
42 kDa, consistent with the calculated molecular weight of
42,800 Da. However, the protein was overwhelmingly expressed
as inclusion bodies (Figures 2A,B). Subsequently, the CeNVD
gene was cloned and inserted into pMal-c2X. The reconstructed

enzyme was overexpressed and purified by a genericmultiple-step
purification using an amylose fast flow resin and anion exchange
chromatography (Figures 3A,B). The MBP-tag was then digested
by a Factor Xa protease and removed by an amylose resin
(Figure 3C). The yields and purities of CeNVD for the different
purification stages are summarized in Table 1. Finally, 4.1 mg
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FIGURE 2 | Purification of the CeNVD_pET28a(+) by nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. (A) SDS-PAGE analysis of CeNVD_pET28a(+).
(B) Western blot analysis of CeNVD_pET-28a(+). (C) SDS-PAGE analysis of the denatured and refolded protein. (D) Size-exclusion chromatography of the refolding
protein, aldolase (158 kDa), conalbumin (75 kDa) as reference proteins; Lanes 1: supernatant; 2: sediment; 3: flow-through; 4: wash buffer; 5: resin before eluting; 6:
elution buffer; 7: resin after eluting.

FIGURE 3 | (A) Purification of CeNVD_pMal-c2X by the MBP-trap affinity chromatography. (B) Purification of CeNVD_pMal-c2X by the anion-exchange.
(C) Purification of CeNVD by the MBP-trap without the MBP tag. Lanes 1: supernatant; 2: sediment; 3: flow-through; 4: wash buffer; 5: resin before eluting; 6:
elution buffer; 7: resin after eluting.
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TABLE 1 | Kinetic parameters of KsdD3 WT and mutants toward nine substrates.

Purification step Total protein (mg) Target protein (mg) Purity (%) Yield (%)

Supernatant of MBP_CeNVD 72.3 21.4 29.6 100

Eluate from Resource Q 12.6 9.7 77.0 45.3

Flow through from the MBP-trap after digesting the MBP-tag 4.5 4.1 91.1 19.2

Eluate from the Ni-NTA resin after refolding 8.7 6.4 73.6 29.9

Eluate from Superdex200 3.6 3.2 88.9 15.0

Summary of the yields and enrichment factors of Caenorhabditis elegans (CeNVD) for different purification process. The results are based on the cell material from a
200-ml Escherichia coli culture.

FIGURE 4 | (A) The CD spectra and (B) melting curves of CeNVD. The experiments were conducted in three replicates, and the data represent the
means ± standard deviations.

TABLE 2 | Secondary structure assignments (%) of CeNVD determined by circular
dichroism (CD) spectroscopy in the wavelength region from 190 to 250 nm.

Protein α-Helix β-Strand Turn Other

Antiparallel Parallel

Refolded His_CeNVD 16.4 11.9 13.4 6.7 51.6

MBP_CeNVD 9.5 8.9 15.8 8.5 57.3

1MBP_CeNVD 22.5 17 10.1 4.6 45.8

of CeNVD with 91.1% high purity was obtained in 200-ml
of cell culture. Therefore, the MBP was advantageous to the
soluble expression and purification of CeNVD in E. coli, and the
purification multiple-step purification method was necessary to
obtain highly purified recombinant CeNVD.

Characterization of the Refolded
His_CeNVD
His_CeNVD was expressed as inclusion bodies. Therefore,
we added arginine and urea to refold the protein with an
extra redox system to improve the refolding yield, such as
reduced and oxidized glutathione (GSH and GSSG) (Chen
et al., 2016). Here, we used a gradient descent of urea with
500 mM arginine and a redox pair (GSH and GSSG) to

facilitate the protein solubilizing and refolding. After dialysis, the
refolded His_CeNVD was further purified by an Ni-NTA affinity
chromatography (Figure 2C), and the fraction was further
analyzed through a gel filtration chromatography, and a single
peak was detected at 280 nm. Consistent with the gel filtration
chromatography analysis, SDS-PAGE indicated that the refolded
His_CeNVD of higher purity (88.9%) (Table 1) was obtained and
a trimer state in solution (Figure 2D).

Characterization of All CeNVD
The secondary structure of the MBP_CeNVD, 1MBP_CeNVD,
and refolded His_CeNVD were measured by CD spectroscopy
(Figure 4A). The MBP_CeNVD showed a negative absorption
peak centered around 202 nm, and the percentage of α-helix,
β-strand, turn, and unordered regions were 9.5%, 24.7%, 8.5%,
and 57.3%, respectively. The CD spectrum of the 1MBP_CeNVD
and refolded protein demonstrated a visible increase in α-helix
(22.5%, 16.4%) and a slight decrease in turn structures (4.6%,
6.7%) and unstructured regions (45.8% and 51.6%) (Table 2).

Fluorescence-based thermal shift assay was used to determine
the thermostability of the three types of CeNVD. As shown
in Figure 4B, the Tm value of the MBP_CeNVD was higher
than the His_CeNVD and 1MBP-NVD (52.5◦C, 50◦C, and
48◦C), which suggested that the MBP was profitable for the
thermostability of CeNVD.
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FIGURE 5 | (A) The structure model of CeNVD. (B) Monomer structure of CeNVD with the α-helices (cyan) and β-strands (salmon) are labeled. (C) The
superimposed subunits of CeNVD (blue) and the 3-ketosteroid 9 α-hydroxylases from Rhodococcus rhodochrous (yellow) with major domains; residues are shown
as green and magenta sticks. (D) The stereo view of Rieske [2Fe–2S] domain and non-heme Fe(II)-binding domain.
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Structural Analysis of CeNVD
The structure of CeNVD contains six α-helices (α1–α6) and
16 antiparallel β-strands (β1–β16) (Figures 5A,B), which are
conserved in the NVD family enzymes. It contains an N-terminal
Rieske [2Fe-2S] cluster (C122, H124, C143, H146) and followed
by the catalytic domain harboring non-heme Fe (II) center (E230,
D234, H237, H242). The Rieske cluster was located at strands
β4, β5 and β6, β7. As for the Fe (II) center, E230 and D234 are
located at α2, H237 is located at η3, and H242 is located on
a loop between η3 and β11 (Figure 5D; Penfield et al., 2014).
Structural alignment revealed that the structure and residues in
the major domains are remarkably similar to that of 3-ketosteroid
9 α-hydroxylases from R. rhodochrous (C67, H69, C86, H89) and
(D174, D178, H181, H186) (Figure 5C; Mao et al., 2020b).

CONCLUSION

Our study provides a methodological approximation for the
purification of soluble Rieske domain-containing oxygenase
expressed in E. coli. We successfully expressed and purified the
CeNVD protein in E. coli with the soluble formation of refolded
His-NVD and MBP-NVD, showing that the MBP tag could
increase the soluble expression of CeNVD, which is advantageous
for further purification and improvement of thermostability.
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