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ABSTRACT

Both siRNA and antisense oligodeoxynucleotides
(ODNs) inhibit the expression of a complementary
gene. In this study, fundamental differences in the
considerations for RNA interference and antisense
ODNs are reported. In siRNA and antisense ODN
databases, positive correlations are observed
between the cost to open the mRNA target self-
structure and the stability of the duplex to be
formed, meaning the sites along the mRNA target
with highest potential to form strong duplexes with
antisense strands also have the greatest tendency
to be involved in pre-existing structure. Efficient
siRNA have less stable siRNA–target duplex stability
than inefficient siRNA, but the opposite is true for
antisense ODNs. It is, therefore, more difficult to
avoid target self-structure in antisense ODN design.
Self-structure stabilities of oligonucleotide and
target correlate to the silencing efficacy of siRNA.
Oligonucleotide self-structure correlations to effi-
cacy of antisense ODNs, conversely, are insignif-
icant. Furthermore, self-structure in the target
appears to correlate with antisense ODN efficacy,
but such that more effective antisense ODNs appear
to target mRNA regions with greater self-structure.
Therefore, different criteria are suggested for the
design of efficient siRNA and antisense ODNs and
the design of antisense ODNs is more challenging.

INTRODUCTION

Antisense oligonucleotides, such as siRNA or antisense
oligodeoxynucleotides (ODNs), can silence gene expres-
sion (1). siRNA associate with the protein–RNA complex
called the RNA-induced silencing complex (RISC) to
cleave the target mRNA or attenuate the gene expression
with the RNAi pathway (2–4). Antisense ODNs also bind

to a complementary region of the target mRNA and
generally inhibit expression by stimulating degradation of
the mRNA via RNase H (5–7).

The silencing efficacies of RNAi and antisense ODNs
are found to correlate with their sequence features.
Efficient siRNA have preference for low G/C content,
A at position 3, U at position 10, absence of G at position
13, absence of G or C at position 19, etc. (8–14). Antisense
ODN silencing efficacy also correlates highly with some
specific motifs of oligonucleotide sequence, such as CCAC
and ACTG (15,16). Additionally, the local secondary
structure of the target mRNA also influences the binding
affinity of siRNA (17–20) and antisense ODNs (21–24).

In this study, predicted free energy changes of
hybridization of both antisense ODNs and siRNA are
compared to inhibition efficacy databases to demonstrate
contrasts in the hybridization terms that influence efficacy.
Free energy changes of hybridization of the antisense
oligonucleotide to the mRNA target are calculated using
the OligoWalk algorithm (25,26), which uses the equilib-
rium shown in Figure 1. The equilibrium includes self-
structure terms, �G�

intraoligonucleotide, �G�
interoligonucleotide and

�G�
target structure, which correspond to the free energy

change of opening intramolecular pairs in the oligo-
nucleotide, intermolecular pairs in the oligonucleotide and
base pairs in the hybridization region of the target,
respectively.

The stability of duplex hybridization between antisense
sequence and target is found, for the first time, to be
significantly correlated with the stability of the target
mRNA’s self-structure at the hybridization region for
both siRNA and antisense ODNs. Duplex stability is also
shown to be correlated with the oligonucleotide self-
structure stability for both siRNA and antisense ODNs.
Different preferences of duplex stability, however, are
observed for siRNA and antisense ODNs. Because RNAi
is attenuated by the unwinding cost of opening the siRNA
duplex, efficient siRNA (or miRNA) usually have less
stable sense–antisense duplexes (27). This is just the
opposite for efficient antisense ODNs, where tight
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hybridization to the target is apparently required.
Furthermore, in addition to duplex stability, siRNA
silencing efficacy also significantly correlates with other
terms such as the self-structure stabilities of siRNA and
target mRNA. These correlations are not as strong for
antisense ODN efficacy.

MATERIALS AND METHODS

Prediction of self-structure of oligonucleotide and target

To quantify the accessibility of oligonucleotide and target
mRNA for hybridization, a free energy change of self-
structure is predicted for opening base pairs in the region
of complementarity to the target. A partition function (Q)
calculation (28,29) is used to predict the ensemble free
energy change (26). For example, the free energy cost of
opening the self-structure of a target binding site is
calculated using:

�G�
target structure ¼ �RT ln

Qunconstrained

Qconstrained

� �

where Q is a partition function that sums the equilibrium
constants for all possible structures, s.

Q ¼
X
s

e��GðsÞ=RT

R is gas constant, T is absolute temperature, which was set
to 310.15K in this study, Qunconstrained is the partition
function of the native target structures, Qconstrained is the
partition function of the target structures in the state
where the oligonucleotide is able to bind. To predict the
constrained partition function, the calculation is per-
formed with a constraint that nucleotides in the binding
region are forced single stranded. In order to reduce
calculation time, �G�

target structure is calculated with a
partition function of the local structure on mRNA binding
site, i.e. only a certain number of nucleotides centered at
the binding region (800 nt) is folded (26). It was previously

demonstrated that local folding of 800 nt does not
significantly affect the accuracy of the accessibility
prediction (26). If the binding site is located close to the
50 or 30 end of the target, the same size of region is folded
beginning from the end of the sequence, which means the
binding site is not centered on the folding region.
For the oligonucleotide, all self-structure must be

broken during duplex formation with the target, so the
self-structure free energy change is predicted with:

�G�
oligonucleotide self structure ¼ �RT lnðQÞ

Both unimolecular and bimolecular self structure are
considered for the oligonucleotide using appropriate
partition functions (26).

Thermodynamic parameters

Folding free energy changes for individual structures are
predicted using nearest-neighbor models. For RNA
structures, the nearest neighbor parameters from Turner
and co-workers are used (30). For DNA structures, the
nearest neighbor parameters for DNA from the
RNAstructure program (30) are used. In the case of
ODN hybridization to RNA targets, DNA–RNA duplex
parameters are used for helix formation (31).

Databases

The experimental data for gene silencing efficacy of
oligonucleotides is derived from two databases. One is
derived from an antisense ODN database, AOBase (32).
418 ODNs targeting 28 mRNA are used for this study.
Thirty ODNs were removed from the original database
because these sequences are not consistent in sequence
with the Genbank database (33). The silencing efficacy of
each oligonucleotide is represented as ln(A), the natural
logarithm of Activity, which is defined as the ratio of gene
expression after antisense silencing over the untreated
control. For the correlation calculations, any value of
activity that is <0 is reset to 0.1% and any value that

Oligonucleotide
Duplex

Oligonucleotide Target Target-Oligonucleotide
Complex

Structured
Oligonucleotide

(Oligonucleotide)2

+

Structured Target

Kinter-oligonucleotide

Kintra-oligonucleotide

Ktarget structure

KduplexKduplex

Antisense strand of siRNA
or antisense ODNs

Only applies to siRNA

Figure 1. Equilibrium considered in the OligoWalk algorithm (25,26) for siRNA and antisense ODNs. The equilibrium constants,
Kduplex, Ktarget structure, Kintraoligonucleotide, and Kinteroligonucleotide are related to �G�

duplex, �G�
target structure, �G�

intraoligonucleotide, and �G�
interoligonucleotide

by �G�=�RT lnK, respectively. Self-folding in the target and self-structure in the oligonucleotide both compete with the formation of the
oligonucleotide–target complex. Only RNA secondary structure interactions are considered in the calculations. The longer arrow for each equilibrium
shows the generally favored direction of the equilibrium, i.e. a negative folding free energy change is predicted for an equilibrium favoring the
direction of the longer arrow.
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is >100% is reset to 99.9%. Two hundred and fifteen
antisense ODNs induced more than 50% gene silencing
(silencing efficacy=1�Activity), 103 induced more than
70% and 30 induced more than 90%. The second data-
base is an siRNA database of experiments from Huesken
et al. (34) at Novartis, which contains efficacy data
for 2431 siRNAs targeting 31 mRNA sequences on
random positions. Two thousand siRNAs have silenc-
ing efficacy >50%, 1222 of them have efficacy >70%,
369 have efficacy >90%. The silencing efficacies
reported in the siRNA database are transformed to
Activity (Activity=1� silencing efficacy) in order to
calculate ln(A).

Statistical analysis

Linear correlation coefficients (r) are calculated between
the free energy changes of duplex formation and free
energy changes for self-structure formation in both
oligonucleotide and target mRNA. Correlations are also
explored between ln(Activity) and thermodynamic fea-
tures involved in the equilibrium of binding for both
siRNA and antisense ODNs. The significance of each
linear correlation (Table 1) is tested with a two-tailed t-
test. The t-test is performed with the Statistics-Basic-0.42
Perl module downloaded from: http://www.cpan.org and
the data analysis tool in Excel 2004 (Microsoft Inc). For
this study, a P-value of the test <0.05 is considered to be a
significant correlation, i.e. rejection of the null hypothesis
that the correlation is by chance.

RESULTS

The OligoWalk algorithm (25,26) was developed to
predict the affinity of a structured oligonucleotide to a
structured RNA target using the equilibrium shown
in Figure 1. The prediction explicitly considers self-
structure of the oligonucleotide and target, quantified by

free energy changes calculated with the nearest neighbor
model (30,31,35). The formation of self-structure
(�G�

intraoligonucleotide, �G�
interoligonucleotide and �G�

target structure)
competes with the hybridization of the antisense oligonu-
cleotide to the target, which is driven by the favorable free
energy change of duplex formation (�G�

duplex). In addition,
the stability difference between the duplex’s two ends
(�G�

ends) was also calculated because it is well known that
efficient siRNA prefer a less stable duplex at the 50 end of
the antisense strand (8).

Duplex stability requirements are different for siRNA
and antisense ODNs

In RNAi, the siRNA duplex needs to unwind for loading
the antisense strand on RISC and the antisense–target
duplex needs to unwind for multiple turnover. Therefore,
a general rule of siRNA design is a requirement for a low
G/C content in the oligonucleotide (12). It was also
reported that sense–antisense duplexes of efficient siRNA
(or miRNA) are less stable than inefficient siRNA in
previous studies (27,36). In this study, the same trend was
observed in the Novartis siRNA database (34)
(Figure 2A). The average �G�

duplex (�33.0� 4.6 kcal/mol)
of efficient siRNA (silencing efficacy is not <70%)
is 2.8 kcal/mol more than the average �G�

duplex
(�35.8� 5.7 kcal/mol) of inefficient siRNA (silencing
efficacy is <50%). Antisense ODNs, however, do not
have to destabilize the duplex formation to be efficient
and, in contrast to siRNA, require stable binding to the
target (Figure 2B). The difference between the average
�G�

duplex of efficient ODNs (�26.1� 4.2 kcal/mol) and
inefficient ODNs (�24.9� 5.9 kcal/mol) is �1.2 kcal/mol.

The ln(A), natural logarithm of message activity, is
plotted versus duplex free energy changes (�G�

duplex) of all
binding sites for siRNA and antisense ODNs, in
Figure 2C and D, respectively. The correlation coefficient
of �G�

duplex and ln(A) is negative (r=�0.250) for siRNA,
yet positive (r=0.160) for antisense ODNs (Table 1).

Table 1. Correlations between ln(A)a and free energy change terms for both siRNA and Antisense ODNs

siRNA Antisense ODNs

r t–test P-valuec r t-test P-valuec

ln(A)��G�
duplex �0.250 1.78� 10

�15
0.160 0.001

ln(A)��G�
target structure

b
�0.197 1.11� 10

�15
0.141 (0.0798)d 0.004 (0.284)d

ln(A)��G�
intra�oligonucleotide �0.186 1.55� 10�15

�0.0653 (�0.212)d 0.183 (7.59� 10�7)d

ln(A)��G�
inter�oligonucleotide �0.199 3.33� 10�15

�0.0467 (�0.186)d 0.341 (1.45� 10�4)d

ln(A)���G�
ends �0.351 2.66� 10�15 0.0587 0.231

�G�
duplex ��G�

target structure 0.595 2.22� 10
�16

0.510 4.44� 10
�16

�G�
duplex ��G�

intra�oligonucleotide 0.524 2.22� 10
�16

0.103 0.035

�G�
duplex ��G�

inter�oligonucleotide 0.560 <10
�30

0.264 4.48� 10
�8

�G�
duplex ���G�

ends 0.0176 0.384 �0.0494 0.314

The correlations were calculated within Novartis data set (34) for siRNA and AOBase data set for antisense ODNs (32). r is the correlation
coefficient. The definition of each free energy term is provided in the Introduction and in Figure 1.
aln(A) is the natural logarithm of Activity, which is the fraction of the targeted mRNA expression after gene silencing compared to the control.
Negative correlations indicate that decreasing each folding free energy change (increased stability) results in increased ln(Activity) (decreased silencing
efficacy).
bThe values were calculated with the partition function method with folding size as 800 nucleotides centered on the binding site.
cA P-value (probability) below 0.05 is statistically significant (significant values are shown in bold).
dThe value in the parenthesis is the correlation coefficient for the oligonucleotides having �G�

duplex ��30 kcal/mol.

3740 Nucleic Acids Research, 2008, Vol. 36, No. 11

http://www.cpan.org


This shows again that less stable duplex formation is
preferred by efficient siRNA but more stable duplexes are
preferred by efficient antisense ODNs. Because the ODNs
range in length from 9 to 21 nt, the correlation was also
tested for ln(A) as a function of ODN duplex free energy
change per base pair (Figure 2E). The correlation
coefficient is 0.181, with a P-value of 0.000207. This is
an even stronger correlation than that between ln(A) and
�G�

duplex, which suggests that it is more important for
antisense ODN activity to have stronger pairing per base
pair than to simply favor longer helices.

Effect of self-structure appears different for siRNA
and antisense ODNs

The silencing efficacy by siRNA has been previously
demonstrated to be influenced by the secondary struc-
tures of both the antisense oligonucleotide and target
mRNA (19,37). Each of the thermodynamic features calcu-
lated by OligoWalk, �G�

intraoligonucleotide, �G�
interoligonucleotide,

�G�
target structure, �G�

duplex, and ��G�
ends, were previously

shown to correlate with the gene-silencing efficacy by
siRNA (26) (Table 1).
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Figure 2. Oligonucleotide–target duplex stabilities in siRNA and antisense ODNs databases. The histograms of free energy changes of
oligonucleotide–target duplexes (�G�

duplex) for efficient oligonucleotides (silencing efficacy is not <70%) and inefficient oligonucleotides (silencing
efficacy is <50%) are shown in (A). the siRNA data set (34) and (B) the antisense ODNs data set (32). The duplex free energy change (�G�

duplex) is
plotted against ln(A) for the siRNA database in (C) and the antisense ODNs database in (D). In (E), ln(A) is plotted as a function of the per base
pair duplex free energy change for the ODNs database. ln(A) is the natural logarithm of Activity, which is the fraction of the targeted mRNA
expression after antisense silencing compared to the control.
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In this study, the same terms were calculated for 418
antisense ODNs with reported inhibition activities (32,38).
Significant correlations were also found between ln(A) and
both �G�

target structure and �G�
duplex (Table 1). The correla-

tion between ln(A) and �G�
target structure is 0.141, which

means that the more efficient antisense ODNs apparently
anneal to regions of mRNA with more stable self-
structure to be disrupted. This correlation is exactly
opposite that for siRNAs and is counter-intuitive.
Furthermore, in contrast to siRNA, no significant

correlations were observed between the free energy
changes of oligonucleotide self-structure and the silencing
efficacy of antisense ODNs. This is probably simply
because of the wide range of ODN lengths. The cor-
relations between oligonucleotide self-structure and ln(A)
can be improved using a �G�

duplex cutoff, where only
sequences having �G�

duplex� �30 kcal/mol are considered.
After the cutoff, the lengths of the remaining antisense
ODNs vary less, as most of them have 20 or 21 nt. For
this subset of antisense ODNs, the antisense efficacy is
statistically significantly influenced by the self-structure of
oligonucleotide (Table 1). This is consistent with previous
findings for antisense ODNs (39).
In a previous study of antisense ODNs (39), the self-

structure of target was poorly predicted by either optimal
or suboptimal structure prediction, which are not as
rigorous as the partition function calculation used here.
The ambiguous correlation between antisense efficacy and
�G�

target structure in previous studies also comes from the
relationship of hybridized duplex stability and self-
structure accessibility of target (below).

Correlation between hybridized duplex stability
and self-structure accessibility

To understand the basis of the different influence of target
self-structure on siRNA and antisense ODNs, the rela-
tionship between �G�

duplex and the self-structure folding
free energy changes was explored (Figure 3A and B).
It was found that the duplex free energy change corre-
lates significantly with each of the self-structure folding
free energy changes (�G�

intraoligonucleotide,�G�
interoligonucleotide

and �G�
target structure) for oligonucleotides in both the

siRNA and antisense ODN database (Table 1). This
correlation indicates that sequences that form stronger
duplexes also tend to have stronger self-structures, both
for the antisense sequences and for the target mRNA.
To control for whether this correlation is a result of a

selection bias in the design of antisense sequences in the
databases, it was tested for all 19mer antisense sequences
in a complete scan of an mRNA (Genbank ID: X61940,
length: 1933 bases) (Figure 3C). Again, the duplex-binding
stability significantly correlates with the cost of opening
the local self-structure of the target.
These correlations explain the apparent correlation that

efficient antisense ODNs preferentially hybridize to targets
with stronger self-structure. The strong correlation
between target self-structure and duplex stability suggests
the true preference for reduced target self-structure is
obscured for ODNs because of the strong requirement for
greater duplex stability. For siRNA, the correlation is

readily observed because the requirement for reduced
stability in the duplex also leads to a tendency for less
target self-structure.

Differing equilibria for RNAi and antisense ODNs

In the initial step of RNA interference, the siRNA duplex
needs to unwind (Figure 1), so the equilibrium constant
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Figure 3. Correlations between free energy change of hybridized duplex
(�G�

duplex) and free energy cost of opening target base pairs for
hybridization (�G�

target structure). The �G�
target structure values were calcu-

lated with a partition function with a folding size of 800 nt centered on
the binding site. (A) For the siRNA data set (34), the correlation
coefficient is 0.5946 and the t-test P-value is 2.22� 10�16. (B) For the
antisense ODNs data set (32), the correlation coefficient is 0.5097 and
the t-test P-value is 4.44� 10�16. (C) For a full scan of an mRNA
sequence (Genbank ID: X61940, length: 1933 bases) from the 50 end to
30 end, the correlation coefficient is 0.6187 and the t-test P-value is
3.95� 10�30.
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in the direction of the necessary product is 1/Kduplex.
Subsequently, the antisense strand hybridizes to mRNA,
with the equilibrium constant for product of Kduplex. The
cost of opening the mRNA self-tructure is 1/Ktarget structure.
The overall equilibrium, including these three effects,
relates to the log of activity:

lnðAÞ / Kduplex
1

Kduplex

� �
1

Ktarget structure

� �

Because of the positive correlation between the hybrid-
ized duplex’s stability (�G�

duplex, Kduplex) and the target
structure’s accessibility (�G�

target structure, Ktarget structure),
the proportionality is then:

lnðAÞ /
1

Ktarget structure
/

1

Kduplex
:

This suggests that siRNA design is simple because less
stable duplexes target less stable target mRNA self-
structures and efficient siRNA require both of these
considerations at the same time.

For antisense ODNs, however, the opposite trend
emerges because there is no duplex unwinding step
involved in the inhibition mechanism. The cost of opening
self-structure of target and oligonucleotide competes with
the formation of hybridized duplex for antisense ODNs.
When the self-structure thermodynamics are compared
with ln(A) for antisense ODNs, the self-structure stability
correlates with the ln(A) (Table 1), but in an unintuitive
manner. The hybridized duplex stability apparently
accounts the most for the efficacy of antisense ODNs.
Therefore, in contrast to siRNA design, the requirement
of stable duplex hybridization and unstable self-structure
of target simultaneously makes design difficult.

DISCUSSION

This study explores the underlying differences between the
binding thermodynamics of RNAi and antisense ODNs.
The preference of functional siRNA for low G/C content
has been noted previously (27,40) and this leads to a lower
stability for �G�

duplex (Figure 1). It is possible that the free
energy cost to unwind the siRNA is more important than
the stability of oligonucleotide–target duplex. This does
not apply to antisense ODNs because antisense ODNs are
delivered as a single-stranded agent. Another explanation
is that turnover of RISC may be facilitated by having a
lower duplex affinity between the siRNA and target.
The cleavage mechanism of RISC has been well studied
(41–44). RISC is an endonuclease that makes a single
cleavage with preference to the middle of the mRNA
binding site (10 nt from the 50 end of the siRNA) (41,45).
The cleaved mRNA are released from RISC (41) and,
presumably, the cleavage products are degraded in a
common RNA degradation pathway because they do not
have either the poly(A) tail or the 50 cap (45,46). The
antisense siRNA in RISC is then intact for another round
of cleavage (46). We speculate that it is possible that

RISC needs to open the base pairs between the siRNA and
target mRNA strand in order to release the siRNA and
RISC before degradation of the mRNA. This would lead
to a preference for reduced binding strength by siRNA.
In contrast, functional antisense ODNs are known to

prefer a stronger duplex affinity. In the antisense mecha-
nism, RNase H binds to an RNA–DNA duplex and
degrades the RNA. Although RNase H belongs to a
nucleotidyl-transferase super family of enzymes that
includes RISC (47), it may have a different process of
cleavage. Experimental evidence suggests that RNase H
degrades the RNA of a hybrid DNA–RNA duplex in a
processive manner (48). The entire portion of the RNA
strand in complex with the antisense ODN is probably
degraded by RNase H and release of antisense ODN is
facilitated regardless of the strength of antisense–target
duplexes. Therefore, a propensity for strong duplex
formation is important because it would favor target
binding.
A number of studies have addressed the rational design

of siRNA (12,34,49) and antisense ODNs (16,39,50), but
these studies did not consider the structure features
involved in the antisense binding using our rigorous
partition function method. It has been demonstrated that
including self-structure terms of siRNA and target mRNA
helps the selection of efficient siRNA (26). The correla-
tions found in this study show that different thermo-
dynamic features could also be considered to improve the
design of antisense ODNs. Contributions from multiple
features of antisense ODNs need to be considered in order
to find an optimized combination for an efficient
candidate.
Another important factor in design of effective oligo-

nucleotides is the accessibility of the target self-structure,
which competes with the hybridization of the oligonucleo-
tide to the target. The paradox demonstrated here is that
the sequence features conducive to a stronger formation
duplex also contribute to less binding accessibility because
of self-structure of the target. This is observed as the
positive correlation between the free energy changes of
duplex formation and self-structure. Because siRNA
favors less stable duplexes, it is easy to simultaneously
avoid target structure in siRNA design. For antisense
ODNs design, however, it is difficult to design strong
duplexes that will bind to regions with little self-structure.
This means it is fundamentally more difficult to design
antisense ODNs than siRNA.
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