
Chen et al. BMC Med Genomics           (2021) 14:44  
https://doi.org/10.1186/s12920-021-00890-6

RESEARCH ARTICLE

Identification of monocyte‑associated 
genes as predictive biomarkers of heart failure 
after acute myocardial infarction
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Abstract 

Background:  Acute myocardial infarction (AMI) is a major contributor of heart failure (HF). Peripheral blood mono-
nuclear cells (PBMCs), mainly monocytes, are the essential initiators of AMI-induced HF. The powerful biomarkers for 
early identification of AMI patients at risk of HF remain elusive. We aimed to identify monocyte-related critical genes 
as predictive biomarkers for post-AMI HF.

Methods:  We performed weighted gene co-expression network analysis (WGCNA) on transcriptomics of PBMCs 
from AMI patients who developed HF or did not. Functional enrichment analysis of genes in significant modules 
was performed via Metascape. Then we obtained the single-cell RNA-sequencing data of recruited monocytes/
macrophages from AMI and control mice using the Scanpy and screened 381 differentially expressed genes (DEGs) 
between the two groups. We validated the expression changes of the 25 genes in cardiac macrophages from AMI 
mice based on bulk RNA-sequencing data and PBMCs data mentioned above.

Results:  In our study, the results of WGCNA showed that two modules containing 827 hub genes were most signifi-
cantly associated with post-AMI HF, which mainly participated in cell migration, inflammation, immunity, and apopto-
sis. There were 25 common genes between DEGs and hub genes, showing close relationship with inflammation and 
collagen metabolism. CUX1, CTSD and ADD3 exhibited consistent changes in three independent studies. Receiver 
operating characteristic curve analysis showed that each of the three genes had excellent performance in recognizing 
post-AMI HF patients.

Conclusion:  Our findings provided a set of three monocyte-related biomarkers for the early prediction of HF devel-
opment after AMI as well as potential therapeutic targets of post-AMI HF.
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Background
Heart failure (HF) is a growing global health problem 
affecting approximately 26 million people worldwide. It is 
estimated that more than 40 million people will develop 
this condition by 2030 [1]. HF has become a major cause 
of cardiovascular morbidity and mortality, which brought 
serious financial burden to both developed and devel-
oping countries [2, 3]. Despite sufficient improvements 
in prevention and therapies, HF patients still present 
high hospitalization rates and poor survival rates [4, 5]. 
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Among different pathogenic factors, ST-segment-eleva-
tion myocardial infarction (STEMI), as the most common 
and severe type of acute myocardial infarction (AMI), is 
the major contributor of HF [6]. Thus, early recognition 
of AMI patients at risk of developing HF is an effective 
strategy for the reduction of HF incidence. Identifying 
early biomarkers associated with post-AMI HF may be 
helpful to resolve this issue. Though several biomarkers 
were proved to be related to HF triggered by AMI, such 
as natriuretic peptides (NPs), Galectin-3, soluble sup-
pression of tumorigenicity-2 (sST2), growth/differential 
factor-15 (GDF-15) [7, 8], powerful biomarkers for early 
prediction of post-AMI HF remain elusive.

Cardiac remodeling, a major pathological change of 
HF, is characterized by cells apoptosis and necrosis, 
inflammation and immune cells activation, cardiomyo-
cyte hypertrophy and myocardial interstitial fibrosis [9]. 
Increasing evidence indicated that ~ 25% of survivors 
after STEMI developed HF due to cardiac remodeling 
[10–13]. PBMCs, mainly monocytes, are essential regu-
lators of cardiac remodeling after AMI [9]. Monocytes 
rapidly move from bone marrow and spleen to blood 
and infiltrate the infarct zone and participate in the 
inflammatory response hours after myocardial injury 
[14, 15]. Hence, genes involved in recruited monocytes/
macrophages-triggered cardiac remodeling may serve as 
promising biomarkers for the early identification of AMI 
patients at risk of HF development.

High-throughput microarray and transcriptome 
sequencing (such as bulk RNA- or single-cell RNA-
sequencing) permit us to perform a quick and compre-
hensive detection over the gene expression profiling, 
which are unbiased methods for screening disease-
specific biomarkers. Based on the transcriptomics data, 
several studies have identified potential biomarkers 
for prediction of HF following AMI via differentially 
expressed genes (DEGs) analysis [16–18], whereas which 
may result in the omission of some key genes related to 
disease. Weighted gene co-expression network analysis 
(WGCNA), as a bioinformatics application, can provide 
rich information based on calculating the pair-wise cor-
relations between gene expression profiles [19]. WGCNA 
is thus increasingly used to identify key genes (termed 
hub genes) associated with specific disease or clinical 
trait [20–24].

Herein, we aimed to investigate monocyte-related criti-
cal genes as predictive biomarkers for HF development 
following AMI based on WGCNA. By using integrated 
analyses of gene expression profiles from microarray 
(samples: PBMCs from AMI patients), single-cell RNA-
sequencing (scRNA-seq, samples: recruited monocytes/
macrophages from AMI mice) and bulk RNA-sequenc-
ing (bulk RNA-seq, samples: cardiac macrophages from 

AMI mice), we identified 3 key genes CUX1, CTSD, and 
ADD3 as potential biomarkers for early recognizing AMI 
patients at risk of developing HF.

Methods
Data collection and processing
The workflow of this study was shown in Fig.  1. The 
microarray gene expression data of PBMCs and scRNA-
seq data of cardiac macrophages were obtained from 
the Gene Expression Omnibus (GEO) database. The 
dataset GSE59867 from the Affymetrix Human Gene 
1.0 ST Array [transcript (gene) version] [16], dataset 
GSE119355 from the 10 × Genomics cell ranger plat-
form [25] and published bulk RNA-seq data [26] were 
utilized in this study. In dataset GSE59867, the data of 
17 PBMCs samples from AMI patients (within 1d after 
infarction) with or without HF development during a 
period of 6-month follow-up were analyzed (post-AMI 
HF, n = 9 vs. post-AMI non-HF, n = 8). The gene expres-
sion profiling was processed for background correction, 
log2 transformation and quantile normalization using 
the Robust Multiarray Average (RMA) algorithm. The 
array probes were mapped with respective gene symbol 
using the array annotations, and probes lacking anno-
tation information were removed. Genes detected by 
more than one probe were counted only once. A total of 
20,442 genes were included in the following analysis. For 
dataset GSE119355, the scRNA-seq data of 1806 cardiac 
macrophages from sham mice and 4697 macrophages 
from the ischemic area of myocardial infarction were 
processed using the Cell Ranger Single Cell software 
suite 1.3.1 by 10 × Genomics (http://10xge​nomic​s.com/). 
In the validation data, cardiac macrophages of non-
infarcted (0 d) or infarcted mice for 1d, 3d, and 7d, iso-
lated from 81 hearts including four biological replicates 
of 1.5 × 106 cells for each group, were analyzed using bulk 
RNA-seq. Then the whole transcriptome data were nor-
malized using the method of fragments per kilobase of 
transcript per million mapped reads (FPKM).

Weighted gene co‑expression network analysis
The ‘WGCNA’ R package was applied to identify disease-
related modules and hub genes in these modules [19]. 
The 20,442 genes in dataset GSE59867 were filtered by 
median absolute deviation (MAD) to reduce noisy data. 
The top 10,000 highly variable genes were extracted for 
network analysis. The soft-threshold method of the Pear-
son correlation analysis was used to evaluate the possi-
bility that two transcripts construct a weighted network. 
The appropriate soft-threshold power was screened based 
on the scale-free topology fit index of 0.8, which was used 
to calculate the gene co-expression adjacency. The adja-
cency was transformed into Topological Overlap Matrix 
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(TOM) and the corresponding dissimilarity of genes 
co-expression (1-TOM) was calculated. Hierarchical 
clustering of the genes was conducted based on 1-TOM 
and shown with a clustering tree (dendrogram). Module 
identification was performed using the Dynamic Tree 
Cut method with minimal module size of 25 and mod-
ule detection sensitivity (deepSplit) of 0.5. The cut-off 
height of 0.3, corresponding to correlation of 0.7 between 
the modules eigengenes, was chose to merge the similar 
modules. The correlation between module eigengenes 
(representing module) and post-AMI HF was calculated, 
and the modules with correlation coefficient > 0.5 and p 
value < 0.05 were defined to be significantly related to 
post-AMI HF. Hub genes of each significant module were 
considered as those with gene significance (|GS|) > 0.35 
and module membership (|MM|) > 0.8, showing a signifi-
cant correlation with the disease trait [27].

scRNA‑seq analysis
The control and post-AMI samples were merged for the 
following analyses. The standard processing procedures 
of the dataset GSE119355, including filtering, highly 
variable genes identification, dimensionality reduction 
and clustering, were performed using the Scanpy [28]. 
The low-quality cells expressing < 200 genes and genes 

expressed in < 3 cells were filtered. To exclude the possi-
ble doublets, cells with > 5200 genes were discarded. The 
poor-quality cells containing > 10% mitochondrial genes 
were also removed. Based on these criteria, 15,523 genes 
across 6357 cells in total remained for the subsequent 
analysis. The gene expression data underwent library-size 
normalization and log transformation. The highly vari-
able genes with mean expression values between 0.0125 
and 1.5 as well as minimal dispersion values of 0.5 were 
selected. Principal component analysis (PCA) was con-
ducted on the highly variable genes for dimensionality 
reduction and 18 significant principal components were 
identified. Clustering in PCA space was performed using 
a graph-based clustering approach with a resolution of 
0.5. The Louvain algorithm was applied for grouping cells 
into different clusters. Uniform Manifold Approximation 
and Projection (UMAP) was used for the two-dimen-
sional visualization of the clustering results. The gene 
expression profile of recruited monocytes/monocytes-
derived macrophages cluster (446 cells) were extracted, 
and DEGs between control and post-AMI group were 
analyzed by Wilcoxon test. Genes with log2

FC (fold 
change, FC, > 1.5) > 0.585 and adjusted p-value (pvals_
adj) < 0.05 were considered as significantly DEGs. The top 
10 DEGs in each group were visualized using a heatmap.

Fig. 1  Study flow chart. GEO Gene Expression Omnibus, AMI acute myocardial infarction, HF Heart Failure, PBMCs peripheral blood mononuclear 
cells, WGCNA Weighted Gene Co-expression Network Analysis, GO Gene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, DEGs 
differentially expressed genes, ROC receiver operating characteristic
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Functional enrichment analysis
The genes of the significant modules were used for 
functional enrichment analysis. The Gene Ontol-
ogy (GO) biological processes enrichment and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis were performed via the Metascape [29]. p value 
< 0.05 in GO terms and KEGG pathways were consid-
ered statistically significant.

Statistical analysis
GraphPad Prism 8 was used for analyzing the gene 
expression level in bulk RNA-seq or microarray data-
set. Data was shown as the mean ± standard error of 
the mean (SEM). The normality of the data was verified 
by applying Shapiro–Wilk (S–W) normality test. Then 
the differences between two groups were compared via 
Mann–Whitney U test for non-normally distributed 
data or unpaired two-tailed t-test for normally dis-
tributed data. Medcalc v19.1 was used for the receiver 
operator characteristic (ROC) curves analysis. The area 
under the ROC curve (AUC) was calculated to evaluate 
the specificity and sensitivity of single gene and their 
combination via binary logistic regression analysis. For 
all analyses, p value < 0.05 was considered statistically 
significant.

Results
Construction of gene co‑expression network 
and identification of modules
Seventeen PBMCs samples of AMI patients on day 1 
after infarction containing 20,442 genes were included, 
and the top 10,000 highly variable genes were used for 
the co-expression network construction. When the scale-
free fit index reached 0.8, the lowest soft-thresholding 
power 22 was selected to generate hierarchical clustering 
of the 10,000 genes (Additional file 1: Figure S1A).

The hierarchical clustering of the genes was analyzed 
based on 1-TOM. The identified 15 modules and the cor-
relations between genes expression in each module and 
post-AMI HF were displayed in Additional file  1: Fig-
ure S1B (Additional file  5: Table  S3) (red, positive cor-
relation; blue, negative correlation). The gray module 
(insignificant module) containing unassigned genes was 
discarded.

The co-expression similarity of the 15 modules was 
quantified by calculating the correlations between mod-
ule eigengenes. The clustering dendrogram showed that 
the 15 modules were divided into two main clusters 
(Additional file 2: Figure S2A), which was also confirmed 
by the heatmap of module eigengenes adjacencies (Addi-
tional file 2: Figure S2B).

Identification of modules significantly correlated 
with post‑AMI HF and corresponding hub genes
The results of module-trait relationship analysis showed 
that 3 of the 15 modules, turquoise, blue and midnight-
blue module were significantly correlated with post-AMI 
HF (Fig. 2a). Specifically, the turquoise module was posi-
tively associated with post-AMI HF (correlation coef-
ficient = 0.537, p < 0.05), whereas the blue (correlation 
coefficient = − 0.545, p < 0.05) and midnightblue modules 
(correlation coefficient = − 0.516, p < 0.05) were nega-
tively associated with the disease. The turquoise, blue and 
midnightblue modules separately contained 2814, 2115 
and 31 genes (Additional file 6: Table S4).

The log10 transformation of p value in the linear regres-
sion between gene expression and post-AMI HF was 
used to represent GS. MM was determined as the average 
absolute GS for all genes in a module. Here, the GS and 
MM in the turquoise, blue and midnightblue modules 
were shown as scatterplots (Fig.  2b). Highly significant 
correlations between GS and MM were only observed in 
turquoise (correlation coefficient = 0.4, p < 0.05) and blue 
modules (correlation coefficient = -0.4, p < 0.05). Based 
on the cut-off criteria of |MM|> 0.8 and |GS|> 0.35, 382 
and 445 highly connected hub genes separately corre-
sponding to the turquoise and blue modules were identi-
fied (Additional file 7: Table S5).

Functional enrichment analysis of genes in significant 
modules
To understand the function of genes in turquoise and 
blue modules, GO enrichment and KEGG pathway anal-
ysis were performed via the Metascape platform. 2814 
genes of turquoise module and 2115 genes of blue mod-
ule were separately uploaded to the platform. The results 
of biological process in GO enrichment were exhibited in 
Fig. 3a, b (Additional file 2: Table S1). Genes in turquoise 
module were enriched in the AMI-related pathological 
process, such as myeloid leukocyte activation, regula-
tion of cell adhesion, regulation of cytokine production, 
positive regulation of cell migration, regulation of inflam-
matory response, and positive regulation of cell death. 
Genes in blue module were mainly concentrated in the 
immunity, apoptosis and cell cycle, such as lymphocyte 
differentiation, antigen receptor-mediated signaling 
pathway, intrinsic apoptotic signaling pathway by p53 
class mediator, regulation of cell cycle G2/M phase tran-
sition. The results of KEGG pathway analysis indicated 
that genes in turquoise modules were mainly involved 
in Notch signaling pathway, Chemokine signaling path-
way, MAPK signaling pathway, TNF signaling pathway, 
and genes in blue modules were mainly implicated in Cell 
cycle, Primary immunodeficiency, Antigen processing 
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and presentation, and Th17 cell differentiation (Fig. 3c, d, 
Additional file 4: Table S2).

Analysis of differentially expressed genes of recruited 
monocytes/macrophages in infarcted cardiac tissue
In the early stage of AMI, the composition of car-
diac macrophages changes dramatically. Circulating 

pro-inflammatory monocytes (CCR2+) rapidly infiltrate 
infarcted myocardium within hours, then differenti-
ate into CCR2+ macrophages to promote inflammatory 
responses, disorders of collagen metabolism, and ulti-
mately contribute to HF pathogenesis [30]. In order to 
investigate whether some of the hub genes screened 
above were involved in the regulatory role of recruited 

Fig. 2  Identification of significant modules highly correlated with post-AMI HF. a Heatmap of the correlation between module eigengenes and 
post-AMI HF. Each row corresponds to a module eigengenes, column to post-AMI HF or non-HF. The correlation coefficient (cor) and p value are 
shown in each cell. The modules with |cor|> 0.5 and p < 0.05 were considered as significantly associated with post-AMI HF. Red, positive correlation; 
blue, negative correlation. b Scatterplots of genes in turquoise, blue and midnightblue modules using the GS and MM measures. Genes in turquoise 
and blue modules had a high significance for post-AMI HF and high module membership
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monocytes/macrophages in HF development, based on 
the scRNA-seq data in GSE119355, we identified CCR2+ 
monocytes/macrophages subset in infarcted cardiac tis-
sue of mice, and obtained the gene expression profiling of 
each single cell. UMAP analysis for all populations of the 
cardiac macrophages in both infarcted and non-infarcted 
mice identified 9 clusters, among which the circulating 
monocytes derived CCR2+ monocytes/macrophages 
cluster (macrophages marker: Ccr2, Plac8; monocytes 
marker: Ace) were focused on this study (Fig. 4a, c). The 
distribution of all cardiac macrophages from infarcted 
and non-infarcted mice were shown in Fig. 4b, indicating 
an obvious increase of macrophages.

Subsequently, we compared the genes expression pro-
filing of CCR2+ monocytes/macrophages cluster in 
infarcted and non-infarcted mice. Results demonstrated 
that 103 genes were upregulated, and 278 genes were 

downregulated in AMI mice compared with controls 
(Additional file 8: Table S6). The top 20 DEGs (10 upreg-
ulated and 10 downregulated) were exhibited in Fig. 4d.

Furthermore, we found 25 common genes between the 
381 DGEs and the 827 hub genes (Fig. 5a). GO biologi-
cal process enrichment showed that the 25 genes were 
enriched in myeloid leukocyte activation, collagen meta-
bolic process and response to hypoxia, suggesting a close 
relationship with cardiac remodeling (Fig. 5b). These 25 
genes might be involved in the regulatory role of circu-
lating monocytes in AMI-triggered HF and were selected 
for the subsequent validation analysis.

Validation of expression levels of common genes in cardiac 
macrophages from AMI mice and PBMCs from AMI patients
To determine the reliable biomarkers for the prediction 
of post-AMI HF, the expression levels of 25 common 

Fig. 3  GO enrichment and KEGG pathway analysis of genes in significant modules through Metascape. a, b Bar chart of GO biological process 
enrichment of genes in turquoise and blue modules. Top 20 GO terms were shown. The color of the bar represents − log10 transformation of p 
value. Gene Ontology: GO; KEGG: Kyoto Encyclopedia of Genes and Genomes. (C-D) Dot plot of KEGG pathway analysis of genes in turquoise and 
blue modules. Top 20 pathways were shown. Dot size represents the percentage of genes in each pathway. The color scale reflects represents p 
value
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genes were firstly validated in the bulk RNA-seq data 
of cardiac macrophages from mice before and on days 
1, 3 and 7 post AMI [26]. We observed that 7 out of 25 
genes showed the consistent changes with those in the 
scRNA-seq data, including 4 upregulated genes (MMP14, 

CUX1, CTSD, PKM) and 3 downregulated genes (ADD3, 
ALOX5, RCN3) (Fig.  6a). Additionally, the expression 
levels of the 7 genes were verified in the microarray data 
of GSE59867 which contained 9 PBMCs samples from 
AMI patients with HF development and 8 with no HF 

Fig. 4  Identifying recruited monocytes/monocytes-derived macrophages cluster (CCR2+ monocytes/macrophages) in the infarcted cardiac tissue 
of mice. a UMAP visualization of cell clusters present in pooled control and post-AMI samples. CCR2+ monocytes/macrophages were identified as 
cluster 4. b UMAP plot depicting all cell types in control (blue) and MI samples (yellow). c Dot plot of marker genes for each macrophage cluster. 
Dot size represents the percentage of cells expressing the marker gene in each cell cluster. The color scale reflects the gene expression level from 
low to high. d Heatmap of top 20 differently expressed genes (10 upregulated and 10 downregulated genes) in CCR2+ monocytes/macrophages 
between AMI and control mice. The color scale indicates the gene expression level (blue: low; red: high). UMAP: Uniform Manifold Approximation 
and Projection
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development. The results showed consistent increase in 
levels of CUX1 and CTSD and consistent decrease in 
levels of ADD3 (Fig. 6b). Thus, CUX1, CTSD and ADD3 
were ultimately selected for the following ROC curves 
analysis.

Effectiveness evaluation of validated genes as prognostic 
biomarkers of AMI with risk of HF
To evaluate the power of CUX1, CTSD and ADD3 as pre-
dictive biomarkers of HF after AMI, ROC curves analysis 
was constructed and the AUCs were calculated based on 
the dataset GSE59867 mentioned above. The correspond-
ing AUCs of CTSD, CUX1 and ADD3 were 0.889 (95% 
CI 0.644–0.987; p = 0.0001), 0.861 (95% CI 0.610–0.960; 
p = 0.0015) and 0.819 (95% CI 0.0.561–0.960; p = 0.0023), 
respectively (Fig. 7, Table 1). The combinations of CTSD 
and CUX1 had the highest AUC (0.917; CI 0.680–0.995, 
p < 0.0001) (Fig.  7, Table  1), showing the best specificity 
and sensitivity in identifying AMI patients at risk of HF 
progression.

Discussion
In the present study, based upon the gene expression 
profiling of PBMCs from patients suffered STEMI for 
1 day who developed HF or did not during a 6-month 
follow-up, we identified modules significantly corre-
lated with post-AMI HF as well as hub genes in these 
modules using WGCNA. Subsequently, we obtained 
the DEGs of recruited monocytes/macrophages clus-
ter in infarct area of AMI mice. The expression levels 
of common genes between the hub genes and DEGs 
were further validated both in cardiac macrophages of 
another independent group of AMI mice and in PBMCs 
of AMI patients mentioned above. Consistently upreg-
ulated CUX1, CTSD and downregulated ADD3 in these 
3 independent studies were identified, and were proved 
to be potential biomarkers for the early prediction of 
post-AMI HF. Moreover, the 3 genes might be involved 
in the regulation of recruited monocytes/macrophages 
in cardiac remodeling after AMI, and hence serve as 
potential therapeutic targets of post-AMI HF.

The primarily pathological characteristics of cardiac 
remodeling during HF development after AMI include 
inflammatory and immune response, oxidative stress, 

Fig. 5  GO biological process enrichment of common genes between DEGs and hub genes. a Overlap between DEGs and hub genes of turquoise 
and blue modules. A total of 25 common genes were identified. b The GO biological process enrichment of 25 common genes through Metascape. 
DEGs differentially expressed genes, GO Gene Ontology
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mitochondrial dysfunction, apoptosis, cardiomyocyte 
hypertrophy, degradation of the extracellular matrix 
and fibrosis [8, 9]. In line with these characteristics, 
functional enrichment analysis in our study showed 
that genes in HF-related modules mainly participated 
in inflammatory/inflammation-associated response, 
immune response, apoptosis and cell cycle transition. The 
corresponding pathways were Notch signaling pathway, 
chemokine signaling pathway, MAPK signaling pathway, 
TNF signaling pathway, cell cycle, antigen processing 
and presentation, Th17 cell differentiation, DNA replica-
tion, all of which play an importantly regulatory role in 
the cardiac remodeling and consequent HF [8, 9, 31, 32]. 
These results suggested that AMI patients with develop-
ing HF might have more serious inflammation, immunity 
and apoptosis in infarct zones than whom without HF.

Recruited monocytes/monocyte-derived macrophages 
in myocardium are key regulators in the AMI-induced 
cardiac remodeling. The recruited macrophages in 
infracted myocardium were usually classified into pro-
inflammatory (1–4 day post AMI) and anti-inflammatory 
phenotype (5  days post AMI) [33]. However, growing 
evidence has indicated that the canonical M1/M2 pheno-
types of monocyte-derived macrophages can no longer 
present all the macrophages subpopulations in infarcted 
myocardium [34–36]. Defining macrophages only with 
M1/M2 subtypes may produce misleading conclusions 
[36]. The high-throughput scRNA-seq can identify unbi-
ased clustering of cells based on the transcriptome analy-
sis at single-cell level, which overcomes the drawback of 
simple definition of macrophage phenotypes. Therefore, 
to accurately clarify the relationship between circulat-
ing monocytes/monocyte-derived macrophages and 
post-AMI HF, we obtained the gene expression profil-
ing of the recruited monocytes/macrophages cluster 
based on the scRNA-seq data of cardiac macrophages 
from AMI and control mice [25]. Among the 381 DEGs 
in recruited monocytes/macrophages of infarcted mice, 
25 genes overlapped with the hub genes in PBMCs from 
AMI patients. The functional enrichment analysis of the 
25 common genes manifested that they were involved in 
proinflammatory leukocyte activation, hypoxia response 
and collagen metabolic process. These results collectively 
demonstrated that recruited monocytes/macrophages 

may modulate cardiac remodeling and HF after AMI 
through these altered genes.

To further determine the reliability of candidate genes 
as biomarkers for the early recognition of AMI patients 
at risk of HF, we verified the expression levels of the 25 
common genes in cardiac macrophages of mice before 
and after AMI for 1d, 3d and 7d. There were 7 consist-
ently changed genes in scRNA-seq dataset. There was 
an overlapping period of recruited macrophages exhib-
iting pro-inflammatory and anti-inflammatory activity 
during the first 7  days post AMI [35], which offered an 
explanation of why each of these 7 genes kept the con-
sistent changes at the different phases of AMI. Among 
the 7 genes validated in PBMCs from patients at 1  day 
of AMI (GSE59867), CUX1, CTSD and ADD3 had the 
similar expression changes to those in the recruited 
macrophages of AMI mice. A recent study revealed that 
transcription factor CUX1, a known tumor suppressor 
[37], is a key regulator of inflammation in rheumatoid 
arthritis. CUX1 coupled with IκBζ mediated neutrophil 
and monocyte recruitment by increasing the production 
of multiple chemokines and cytokines [38], suggesting 
an adverse effect of CUX1 on cardiac remodeling after 
AMI. CTSD, a major lysosomal protease, is increasingly 
known for its involvement in inflammatory response, 
and has been proposed as biomarkers of several inflam-
matory diseases, such as non-alcoholic steatohepatitis 
[39], atherosclerosis and coronary heart disease [40]. 
CTSD might contribute to plaque vulnerability by induc-
ing macrophages apoptosis [41] and high levels of plasma 
CTSD was associated with increased risk of future coro-
nary syndromes [42]. Similarly, in dataset GSE59867, 
CTSD mRNA level in PBMC of post-AMI HF patients at 
different time points after AMI was higher than that in 
post-AMI non-HF patients (data not shown). However, 
the results were inconsistent with that in another study, 
which indicated that serum CTSD activity decreased 
in AMI patients with new-onset HF during 6-month 
follow-up compared to patients without post-AMI HF 
[43]. Hence, larger clinical trial based on uniform speci-
men source (PBMCs, plasma or serum) and detecting 
item (mRNA, protein or protein activity) are necessary 
to clarify the real relationship between CTSD and post-
AMI HF. ADD3, a structural cytoskeletal protein [44], 
has been implicated to participate in the monocytes 

Fig. 6  Validation of common genes expression in cardiac macrophages from AMI mice and PBMC from AMI patients. a The gene expression 
changes in cardiac macrophages over the AMI time course, before (day 0) and on days 1, 3 and 7 post AMI, detected by RNA-seq. Seven out of 
25 common genes exhibited consistent changes with that in the recruited monocytes/macrophages from infarcted myocardium were shown. 
*p < 0.05, **p < 0.01 compared with group AMI-d0. b The expression levels of 7 common genes in PBMC from AMI patients at admission measured 
by microarray. *p < 0.05; **p < 0.01 compared with group post-AMI non-HF; n.s.: no significance. post-AMI non-HF group: n = 8, post-AMI HF group: 
n = 9. Data are presented as mean ± SEM

(See figure on next page.)
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migration as well as monocyte-to-macrophage differ-
entiation [45]. The genetic variation of ADD3 was also 
reported to be associated with left ventricular diastolic 
relaxation [46]. These findings implied the potential 
modulation of ADD3 in HF development after AMI.

In the ROC curves analysis, an AUC of 0.7 to 0.8 is 
regarded acceptable, 0.8 to 0.9 is excellent, and more than 
0.9 is outstanding [47]. The AUC values of CUX1, CTSD 
and ADD3 were all more than 0.8, showing high diagnos-
tic accuracy for identifying AMI patients at risk of HF. In 
particular, the AUC value of combinations of CTSD and 
CUX1 reached 0.917, exhibiting outstanding capability to 
identify the target patients.

Conclusions
In this study, we constructed the gene co-expression net-
work of PBMCs from AMI patients who developed HF or 
did not during a 6-month follow-up using WGCNA, and 
identified significant modules correlated with post-AMI 
HF. Three hub genes of the significant modules CUX1, 
CTSD and ADD3 showed the consistent expression 
changes in PBMCs of AMI patients and recruited mono-
cytes/macrophages of AMI mice, which may mediate 
the circulating monocytes-triggered cardiac remodeling 
and HF development. Monocyte-related CUX1, CTSD 
and ADD3 are promising biomarkers for early identify-
ing AMI patients at risk of HF and potential therapeutic 
targets of post-AMI HF. Large clinical trials are needed 
to further validate the predictive value of the 3 genes as 
biomarkers of HF development after AMI.
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Additional file 1: Figure S1. Identification of modules through WGCNA. 
(A) Analysis of scale-free fit index (left panel) and mean connectivity (right 
panel) for various soft-thresholding powers. The lowest soft-thresholding 
power was 22 when the scale-free fit index reached 0.8, (B) Clustering 
dendrogram of genes, with dissimilarity based on TOM, together with the 
original module colors (Dynamic Tree Cut) and assigned merged module 
colors (Module colors), as well as the heatmap of correlations between 

genes expression and post-AMI HF. Under the condition of soft-thresh-
olding power of 22, minimal module size of 25 and cut height of 0.3, 15 
modules were identified. A short vertical line in clustering dendrogram 
corresponds to a gene and highly co-expressed genes are grouped 
together.  Blue: negative correlation; red: positive correlation.

Additional file 2: Figure S2. The clustering dendrogram of mod-
ules eigengenes and heatmap of the correlations between modules 
eigengenes. (A) Hierarchical clustering of module eigengenes. Module 
eigengenes in each branch of the dendrogram were highly positively 
correlated. (B) Heatmap of the adjacencies in the modules eigengenes 
network. The modules eigengenes correlations represent modules 
similarities. Each column and row correspond to one module eigengenes. 
Red means high adjacency (positive correlation) of two modules, while 
blue means low adjacency (negative correlation). Red squares along the 
diagonal are the meta-module.

Additional file 3: Table S1. GO biological processes in co-expression 
modules.

Fig. 7  Receiver operator characteristic (ROC) curves analysis of 
potential biomarkers. The areas under the ROC curves (AUCs) were 
given for single gene (CUX1, CTSD and ADD3) and combinations 
(CTSD/CUX1, CTSD/ADD3) to recognize AMI patients who developed 
HF during a 6-month followed-up. post-AMI non-HF group: n = 8, 
post-AMI HF group: n = 9. ROC curves were constructed using the 
log2 transformed expression data of GSE59867

Table 1  Receiver operating characteristic curves

AUC​ area under the curve, CI confidence interval

AUC​ 95% CI p value Cut-off value Specificity (%) Sensitivity (%)

CTSD 0.889 0.644–0.987 0.0001 > 12.2266 87.50 88.89

CUX1 0.861 0.610–0.960 0.0015 > 9.3887 75.00 100.00

ADD3 0.819 0.561–0.960 0.0023 ≤ 10.3521 75.00 77.78

CTSD/CUX1 0.917 0.680–0.995 < 0.0001 > 0.0102 87.50 100.00

CTSD/ADD3 0.889 0.644–0.987 < 0.0001 > 1.1740 87.50 88.89
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