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To improve the diagnosis and classification of Alzheimer’s disease (AD), a modeling
method is proposed based on the combining magnetic resonance images (MRI) brain
structural data with metabolite levels of the frontal and parietal regions. First, multi-atlas
brain segmentation technology based on T1-weighted images and edited magnetic
resonance spectroscopy (MRS) were used to extract data of 279 brain regions and
levels of 12 metabolites from regions of interest (ROIs) in the frontal and parietal regions.
The t-test combined with false discovery rate (FDR) correction was used to reduce the
dimensionality in the data, and MRI structural data of 54 brain regions and levels of 4
metabolites that obviously correlated with AD were screened out. Lastly, the stacked
auto-encoder neural network (SAE) was used to classify AD and healthy controls (HCs),
which judged the effect of classification method by fivefold cross validation. The results
indicated that the mean accuracy of the five experimental model increased from 96 to
100%, the AUC value increased from 0.97 to 1, specificity increased from 90 to 100%,
and F1 value increased from 0.97 to 1. Comparing the effect of each metabolite on
model performance revealed that the gamma-aminobutyric acid (GABA) + levels in the
parietal region resulted in the most significant improvement in model performance, with
the accuracy rate increasing from 96 to 98%, the AUC value increased from 0.97 to
0.99 and the specificity increasing from 90 to 95%. Moreover, the GABA + levels in the
parietal region was significantly correlated with Mini Mental State Examination (MMSE)
scores of patients with AD (r = 0.627), and the F statistics were largest (F = 25.538),
which supports the hypothesis that dysfunctional GABAergic system play an important
role in the pathogenesis of AD. Overall, our findings support that a comprehensive
method that combines MRI structural and metabolic data of brain regions can improve
model classification efficiency of AD.

Keywords: Alzheimer’s disease, deep learning, magnetic resonance imaging, magnetic resonance spectroscopy,
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INTRODUCTION

AlzheimerIONtisease (AD) is a progressive neurodegenerative
disease that mainly manifests as cognitive decline and abnormal
behavior (Zeng et al., 2021). The onset of AD is hidden, and
thus it is difficult to identify in the early stages. However, as AD
progresses, it seriously affects daily life and causes irreversible
damage to the brain, resulting in a heavy burden on the patient’s
family and the healthcare system. At present, there is no effective
clinical method to prevent or treat AD, and existing drugs
are only able to slow down disease progression. As a result,
early diagnosis of AD has become one of the biggest challenges
currently facing medicine and society (Reitz and Mayeux, 2014;
Vs et al., 2020). Magnetic resonance imaging (MRI), as the main
method of neuroimaging, has been widely used to study the
structure, function, and perfusion of the human brain. Notably,
structural MRI is widely used in the early diagnosis of AD
(Konrad et al., 2009). Previous studies have shown that cortical
thickness and volume of hippocampus play a pivotal role in the
classification between AD and healthy controls (Liu et al., 2011).

However, functional changes in AD occurs earlier than
structural changes, i.e., AD patients show abnormal brain
function in the early stage before impairment of brain structure
has occurred (Bosco et al., 2017; Kamagata et al., 2020). For
instance, a resting-state functional MRI study suggested that
the activity in the default mode network may prove a sensitive
and specific biomarker for early stage AD (Md et al., 2004;
Wang et al., 2012).

Therefore, adopting structural MRI alone for the diagnosis of
early AD has major limitations and its specificity and sensitivity
are low. Importantly, previous studies have shown that AD also
involves dysfunction of a variety of neurotransmitter systems,
including the cholinergic system, glutamatergic (Glu) system,
and gamma-aminobutyric acid (GABA) system (Zhang et al.,
2015). Magnetic resonance spectroscopy (Munteanu et al., 2015;
Vignoli et al., 2020) (MRS), which is a non-invasive technology
that uses the principle of chemical shift to measure metabolite
levels in the brain, has been widely used in studies of various
neurological and mental diseases. For example, N-acetylaspartate
(NAA) can reflect damage and loss of neuronal cells in brain
tissue. Kantarci et al. (2007) and Carelli et al. (2015) found that
NAA levels in the hippocampus can be used as an imaging
marker to assess the progression of mild cognitive impairment
to AD. GABA is an important inhibitory neurotransmitter (Jo
et al., 2014) that regulates excitatory activity, thereby preventing
overexcitement of neurons and oscillation activity of neural
networks. Studies of AD animal models have indicated that
abnormal function of the GABAergic system may be a common
target of multiple abnormal signal pathways in AD (Danlei et al.,
2020). Furthermore, abnormal function of the GABAergic system
can lead to neuronal excitation-inhibition imbalance, which
promotes the pathological spread of Aβ and tau and further
aggravates cognitive impairment in AD patients. Additionally,
studies of post-mortem brains have reported decreased GABA
levels in the frontal and parietal brain tissues of AD patients
(Kreisl et al., 2013; Salminen et al., 2016). The MEGA-PRESS
(MEscher-GArwood-Point RESolved Spectroscopy) sequence

has been applied to detect brain GABA levels in many neurologic
and psychiatric disorders (Atagün et al., 2017; Murley et al., 2020;
He et al., 2021).

However, only a few studies to date have combined structural
data and metabolite levels of brain regions to establish an
early diagnosis model of AD. (Thus, this study adopted multi-
atlas segmentation technology based on high-resolution brain
structure to automatically segment the brain to extract the
structural data and then applied MEGA-PRESS sequence to
detect the levels of metabolites.

With advances in artificial intelligence, deep learning has
demonstrated a good classification effect for the diagnosis of
AD (Ortiz et al., 2016; Suk et al., 2017; Liu et al., 2020). The
convolutional neural network (CNN) (Abdulazeem et al., 2021)
is often used as a modeling and classification tool to diagnose
AD; however, CNN needs updating of several parameters within
its network. With the increasing of hidden layers, CNN network
will become complex, adding a lot of computing process. Stacked
auto-encoder (SAE) (Suk et al., 2015; Ijjina and Mohan, 2016) is
a deep learning network model for unsupervised learning that
is widely used in various feature extraction and classification
problems. SAE neural network has the function of feature
selection, which can find the features of interest more easily
(Cao et al., 2016). Combining with dense layer, SAE can used to
perform supervised learning by achieving the approximation of
complex function. The SAE neural network used in this study
encodes the input data to obtain data characteristics and then
decodes the transmitted data to realize the reconstruction of the
input data. Its structure is relatively simple, the reconstruction
speed is fast, and there is no requirement for a large sample size.
In the present study, the SAE neural network was used to perform
AD classification based on different types of input data, namely
MRI structural data of brain regions and MRS metabolite levels
of frontal and parietal regions. Moreover, the accuracy, the area
under the curve (AUC) value, sensitivity, and specificity of the
AD classification models were calculated in order to evaluate the
impact of the addition of MRS metabolic data on the accuracy of
the AD classification results.

MATERIALS AND METHODS

Study Design
This study was approved by the ethics committee of Shandong
First Medical University and all participants or their legal
guardians provided written informed consent. In total, 27 AD
patients and 15 age-, sex-, and education-level matched healthy
controls (HCs) were included in this study. AD patients were
diagnosed according to the National Institute of Neurological
and Communicative Disorders and the Alzheimersityisease
and Related Disorders Association criteria (NINCDS-ADRDA)
(Dubois et al., 2007). The AD group comprised 11 men and 16
women with an average age of 65.95 ± 6.28 years and a mean
Mini Mental State Examination Scale (MMSE) (Davatzikos et al.,
2011) score of 18.78 ± 2.91. The HCs group comprised 8 males
and 7 females with an average age of 63.87 ± 3.32 years and a
mean MMSE score of 28.47 ± 0.96. The details are shown in
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Table 1. The exclusion criteria for the AD group were as follows:
(1) It may be dementia other than AD, such as vascular dementia,
paralytic dementia, dementia syndrome caused by other brain
or physical diseases, etc. (2) Those who are unable to cooperate
with severely impaired speech expression, comprehension, severe
visual and hearing impairment, and other reasons. The exclusion
criteria for the AD and HCs group were as follows: (1) MRI
contraindications. (2) A history of substance abuse.

Data Acquisition
MRI data were acquired using the dual radio frequency
transmission mode of a Philips 3.0T scanner (Achieva, TX) and
8-channel head coils as transmitting and receiving coils. The
T1-weighted TFE sequence was used to obtain high-resolution
3D brain images. The scan related parameters were: pixel
size = 1 × 1 × 1 mm3, matrix = 256 × 256, thickness = 1 mm,
repetition time (TR)= 8.2 ms, echo time (TE)= 3.7 ms, reversal
angle = 8◦, and field of view (FOV) = 24 × 24 cm2. On the 3D
T1-TFE image, the regions of interest (ROIs) were located in the
frontal and parietal regions with a size of 3 × 3 × 3 cm3. The
frontal region was placed above the anterior half of the corpus
callosum and parallel to the corpus callosum. The parietal region
was placed in the middle region of the bilateral parietal region
above the corpus callosum and parallel to the tangent line of the
corpus callosum. The edges of all ROIs avoided touching the skull
and bilateral lateral ventricles.

The MEGA-PRESS sequence was used for metabolite
data collection. The scan parameters were as follows: scan
time = 11 min, TR = 2,000 ms, TE = 68 ms, scan
bandwidth = 1,000 Hz, and 320 averages. LCmodel software
was used to quantify the levels of metabolite in two ROIs. Since
MEGA-PRESS technology obtains the GABA signal at 3.02 ppm,
it also contains the signals of macromolecules and high carnosine,
so the collected signal is GABA+ rather than pure GABA.

T-test Analysis
In order to establish an accurate AD classification model, it
is first necessary to screen out MRI structural data of brain
regions and metabolite levels of ROIs that are closely related to
AD. We used the independent samples t-test for multi-modal
data analysis to achieve effective dimensionality reduction. The
dataset comprising multi-modal data was used as the input data
of the classification model, and the AD disease label was used
as the target of the classification model. The multi-modal data
included MRI structural data of brain regions and the levels of

TABLE 1 | Participants’ demographic and clinical information.

Characteristics AD group HC group P-value

Subject 27 15 –

Gender (M/F) 11/16 8/7 0.59

Age 67.11 ± 7.18 63.87 ± 3.32 0.11

MMSE 18.78 ± 2.91 28.47 ± 0.96 <0.001

The data are presented as means ± standard deviations. AD, Alzheimer’s disease;
HC, health controls.

various metabolites in the frontal and parietal regions. The AD
disease label is represented by 1 and 0, where 1 represents AD
and 0 represents HCs. An FDR corrected p-value < 0.05 suggests
that the multimodal data correlate with the target of the AD
classification model, indicating that the difference is statistically
significant (Hidalgo-Muñoz et al., 2014).

Stacked Auto-Encoder Neural Network
Modeling Method
Stacked Auto-Encoder Network Model
The SAE neural network is a deep neural network model
for unsupervised feature recognition that is widely used in
various feature extraction and classification problems. To achieve
accurate classification of AD, this study uses a deep neural
network composed of double hidden layer auto-encoders (AE).
Among them, AE is a neural network with a three-layer structure
comprising an input layer, hidden layer, and output layer. Each
layer is fully connected. The target of SAE is to estimate the input
data accurately while filtering the unnecessary information. By
achieving this target, the encoder layers have lower dimensions
than the original data, reducing the redundant information.
Then, decoder layers are used to regenerate the feature map based
on the encoder layers, gaining a novel dataset. The SAE neural
network in this study is composed of one SAE model and one
classification layers that includes two stages: unsupervised pre-
training and supervised fine-tuning. The first stage pre-trains
the AE of the SAE neural network in an unsupervised manner
using a layer-by-layer greedy algorithm, i.e., an algorithm that
uses the feature weights of the previous layer of the AE as the
input data of the next layer in the order of front to back. Pre-
training is performed layer by layer. In the second stage, add
the label corresponding to the sample of this study and the
weight value obtained in the previous stage, and use the MSE
loss function to calculate the error between the predicted value
and the real value. Then, according to the derivative of the
loss function, the error is transmitted back along the minimum
direction of the gradient to correct each weight value in the
forward calculation formula. Finally, the whole training process
of SAE neural network is completed. As shown in Figure 1, the
overall structure of the AD classification model used in this study
includes three main parts: (i) screening key data using the t-test
and combining input datasets, (ii) using deep learning to train
the classification model, and (iii) selecting the best model and
classifying AD and HC.

Figure 2 shows the SAE neural network structure. The input
layer is the multi-modal structural data of brain regions and the
metabolite levels of the frontal and parietal regions. The output
layer is the AD classifier of 0 or 1. In this study, SAE neural
network is also used for feature selection of input features. The
number of neurons in the hidden layers are optimized by using
the grid search method. First, in the Hidden_1, searching starts
at 10, with a step length of 10 and ends at 50. Then, keeping
the number of Hidden_1 layer unchanged, altering the number
of Hidden_2 layer with the sequence starting at 10 and ends at
the number of neurons equal Hidden_1 by step size of 5. Based
on the above calculations, the results of the traversal are used to

Frontiers in Aging Neuroscience | www.frontiersin.org 3 July 2022 | Volume 14 | Article 927217

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-927217 July 8, 2022 Time: 11:7 # 4

Wang et al. Deep Learning of Metabolic Data

FIGURE 1 | Diagram of the overall structure of the classification model. The whole is divided into three parts, from left to right, the first part is to collect the structural
data of brain regions and metabolite levels of the ROI in the frontal and parietal region. The second part is to carry out multi-model data processing of the obtained
data. And the third part is to classify AD using SAE neural network.

select the best model. It is determined that the good SAE neural
network has better sparsity, so as to avoid the dimension curse
problem that may occur when the number of features is greater
than the number of samples in the process of network training.
In the pre-training stage, the learning rate of the model is set to
0.1, the batch size is set to 3, and the epochs are related to the
number of training sets. In the formal training stage, the learning

rate of the model is 1, the batch size is related to the number of
training sets, the epochs are 15, and the activation function in the
classification layer is the Sigmoid function.

Input Dataset Classification
In this study, in order to ensure the generalization ability of
the constructed AD classification model and avoid over fitting
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FIGURE 2 | The structure diagram of the stacked auto-encoder (SAE) neural
network. A four-layer SAE neural network with double hidden layers was
selected for AD classification. The neurons of all layers are connected in a fully
connected way. Among them, the number of the input layer neurons is the
dimensions of multimodal data. The number of hidden layer neurons is set by
the method of selecting the best model. And the output layer is AD or HC.

of the model, the K-fold cross-validation method with K equal
to 5 was selected to test the performance of the classification
model. The 42 groups of sample datasets were divided into five
parts, which take four of them as the training set to train the
classification model each time and used the remaining one as
the test set to judge the performance of the classification model.
The experimental steps were repeated for five times. And the
constructed AD classification model was evaluated by the overall
results of the prediction set.

RESULTS

T-test Screening Results
Based on the t-test and FDR data correction results, a total
of 58 multi-modal data features showing significant differences
between groups were obtained (Table 2), including data
for 54 MRI structural data of brain regions and 4 levels
of metabolites.

To further verify whether these 58 multi-modal features
are consistent with AD diagnosis, the correlation analysis was
performed for each feature and the MMSE scores. Using the
multi-modal data as the independent variable and the MMSE
scores as the dependent variable, the r correlation coefficient
was calculated to further verify the reliability of data selection.
Figures 3A–D shows the regression results for the 4 metabolite
levels and MMSE scores.

The range of the correlation r-values is (0.343, 0.694),
indicating that the selected metabolite data have a strong
correlation with MMSE and supporting that the selected 4

metabolites in the frontal and parietal regions correlated with
AD symptoms.

Input Data Classification of Stacked
Auto-Encoder Neural Network
As shown in Table 3, combining the multi-modal data according
to the screening results resulted in 7 different AD classification
models, respectively, labeled À–Æ. The input dataset is multi-
modal data composed of MRI structural data of brain regions
and metabolites in different ROIs. The output dataset is the
presence of AD (0 = HC, 1 = AD). Model À includes the
control group and the input dataset is the 54 MRI structural
data of brain regions selected by the t-test. Model Á includes
the 54 MRI structural data of brain regions combined with
the 4 metabolites, including NAA/Cr in the frontal region
and GABA + , Glu/Cr and NAA/Cr in the parietal region.
Models Â–Å are the 4 input datasets obtained by combining
the 54 structural of brain regions and the data for each
metabolite selected by the t-test. Model Æ includes the 54 MRI
structural data of brain regions combined with GABA + ,
Glu/Cr and NAA/Cr in the parietal region. The fivefold
cross validation results of the seven models are shown in
Supplementary Tables 1–7.

Comparison of the Alzheimer’s Disease
Classification Accuracy of Different
Models
In the study, the mean of the five experimental results in the
fivefold cross-validation of each model was taken as the final
experimental result. Figure 4 presents an intuitive comparison
chart of the classification accuracy and AUC values of the 7
models.

As shown in Figure 4, comparing model À, Á, and Æ, adding
the three metabolites of GABA+, Glu/Cr, and NAA/Cr in the
parietal region increases the accuracy of AD classification from
96 to 100%, The AUC value from 0.97 to 1, indicating significant
improvement in the classification performance.

Models Â–Å show the combinations of one of the 4
metabolites with the 54 MRI structural data of brain regions.
Compared with model À that includes only structural data,
the AD classification accuracy of model Â, Ã, and Ä with
GABA + , Glu/Cr, and NAA/Cr in the parietal region,
respectively, increased from 6 to 98%, and the AUC value was
improved from 0.97 to 1.00. However, the AUC value of model Ä

combined with NAA/Cr in the frontal region and brain structural
data increased from 0.97 to 0.98, and the classification accuracy
decreased from 97 to 82%.

From the results of linear regression between the metabolite
data and MMSE in Table 4, the four metabolite data of
GABA+, Glu/Cr, NAA/Cr in the parietal region and NAA/Cr
in the frontal region had significant statistical significance with
AD classification (p < 0.05). Moreover, the four regression
models passed the F-test, and the GABA + in the parietal
region and MMSE regression models had the largest F statistics
(F = 25.538). The results of the significance test further indicated
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TABLE 2 | Data screened using the t-test.

Brain region P-value Brain region P-value

Inferior frontal WM pars opercularis_R 0.0478 Cingulum (cingulate gyrus)_L 0.0199

Inferior frontal WM pars orbitralis_R 0.0455 Putamen_L 0.0199

Superior frontal gyrus_L 0.0418 Middle Temporal WM_L 0.0187

posterior cingulate gyrus_R 0.0400 Superior corona radiata_L 0.0187

Angular gyrus_R 0.0387 Nucleus accumbens_R 0.0187

Insula_L 0.0387 Fusiform Gyrus_R 0.0163

NAA/Cr_F 0.0379 Fimbria_L 0.0162

Parahippocampal gyrus_L 0.0363 Hippocampus_R 0.0162

Superior temporal gyrus_R 0.0356 Lateral Fronto-Orbital WM_R 0.0162

Superior parietal gyrus_L 0.0354 Posterior Cingulate WM_L 0.0162

Splenium of corpus callosum_L 0.0341 Middle Temporal Gyrus_R 0.0162

Middle frontal gyrus (posterior segment)_L 0.0342 Temporal Lobe Sulci_R 0.0153

Inferior fronto-occipital fasciculus_R 0.0342 Inferior Frontal WM pars opercularis_L 0.0109

Cingulum (hippocampus)_L 0.0330 Dorsal anterior cingulate gyrus_L 0.0109

Body of corpus callosum_L 0.0305 Middle Temporal Gyrus_L 0.0103

Substancia Nigra_R 0.0305 Inferior frontal gyrus pars opercularis_L 0.0103

External capsule_R 0.0294 Nucleus accumbens_L 0.0097

Fusifrom gyrus_L 0.0294 Clustrum Complex_L 0.0095

Supramarginal gyrus_R 0.0290 BasalForebrain_R 0.0084

Superior temporal gyrus_L 0.0273 Sylvian Fissure Temporal Lobe Part_L 0.0076

Pole of middle temporal gyrus_L 0.0253 Amygdala_R 0.0076

Anterior corona radiata_R 0.0235 Inferior Frontal WM pars Triangularis_L 0.0055

BasalForebrain_R 0.0235 Sylvian Fissure Frontal Lobe Part_L 0.0041

Occipital Lobe Sulci_R 0.0235 Superior longitudinal fasciculus_L 0.0035

Subcallosal anterior cingulate WM_L 0.0235 Amygdala_L 0.0031

Inferior temporal gyrus_L 0.0231 NAA/Cr_P 0.0020

GABA + /Cr_P 0.0206 Caudate_tail_L 0.0020

Superior corona radiata_R 0.0199 Glu/Cr_P 0.0003

Middle Frontal WM (posterior segment)_L 0.0199 Hippocampus_L 0.0003

FDR corrected p < 0.05. L, left; R, right; F, frontal region; P, parietal region. WM, white matter.

that GABA + in the parietal region was the key data affecting
AD classification.

DISCUSSION

The results of this study show that the addition of the three
metabolites GABA + , Glu/Cr, and NAA/Cr in the parietal
region significantly improved AD classification. And of the
various metabolites tested, the GABA + levels of the parietal
region contributed the most to the model classification results,
suggesting that it is a key feature that affects AD classification.

Structural MRI data alone are widely used in the diagnosis of
AD. For example, atrophy of the hippocampus and entorhinal
region are characteristic structural changes of AD. Previous
studies have shown that the sensitivity of an AD model
containing only MRI structural features is 93% and the specificity
is 86% (Westman et al., 2010). In this study, the AD classification
accuracy of the model containing MRI structural data of brain
regions is 96%, and the specificity is 90%. In addition to MRI
structural data of brain regions, changes in metabolites have been
shown to be effective biological markers of AD. In the study,

the addition of all 4 metabolites increased the accuracy of AD
classification from 96 to 100%, the AUC value from 0.97 to
1.00 and the specificity from 90 to 100%. Previous studies have
used multivariate data analysis to explore the effect of adding
metabolite data to AD diagnostic models, which found that
adding metabolite characteristics to a structural diagnostic model
increased sensitivity to 97% and specificity to 94% (Westman
et al., 2010). Some researchers (Ahmed et al., 2020) have used
deep learning to classify early AD patients and controls using
MRS data. The addition of MRS data increased the model
classification accuracy to 93.3% and the specificity to 89.47%,
indicating great detection efficiency. The above findings are
consistent with the results of the present study, indicating that
an AD classification method that combines MRI structural data
of brain regions with metabolite levels has higher specificity and
classification accuracy than a structural model alone, which can
effectively improve the accuracy of AD diagnosis.

This study also analyzed the effects of four metabolites on
the classification of AD. Figure 3 shows that the correlation
of GABA + in the parietal region is the highest and that of
NAA/Cr in frontal region is the lowest. The results showed that
GABA + levels in the parietal region were the key data affecting
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FIGURE 3 | Regression analysis of 4 metabolites including the parietal region GABA +, Glu/Cr, NAA/Cr levels and the frontal region NAA/Cr levels with MMSE.
(A) MMSE scores were positively associated with the GABA + levels of the parietal region (r = 0.624, p = 0.0165). (B) MMSE scores were positively associated with
the Glu/Cr levels of the parietal region (r = 0.095, p = 0.0068). (C) MMSE scores were negatively associated with the NAA/Cr levels of the frontal region
(r = −0.155, p = 0.0412). (D) MMSE scores were positively associated with the NAA/Cr levels of the parietal region (r = 0.360, p = 0.000002).

AD classification. The model including GABA + had the highest
accuracy and specificity, which increased the classification
accuracy from 96 to 98%, AUC value from 0.97 to 0.99 and the
specificity from 90 to 95%. The significant p-value of NAA/Cr
of the frontal region was between 0.01 and 0.05, which was
statistically significant. The significant p-values of GABA + ,
Glu/Cr, and NAA/Cr in the parietal region were all less than
0.01, which had extremely significant statistical significance with
MMSE. Moreover, the four regression models passed the F-test,
and the GABA + levels of the parietal region and MMSE
regression models had the largest F statistics (F = 25.538), which
further indicated GABA + levels of the parietal region is the
key data affecting AD classification. GABA, which is the main
inhibitory metabolite in the human brain, is closely related to
cognitive function and participates in the regulation of various
advanced cognitive behaviors such as learning and memory
(Schmitz et al., 2017; Scholl et al., 2017). Studies of AD animal
models have found that abnormal function of the GABAergic
system may be a common target of multiple abnormal signal
pathways in AD. Dysfunctional GABAergic system leads to
neuronal excitation-inhibition imbalance, which will promote
the pathological spread of Aβ and tau and further aggravate
cognitive impairment in AD patients (Danlei et al., 2020).
Moreover, excitatory-inhibitory imbalance is considered an
important cause of cognitive impairment, and GABAergic system
is an important regulatory factor for the excitation-inhibition

balance (Duncan et al., 2014). Decreased parietal GABA levels
may lead to regional excitation-inhibition imbalance, which may
result in neuronal overexcitation. Thus, selectively manipulating
the synthesis or release of GABA to correct excitation-inhibition
imbalance could be a potential treatment target for AD. Overall,
our findings provide further evidence that parietal GABA level is
a key feature affecting the classification of AD. Combined with
MRI structural data and metabolite characteristics, the accuracy
of AD classification will be significantly improved.

Although our findings support that the method proposed in
this study has potential clinical applications in AD research,
our study is still subject to some limitations. First, the sample

TABLE 3 | Input datasets of each classification model.

Parameter combination

À 54 Structural data

Á 54 Structural data + 4 Metabolite levels data

Â 54 Structural data + GABA + in the parietal region

Ã 54 Structural data + Glu/Cr in the parietal region

Ä 54 Structural data + NAA/Cr in the frontal region

Å 54 Structural data + NAA/Cr in the parietal region

Æ 54 Structural data + 3 Metabolic Data in the parietal region

4 Metabolite Levels Data include GABA +, Glu/Cr and NAA/Cr in the parietal region
and NAA/Cr in the frontal region.
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FIGURE 4 | Comparison of the classification accuracy and AUC value of 7 different AD classification models. The input dataset of model À are 54 structural data.
The input dataset of model Á are 54 structural data and 4 metabolite levels data including GABA +, Glu/Cr, NAA/Cr in the parietal region and NAA/Cr in the frontal
region. The input dataset of model Â are 54 structural data and GABA + in the parietal region. The input dataset of model Ã are 54 structural data and Glu/Cr in the
parietal region. The input dataset of model Ä are 54 structural data and NAA/Cr in the frontal region. The input dataset of model Å are 54 structural data and
NAA/Cr in the parietal region. The input dataset of model Æ are 54 structural data and GABA +, Glu/Cr and NAA/Cr in the parietal region.

comprised only 42 AD patients and controls, and small number
of samples may slow the convergence speed of neural network,
causing overfitting and low generalization capability. Second,
our study lacked information about longitudinal changes of
structural and metabolic data in patients with AD. Thus, future
studies should expand the number of participants and explore
the impact of longitudinal data on the classification of AD over
time, and we will try to apply novel method in prediction. Such
as applying RNN or LSTM to classify. Lastly, we did not collect
brain function and perfusion data in this study, such as resting-
state functional MRI and arterial spin labeling perfusion. We plan
to add the above data to subsequent studies to establish an AD
diagnostic model involving three dimensions, namely structure,
function, and metabolism.

TABLE 4 | Four metabolite data in the parietal and frontal regions of ROI and
MMSE linear regression analysis.

p Person’s r R square Adjusted R
square

F statistic

GABA + _P 0.000010 0.624 0.390 0.374 25.538

Glu/Cr_P 0.000137 0.555 0.308 0.291 17.798

NAA/Cr_F 0.026000 0.343 0.118 0.095 5.329

NAA/Cr_P 0.000035 0.593 0.351 0.335 21.680

p, p-value of significance; F, in the frontal region; P, in the parietal region.

CONCLUSION

In summary, compared to AD classification models that only
involves MRI brain region structural data, the addition of the
metabolite levels in the parietal regions significantly improved
AD classification performances. Moreover, the GABA + levels
of the parietal region were the key feature affecting AD
classification, which supports the hypothesis that dysfunctional
GABAergic system plays an important role in the pathogenesis
of AD. Our findings support that a comprehensive method that
combines MRI structural and metabolic data of brain regions can
improve model classification efficiency of AD.
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