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A B S T R A C T   

During exercise, cerebral blood flow (CBF) is expected to only increase to a maximal volume up to a moderate 
intensity aerobic effort, suggesting that CBF is expected to decline past 70 % of a maximal aerobic effort. 
Increasing CBF during exercise permits an increased cerebral metabolic activity that stimulates neuroplasticity 
and other key processes of cerebral adaptations that ultimately improve cognitive health. Recent work has 
focused on utilizing gas-induced exposure to intermittent hypoxia during aerobic exercise to maximize the im
provements in cognitive function compared to those seen under normoxic conditions. However, it is postulated 
that exercising by isolating breathing only to the nasal route may provide a similar effect by stimulating a 
transient hypercapnic condition that is non-gas dependent. Because nasal breathing prevents hyperventilation 
during exercise, it promotes an increase in the partial arterial pressure of CO2. The rise in systemic CO2 stimulates 
hypercapnia and permits the upregulation of hypoxia-related genes. In addition, the rise in systemic CO2 stim
ulates cerebral vasodilation, promoting a greater increase in CBF than seen during normoxic conditions. While 
more research is warranted, nasal breathing might also promote benefits related to improved sleep, greater 
immunity, and body fat loss. Altogether, this narrative review presents a theoretical framework by which 
exercise-induced hypercapnia by utilizing nasal breathing during moderate-intensity aerobic exercise may pro
mote greater health adaptations and cognitive improvements than utilizing oronasal breathing.   

Introduction: components of cerebral blood flow 

The human brain is a highly vascularized organ that is dependent on 
a continuous blood supply. The delivery of blood to the brain, known as 
cerebral blood flow (CBF), is defined as the total volume of blood per 
brain tissue over time (mLblood/100 g tissue ⋅ min) and is critical to 
deliver nutrients and meet cerebral energetic demands [1]. If the CBF of 
a given brain region is dramatically reduced, localized brain cells 
become hypoxic and die, leading to permanent brain damage and 
neurological disorders [2]. To maintain a sufficient CBF, the cerebral 
perfusion pressure (CPP) is tightly regulated to ensure a constant blood 
supply to the cerebral tissue [3]. CBF can be maintained constant 
because CPP can be adjusted acutely by regulating its two primary 
determining variables. Specifically, CPP is the difference between mean 
arterial pressure (MAP) and intracranial pressure (ICP), where CPP =
MAP – ICP [3]. MAP is a representation of whole-body blood delivery 
per every cardiac cycle and can be calculated by accounting for systolic 

and diastolic blood pressure [diastolic pressure + 1/3 (systolic – dia
stolic pressure)], along with pulse pressure [diastolic pressure + 1/3 
(pulse pressure)] [4]. Evidence suggests that a MAP of ≥ 65 mmHg is 
needed to maintain a constant CBF [5]. On the other hand, ICP repre
sents brain stress, where a high ICP (> 20 mmHg) denotes a negative 
brain environment that is not adequately regulated [6]. Currently, the 
primary method to assess ICP is invasive and involves the transcranial 
application of a catheter that monitors ICP within the parenchymal 
brain ventricles [7], while non-invasive applications to monitor ICP are 
currently being investigated. 

Considering that CBF is critical for brain health, the overall ability of 
the brain to maintain a constant CBF is referred to as cerebral autor
egulation (CA). Specifically, CA is calculated by accounting for CPP and 
cerebrovascular resistance (CVR), ultimately determining the overall 
cerebral perfusion [8]. To put this into perspective, CA is represented as 
follows: 

High Cerebral Autoregulation = Homeostatic Cerebral Blood Flow 
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Cerebral Blood Flow = Cerebral Perfusion Pressure

÷ Cerebral Vascular Resistance  

Cerebral Perfusion Pressure = Mean Arterial Pressure − Intracranial Pressure  

Cerebral Vascular Resistance = Regulated by Vasodilation/Vasoconstriction 

Evidence examining the adaptations following aerobic exercise 
supports that the metabolic activity permitted by an increased CBF can 
expose the brain to hyperemia and therefore bolster improvements in CA 
[1,9,10]. However, the adaptations to aerobic exercise may differ 
depending on the breathing pattern and the exercise intensity utilized 
[10,11]. Under this scope, this review manuscript aims to describe how 
CBF increases during exercise in relation to different exercise intensities 
and how the breathing pattern can affect how much CBF can increase. 
Moreover, an introductory overview regarding adaptations following 
hyperemic exposure is presented, along with a description of the 
strengths and weaknesses of different methods employed to assess CBF 
during exercise. 

Change in cerebral blood flow during aerobic exercise 

Exercise intensity and hypoxia 

During exercise, CPP increases as believed to be, in part, related to an 
increase in MAP, sympathetic-related vasoconstriction, or dehydration- 
induced increments in CVR [12–16]. A consequence of the increased 
CPP is that CBF can only continue to increase up to a moderate-intensity 
aerobic effort during exercise. This means that past 70 % of a maximal 
aerobic effort, CBF is expected to decline because of an increased CPP 
and/or the need to buffer the excess pressure building within the brain 
that could otherwise be harmful [17,18]. This is important to highlight 
because, among the benefits of aerobic exercise in relation to cognitive 
health, it has been demonstrated that the increments in CBF provided by 
aerobic exercise are linked to cognitive improvements. Such as, 
increasing CBF during exercise permits an increased cerebral metabolic 
activity that stimulates neuroplasticity and other key processes of ce
rebral adaptations that ultimately improve the ability to CA [18–20]. 
Thereof, it is worthwhile to contrast that there is a probable link be
tween interventions that employ a moderate intensity (65–70 % of 
maximal effort) aerobic exercise protocol and the subsequent improve
ments in cognitive function with the fact that the participants are also 
benefiting from an increased CBF throughout the intervention. More
over, evidence in older men has shown that their CBF increased by more 
than 20 % compared to their baseline, alongside an improvement in 
cognitive function after 12 weeks of aerobic exercise using a cycle 
ergometer at 70 % of their maximal effort [21]. Similar benefits of 
exercising on CBF have also been reported acutely and not just after 
long-term interventions. For example, an acute bout of maximal aerobic 
effort revealed that the trained men and women had a higher degree of 
CA than the sedentary participants [22]. Noteworthy, the trained in
dividuals had over 10 years of prior aerobic training experience exer
cising at a moderate intensity, unlike the sedentary individuals with no 
prior history [22]. 

Furthermore, a remarkable adaptation following aerobic exercise 
training revolves around the ability to provide dependable benefits so 
long the frequency of exercise is maintained. Such as individuals exer
cising over a period of 1 year demonstrated continuous improvements in 
CA throughout the entire intervention period [19], denoting that the 
brain is continuously adapting and improving its ability to CA so long it 
continues to be metabolically challenged via exercise [19,22,23]. In the 
context of cognitive health, a major reason why increasing CBF during 
exercise is beneficial to sustain a healthy cognitive function is that the 
associated increased metabolic demand driving the increment in CBF 
also stimulates the entire brain to work and adapt. For example, 

moderate-intensity aerobic exercise has been demonstrated to be critical 
in older individuals with poor cerebrovascular health and at risk of 
dementia. That is because aerobic bouts can significantly increase hip
pocampal CBF [24], which counteracts the decline in CBF attributed to a 
sedentary lifestyle. Increasing hippocampal CBF is beneficial for geri
atric populations because the hippocampus is a critical region for 
memory formation and the maintenance of cognitive function [25], 
which is a relationship that is critical to improving the prognosis of in
dividuals with a history of suffering a stroke [26]. 

It is well documented that frequent moderate-intensity aerobic ex
ercise provides beneficial cerebral adaptations that bolster cognitive 
health. However, in addition to increasing CBF, engaging in aerobic 
exercise also promotes the upregulation of neuropeptides and vascular 
growth factors pivotal to maintaining healthy endothelial cells and 
promoting a regulated CBF [27,28]. Moreover, recent research has 
started exploring a new avenue of maximizing the benefits of aerobic 
exercise by identifying methods to promote the greatest increment in 
CBF. Specifically, unlike in normoxic conditions, evidence suggests that 
exercising under hypoxic conditions could provide greater benefits to
wards cognitive function, especially in memory preservation [29–35]. In 
other words, albeit the direct mechanistic adaptation leading to im
provements in cognitive function warrants further research, exercising 
under a hypoxic condition may bolster a greater cognitive improvement 
than what is achieved while exercising under normoxic conditions by 
improving how individuals perform in different tests to assess cognitive 
performance. In part as to why hypoxia may induce a positive change 
related to cognitive function relates to its ability to stimulate angio
genesis and the production of red blood cells by inhibiting the enzymatic 
activity of prolyl hydroxylase domain 2 (PHD2), which in turn promotes 
the production of erythropoietin (EPO) [27,36,37]. In addition, expo
sure to hypoxic conditions permits the upregulation of 
hypoxia-inducible factor (HIF) proteins that are of importance due to 
their ability to stimulate cerebral and vascular adaptations that lead to 
an increased CBF [38–41], where increasing CBF is needed to maintain 
the ability to CA [18–20] and promote the postulated cognitive im
provements. However, unless an individual inhales hypoxic gas prior to 
or while exercising, it is not common to create a hypoxic condition 
simply by exercising. While inhaling gas to elicit a hypoxic condition is 
effective [29–35], it limits the ability to apply this in a wide array of 
settings due to possible limitations in gas accessibility. In addition, the 
majority of the emphasis has been placed on utilizing gas-induced 
hypoxia to achieve a greater understanding of CBF regulation in the 
context of CA, and lesser attention has been placed on assessing how 
biomarkers that are upregulated during hypoxia could also positively 
affect CBF over time under this type of training regime. 

Cerebral blood flow and breathing pattern 

One plausible method to explore the effects of exposure to hypoxic 
conditions while exercising without the reliance on external gas inha
lation is by accounting for the breathing pattern used during exercise. 
While the breathing pattern utilized during exercise primarily depends 
on a personal preference, there are 3 different types of breathing pat
terns, including nasal, oral, and oronasal (both nasal and oral). Based on 
the type of breathing pattern used, the physiological stress elicited by an 
exercise bout can differ, which can be reflected in respiratory-related 
variables that change accordingly to the breathing pattern of use. 
Physiologically, oxygen uptake (VO2) is governed by total minute 
ventilation (Ve), a variable determined by respiratory rate (RR) multi
plied by tidal volume (Vt) [42]. A reduction in RR or Vt can lead to a 
reduction in Ve and, herein, the ability to uptake oxygen. Extrapolated to 
exercise performance, a common phenomenon during a maximal aero
bic effort revolves around hyperventilation, where the rate at which air 
is moved in and out of the lungs is significantly increased and linked as a 
limiting factor in aerobic performance due to impaired gas exchange at 
the alveolar level [43]. In other words, during exercise, the point at 
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which an individual begins to hyperventilate can be contrasted to the 
point at which an individual is no longer able to efficiently remove 
carbon dioxide (CO2) from their body, also referred to as the ventilatory 
threshold. To compensate for the excess CO2 that accumulates in the 
body past the ventilatory threshold, a common phenomenon includes an 
innate change in the breathing pattern utilized, where there is a shift 
from nasal towards oral breathing that facilitates a higher Ve than if 
nasal breathing was maintained throughout [44,45]. Meaning that at 
lower exercise intensities, the reliance on the oral cavity for breathing is 
less because the stimuli provided by carotid bodies and chemoreceptors 
are lesser than what is elicited during greater exercise intensities due to 
a rise in the arterial partial pressure of CO2 (PaCO2) [46,47]. A primary 
outcome of an increased PaCO2 is that to remove CO2 from the blood. 
Thus, hyperventilation is stimulated by carotid bodies and chemore
ceptors to increase gas exchange within the alveoli. Worth denoting 
although the presented role for carotid bodies and chemoreceptors is 
plausible, after decades of work, there is still no shared consensus as to 
how exactly the central nervous response regulates breathing to match 
Ve to alveolar demand [48,49]. Yet, to increase Ve and sustain a greater 
CO2 removal is only possible if a greater volume of air can be moved in 
and out of the lungs, as permitted by relying on the oral route rather than 
the nasopharyngeal route [11]. That is why at greater exercise in
tensities, as reported to occur past around 70 % of someone’s maximal 
VO2 [50–52], there is an innate shift to relying more on oral breathing to 
increase Ve and remove excess CO2 that is attributed to working muscles 
and a greater metabolic efflux of CO2. 

In contrast, if nasal breathing was to be utilized for the entire exer
cise bout, it is possible that the stimulatory effects on cognitive function 
would be greater than relying on the oral or oronasal route. This is under 
the premise that cognitive function favors periods of increased CBF/ 
hyperemia. That is because exercising using only nasal breathing has 
been shown to induce hypoventilation [11,53,54], which is linked to 
creating a hypercapnic condition resembling the effects of hypoxia 
[55–57]. Worth mentioning there is no physiological mechanism that 
would increase the reliance on the nasopharyngeal route while exer
cising. Instead, nasal breathing is to be induced by manipulating the 

breathing pattern, such as providing individuals with a mouthguard to 
serve as a proprioceptive reminder to maintain the mouth closed or 
utilizing hypoallergenic tape for the same purpose [53]. One of the ef
fects of hypercapnia induced by nasal breathing is the superior ability to 
increase nitric oxide production in comparison to oral breathing [58], 
which in turn can favor CBF due to its dilatory effects [59–62]. 
Furthermore, compared to oral breathing, nasal breathing has advan
tages in allowing the lungs to fully expand due to a lower RR [63] that 
does not permit individuals to hyperventilate [53]. Thereof, if in
dividuals hypoventilate during exercise, the effects result in an overall 
reduction in the exhalation of CO2 due to nasal breathing reducing the 
volume of exhaled air, which increases the PaCO2. An increase in PaCO2, 
referred to as hypercapnia, has been documented as an important con
dition increasing CBF [12,23,64–68]. Similarly, because hypercapnia 
causes the upregulation of unique biomarkers attributed to hypoxia 
[69–71], such as HIF proteins, this type of exercise training focused on 
nasal breathing paired with moderate-intensity aerobic exercise might 
be a promising approach to upregulate neuropeptides and growth fac
tors to help develop adaptations that will increase CBF over time and 
therefore increase the ability to CA [68]. An overview of the postulated 
effects elicited during moderate-intensity aerobic exercise based on the 
breathing pattern utilized is illustrated in Fig. 1. 

Overview of hypercapnia 

In this review, the term hypercapnia is contrasted to hypoxia because 
they both resemble a physiological status characterized by a decreased 
availability of oxygen. However, hypoxia and hypercapnia are distin
guished from each other because they have independent factors that can 
drive their occurrence [72]. Note, however, that if either hypoxia or 
hypercapnia occurs, ultimately, what is being described is representa
tive of an environment where the PaO2 is decreased and the PaCO2 is 
increased [72–74]. Therefore, although independent to some extent, 
hypoxia and hypercapnia are inclusive/permissive of each other. From 
an applicability point of view, hypoxia is often utilized to describe 
conditions where a chronic factor, such as a tumor, changes the 

Fig. 1. Overview of the effects elicited during moderate-intensity aerobic exercise based on the breathing pattern utilized. The order of impact is described from low 
to high impact on a given variable, where: low, mild, moderate, and high indicate the degree of change within the variable compared to the other breathing methods. 
For example, a box containing the description of “low” indicates that the given breathing pattern compared to the other two elicits a reduction to the variable of 
interest. Partial arterial pressure of carbon dioxide = PaCO2. 
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metabolic demands that will deprive a given localized region (tissue) of 
oxygen and, thereof, elicit a hypoxic condition [75,76]. In contrast, 
hypercapnia is often utilized to describe factors that can increase PaCO2 
due to impaired removal of CO2 from the bloodstream. While not ac
counting for all cases, chronic obstructive pulmonary disease, a condi
tion where the alveolar sacks are damaged, is among the main reasons 
why someone may experience hypercapnia because their gas exchange 
is compromised [77,78]. Nonetheless, whether the term hypoxia or 
hypercapnia is utilized to describe a condition of decreased availability 
of oxygen, it is critical to highlight that the duration and severity of the 
condition will ultimately determine the impact of the reduced PaO2. 

For example, a chronic reduction in PaO2 is detrimental to all cells. A 
compensatory mechanism that attempts to correct the reduced PaO2 
revolves around the upregulation of HIF proteins to increase the overall 
systemic availability of O2 [79,80]. In contrast, what is being described 
in this manuscript is a condition of reduced PaO2 that is transient in 
nature, i.e., short-lived and rapidly corrected once the stimulus (such as 
nasal breathing during moderate-intensity aerobic exercise) is removed. 
The goal is to expose individuals to transient conditions where the 
decline in PaO2 will stimulate the upregulation of the HIF proteins that 
could provide unique exercise adaptations that cannot be achieved 
under normoxic conditions (homeostatic PaO2) [74,81]. On the other 
hand, regarding the degree of severity, the implications of reducing 
PaO2 differ based on the extent to which the PaO2 is reduced. For 
example, whether the term hypoxia or hypercapnia describes the decline 
in PaO2, the severity can be categorized based on mild, moderate, or 
severe. For example, utilizing the saturation of peripheral oxygen (SpO2) 
to assess oxygen availability/saturation, common thresholds include 
100 – 95 %, 94 % - 90 %, 89 % - 85 %, and so forth [82]. The severity 
increases from no severity to high severity as the lower the SpO2 value 
drops. Contrasted to PaO2, a value of 90 % SpO2, for example would 
represent on average a PaO2 of 60 mmHg [83], which is slightly below 
the recommended range (75–100mmHg) for PaO2 [84]. Conversely, if 
SpO2 and PaO2 decrease, then the PaCO2 will increase above the normal 
range of 35–45mmHg [85,86]. In summary, if words such as mild, 
moderate, or severe are referenced to describe either PaO2 or PaCO2, the 
reference is being utilized to describe the severity of the condition 
(above or below normal expected values). In the context of this manu
script, the postulated benefits of hypercapnia are both described as 
being occurring/beneficial if the duration is transient and not chronic 
and the severity is nothing greater than moderate, with plausible ben
efits under mild severity as well. 

Postulated benefits from aerobic exercise training using nasal 
breathing 

Regular exercise will increase CBF if the common oronasal type of 
breathing is utilized. However, the argument towards utilizing nasal 
breathing during moderate-intensity aerobic exercise revolves around 
the likelihood of stimulating a hypercapnic condition that will provide a 
greater increment in CBF than oronasal breathing would. Considering 
cognitive function, increasing CBF can help maintain a healthy and 
functioning brain by promoting cerebrovascular angiogenesis [20, 
87–90]. From a total blood volume, an increased flow will increase the 
shear rate against cerebral arteries and stimulate the proliferation of 
endothelial cells [91,92]. In diseases characterized by neuro
degeneration, a major feature is a damaged endothelial wall that dis
rupts the integrity of the blood-brain barrier (BBB) [93,94]. As a 
countermeasure, stimulating endothelial cell proliferation can help 
prevent an excess infiltration of molecules, such as pro-inflammatory 
cytokines, that should not actively cross into the brain because they 
can promote neurodegeneration and the disruption of the BBB. In 
addition, the overarching rationale to stimulate cerebrovascular angio
genesis is to increase tissue perfusion that will provide neurons and glial 
cells with the necessary environment to proliferate and adapt [95]. It is 
important to denote that chronic hypercapnia is not good for cells, but 

exposure to transient insults is a promising therapeutic approach 
because it provides a temporary stimulus that does not cause a toxic, 
harmful environment for cells [68,96]. Therefore, periodic nasal 
breathing during moderate-intensity aerobic exercise holds the potential 
to provide transient hypercapnic insults that, in theory, result in greater 
cerebrovascular adaptations and may be a more effective approach to 
promote cognitive improvements than if oronasal breathing is utilized. 
That is why the postulated framework of nasal breathing during exercise 
is warranted to be further studied via well-controlled studies. 

Another consideration is that nasal breathing during exercise allows 
for greater air filtration and equalizes the air to body temperature, 
providing the lungs with cleaner air that can reduce the risk of infections 
[97–100]. In addition, trained athletes who receive additional training 
to use nasal breathing are reported to become capable of exerting 
themselves and achieving a similar respiratory (VO2) training adapta
tion as someone breathing via the oral or oronasal route [11,53, 
101–104]. Adaptations to nasal breathing could also be explored as an 
avenue to help individuals with obstructive sleep-disordered breathing 
(SDB). SDB is characterized by the inability to inhale via the naso
pharynx route, which deprives the brain and tissues of oxygen due to a 
lack of overall Ve while sleeping [105]. SDB is linked to a decline in 
cognitive function, a lack of restfulness, waking up tired, snoring during 
the night, headaches, and weight gain, among many other symptoms 
[105–111]. Common treatments for SDB include losing weight or, more 
acutely, using an external respirator known as continuous positive air 
pressure (CPAP) device that forcefully opens the nasopharynx while 
sleeping to improve the symptoms of SDB [112,113]. However, it is 
postulated that among preventative strategies towards SDB, exercising 
via nasal breathing may provide adaptations that could help improve 
conditions like SDB that greatly benefit from improvements in naso
pharyngeal airflow [114–118]. 

Another potential benefit of promoting a hypercapnic condition 
during exercise revolves around the possibility of stimulating peripheral 
blood mononuclear cells (PBMCs). First, it must be distinguished that 
under conditions of neuroinflammation, such as Alzheimer’s and Par
kinson’s disease, an increased infiltration of immune cells is linked to a 
greater permeability in the BBB and a decline in cognitive function [93, 
119–121]. Among the common pro-inflammatory mediators secreted by 
PBMCs, such as interleukin-6 and tumor necrosis factor alpha, the ability 
to also secrete monocyte chemoattractant protein-1 possess a direct link 
to the disruption of the BBB integrity [93,122]. Acknowledging that 
PBMCs might have a pervasive effect influencing neuroinflammation, 
recent evidence has demonstrated that PBMCs can be conditioned to 
change their phenotype [123–125]. Specifically, their action can be 
conditioned to hold an anti-inflammatory phenotype that is character
ized by an upregulation in the secretion of growth factors that stimulate 
tissue repair and cellular proliferation. This was shown in-vitro where 
PBMCs cultured under hypoxic, rather than normoxic conditions 
became highly expressive of two main growth factors compared to the 
normoxic PBMCs. Specifically, hypoxia-conditioned PBMCs upregulated 
vascular endothelial growth factor and transforming growth factor-beta 
[126,127]. Because of their upregulated growth-factor secretion, it is 
stipulated that they can cross the BBB [126] and have an angiogenic 
stimulatory role that will have benefits related to increased neuronal 
and glial cell activity. While there is also some evidence indicating that 
PBMC conditioning during exercise is possible [124,128,129], more 
research is warranted to fully determine if it is plausible to condition the 
phenotype of PBMCs via exposure to transient exercise-induced hyper
capnia, such as postulated to be induced via nasal breathing under 
moderate-intensity aerobic exercise. 

Lastly, another important factor to be mentioned revolves around 
body composition, where exposure to transient hypercapnia may pro
vide potential benefits not seen during normoxic conditions. Specif
ically, moderate-intensity aerobic exercise programs that utilized 
intermittent hypoxia for 8 to 12 weeks with 3 sessions per week 
demonstrated a significant reduction in body fat percentage in 
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overweight/obese male and female participants compared to their 
normoxic training counterparts [130,131]. Additional benefits reported 
to be significantly greater during hypoxic aerobic exercise training in 
relation to body composition included increased insulin sensitivity, 
skeletal muscle and bone mass preservation, increased aerobic capacity, 
improved vascular health, lower blood pressure, reduced cholesterol, 
reduced appetite, and improved mood [132–140]. Altogether, a 
compelling body of evidence suggests that engaging in 
moderate-intensity aerobic exercise while using nasal breathing may 
provide greater benefits than seen during oral or oronasal breathing. The 
benefits include but are not limited to an increased CBF, improved 
nasopharyngeal airflow, greater anti-inflammatory activity, and 
healthier body composition. However, caution should be taken, as better 
understanding is needed regarding which populations might benefit 
from this training method the most, what the possible contraindications 
for its application could be, and what are the underlying mechanistic 
adaptations that occur both acutely and after a long-term intervention. 

Assessment of cerebral blood flow during aerobic exercise 

When examining the effect that exercise has on increasing CBF, 
utilizing an objective method that can rapidly assess changes in CBF is of 
uttermost importance because CBF is continuously changing. Unless 
measured while someone is exercising, it is impossible to estimate how 
much CBF increased during an exercise bout. This is under the context 
that the goal is to identify a type of exercise intervention that is capable 
of increasing CBF as much as possible. For example, in the early times of 
CBF assessment, a common method to estimate CBF was utilizing the 
Fick principle based on the rate of disappearance of inert nitric oxide 
tracers [141], but a limitation was that it lacked specificity in outlining 
the regional CBF and that it relied on the assumption of a symmetrical 
venous outflow which proved to be inconsistent [142,143]. Addition
ally, the utilization of magnetic resonance imaging would provide an 
accurate representation of regional CBF but would require individuals to 
be motionless, making it unusable for exercise. In contrast, functional 
near-infrared spectrometry devices (fNIRs) are becoming more popular 
and effective for the assessment of CBF. However, there are some limi
tations to fNIRs usage during exercise due to their sensitivity to excess 
noise caused by the artifact’s motion and potential signal interference 
produced by bright environments or excess hair. In addition, the 
infrared light used by fNIRs cannot penetrate deep into the skull; 
therefore, it only represents cortical CBF [144]. A brief overview of the 
strengths and weaknesses of these methods is presented in Table 1. 

An alternative approach to measure CBF during exercise would be to 
utilize ultrasound sonography. Anatomically, CBF originates from the 
aortic arch. Located on the right side of the neck, the innominate, also 
known as the brachiocephalic artery, is the first branch of the aorta. The 
brachiocephalic artery separates into the subclavian and the common 
carotid artery (CCA). Stemming from the right subclavian artery is the 
right vertebral artery which delivers blood to the brain. The subclavian 
artery extends to the arm as it becomes the axillary artery. Both CCA and 
vertebral arteries provide the blood supply to the brain. The same ap
plies to the left side of the neck, except that the left side has no bra
chiocephalic branch, and instead, the left CCA is deeper because it arises 
directly from the aortic arch [145]. However, to be specific, the CCA 
bifurcates into both external (ECA) and internal (ICA) carotid arteries, 
where the ECA provides blood supply to the surface regions of the head 
while the ICA penetrates deeper and provides blood directly to the brain 
[146]. Between the vertebral arteries and the ICAs, the brain receives all 
its required blood supply. During exercise, assessing the ICAs is easier to 
visualize (most superficial) compared to the vertebral arteries (Fig. 2A), 
providing an ideal window that can be accessed anteriorly or laterally at 
the C3-C5 vertebral level to assess CBF via ultrasound sonography. 

The benefits of utilizing ultrasound sonography during exercise to 
assess CBF in the ICA revolve around the ability to attain clear, imme
diate, direct, and accurate images that permit the assessment of CBF at 

different exercise intensities. While low frequencies (2–5 MHz) permit 
the assessment of deep anatomical structures, a higher frequency 
(10–13 MHz) is recommended for assessing the ICA. Utilizing B-mode 
paired with color doppler and pulse wave doppler imaging makes it 
possible to assess the ICA to estimate CBF during low to maximal aerobic 
efforts if special considerations are accounted for. For example, the color 
doppler box must be positioned as close as possible to the ICA, in 
alignment with the vessel wall ~2 cm distal to the origin of the ICA 
(after the CCA bifurcation) to avoid turbulent blood flow. It is recom
mended that the size of the box is reduced to prevent excess frames that 
would freeze/lag the image during movement, as during exercise. 
Furthermore, the maximal Doppler shift (v = max) occurs at a 0◦ angle 
when the ultrasound beam is parallel to the flow of the blood vessel, 
meaning that it is recommended to maintain a 60◦ pulse wave doppler 
angle to get an accurate estimate of blood flow. The assessment of both 
ICA and ECA via ultrasound sonography during exercise is illustrated in 
Fig. 2B. Noteworthy, only two critical components of ultrasound so
nography imaging have been highlighted in this review, but there is an 
in-depth review by Revzin et al. that outlines thorough considerations 
on how to optimize the collection of images [147]. 

Future recommendations 

Overall, there is strong foundational work elucidating that exposure 
to transient hypercapnia induced via moderate-intensity aerobic exer
cise using nasal breathing might be an avenue to promote a wide array of 
health benefits. However, a greater understanding of the impact that 
using nasal breathing has on overall health will increase the applica
bility of this exercise modality to make the benefits of transient hyper
capnia more accessible. Alongside this, there is great interest in further 
examining the post-intervention changes following a nasal breathing 
aerobic exercise intervention on sleep quality and PBMCs. Suppose this 
modality of training does induce a transient hypercapnic exposure. In 
that case, it is plausible that after an intervention, individuals who un
derwent the nasal breathing condition will have improved sleep quality 
and a phenotype change within their PBMCs that indicates an immune- 
specific adaptation to the training. It is also necessary to examine the 
resultant weight loss to determine if body fat percentage and car
diometabolic markers improve after an aerobic exercise intervention 

Table 1 
Overview of common methods utilized to quantify cerebral blood flow.  

Method Safety Strengths Limitations 

Fick Principle Non- 
invasive 
and 
requires no 
radiation 

Representation of CBF 
in relation to the 
metabolic demand for 
oxygen 

The non-symmetrical 
venous outflow 
reduces the accuracy 
of the prediction 

Magnetic 
Resonance 

Non- 
invasive 
and 
requires 
radiation 

The high spatial 
resolution of regional 
CBF 

Requires individuals 
to be motionless, 
therefore, cannot be 
employed during 
exercise 

Functional 
Near-infrared 
Spectrometer 

Non- 
invasive 
and 
requires no 
radiation 

Portable continuous 
monitoring of 
localized perfusion 
based on the 
positioning of 
electrodes/quantity of 
channels 

Represents cortical 
perfusion based on 
hemoglobin 
saturation that can 
also be affected by 
excess environmental 
noise, such as light 

Ultrasound 
Sonography 

Non- 
invasive 
and 
requires no 
radiation 

Direct measurement of 
CBF based on flow 
velocities that are 
analogous to blood 
volume 

Not portable and 
requires a high degree 
of expertise to be 
utilized and correctly 
interpret the 
measured flow 
velocities during 
exercise 

CBF = cerebral blood flow. 
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Fig. 2. Representation of the superior arterial branching stemming from the aortic arch that supplies blood to the head (A). Representation of the commonly assessed 
arteries during exercise to assess cerebral blood flow (B). Common carotid artery = CCA; External carotid artery = ECA; Internal carotid artery = ICA. 

Fig. 3. Overview of the postulated benefits achieved during moderate-intensity aerobic exercise based on the breathing pattern utilized. The order of impact is 
described from low to high impact on a given variable, where: low, mild, moderate, and high indicate the degree of change within the variable compared to the other 
breathing methods. For example, a box containing the description of “low” indicates that the given breathing pattern compared to the other two elicits a reduction to 
the variable of interest. Cerebral blood flow = CBF; Mean arterial pressure = MAP; Hypoxia-inducible factor 1-alpha/beta = HIF-1α/β; Erythropoietin = EPO. 
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that employs nasal breathing. Within the scope of this review, nasal 
breathing may serve as an avenue to maximize the ability to increase 
CBF during exercise. The overarching goal is to increase CBF to prevent 
cognitive decline in individuals at risk of dementia. However, a great 
degree of work is needed before making conclusive recommendations. 
Although the theory supports the utilization of nasal breathing (Fig. 3), 
more research will permit to understand its applicability, safety, and 
expected adaptations after acute and long-term aerobic exercise in
terventions, where special interest should be given to moderate- 
intensity aerobic exercise due to its ability to stimulate a maximal CBF 
during exercise. 

Conclusions 

The utilization of nasal breathing during moderate-intensity aerobic 
exercise is a promising approach to elicit a transient hypercapnic con
dition that provides greater increments in CBF than during normoxic 
conditions. The benefit of stimulating a transient hypercapnic condition 
is to stimulate adaptations attributed to periods of hypoxia, such as 
angiogenesis, that can bolster the maintenance and improvements in 
cognition over time. Moreover, a greater emphasis is warranted on 
assessing biomarkers that are upregulated under hypoxic conditions to 
disseminate the extent to which utilizing nasal breathing during a 
moderate-intensity aerobic exercise bout can upregulate angiogenic 
growth factors. This will permit to expand from the applied perspective, 
such as identifying increments in CBF while utilizing nasal breathing, to 
a mechanistic aspect by examining the interaction and adaptations at a 
cellular level. Albeit not all-inclusive, a suggested target is to examine 
how PBMCs are conditioned under episodes of transient hypercapnia, as 
the former has shown to adapt to the latter and enhance their ability to 
withstand inflammatory stress by upregulating their transmembrane 
expression of anti-inflammatory related surface receptors. All in all, 
nasal breathing is a novel approach to elicit a transient hypercapnic state 
during regular aerobic exercise with numerous beneficial adaptations 
and strengthening exercise performance benefits. 
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