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Abstract

Previous cochlear implant (CI) research has shown that at a pulse train with a long pulse

phase duration (PPD) requires less current but greater charge to obtain the same loudness

as a pulse train with a short PPD. This might result in different excitation patterns between

long and short PPDs. At equal loudness, long PPDs might produce greater masking due to

greater charge. However, because they require less current, long PPDs may produce a

smaller spatial spread of excitation (SOE) compared to short PPDs by evoking a greater

neural firing probability within the relatively small current field. To investigate the effects of

PPD on excitation patterns, overall masking and SOE were compared for equally loud sti-

muli with short or long PPD in 10 adult CI ears. Forward masking patterns were measured at

relatively soft, medium, and loud presentation levels. Threshold shifts were calculated in

terms of percent dynamic range (DR) of the probe. The area under the curve (AUC) of the

masking functions was significantly larger for the long PPD than for the short PPD masker.

The difference in AUC was proportional to the difference in charge between the short and

long PPD maskers. To estimate SOE, the masking patterns were first normalized to the

peak masking, and then AUC was calculated. SOE was significantly larger for the short

PPD than for the long PPD masker. Thus, at equal loudness, long PPDs produced greater

overall masking (possibly due to greater charge) but less SOE (possibly due to less current

spread) than did short PPDs. The effect of the interaction between masking and SOE by

long PPD stimulation remains to be tested.

Introduction

Most modern cochlear implant (CI) devices encode intensity by adjusting the pulse amplitude

(PA) with a fixed pulse phase duration (PPD). In most CI systems, the PPD is typically short

(�25 μs/phase), allowing for high stimulation rates and rapid loudness growth with increasing

PA. However, some CI devices currently encode intensity by varying PPD with a fixed PA
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(e.g., Oticon). In clinical practice, PPD may be increased beyond default values to reduce facial

nerve stimulation, to accommodate patients with auditory neuropathy spectrum disorders, or

to remain within voltage compliance [1]. However, perceptual differences between long and

short PPDs are not well understood. In the present study, we examined the differences in for-

ward masking and spatial spread of neural excitation (SOE) produced by short and long PPDs.

The results may provide insights into optimizing PPD for individual patients in clinical fitting.

In CIs, the electric charge of a pulse is the product of PA and PPD. However, PA and PPD

values do not trade-off linearly. Previous research has shown that equal charge does not corre-

spond to equal loudness [2–5]. To maintain equal loudness, a stimulus with a relatively long

PPD requires greater charge than does a stimulus with a relatively short PPD. Loudness also

grows more slowly when increasing PA with a long PPD than a short PPD. This has been dem-

onstrated psychophysically [2], physiologically [6], as well as in auditory nerve modeling [7].

The fact that short PPDs produce more efficient excitation than long PPDs reflects the “leaki-

ness” of the auditory nerve. If the neural membrane could perfectly integrate charge over the

entire PPD, threshold levels would be expected to reduce by 6 dB for every doubling of PPD.

Psychophysical studies have reported slopes significantly less than 6 dB/doubling [8] and the

slopes were even shallower for single auditory fiber recordings [9]. The efficiency of charge

integration of the auditory nerve depends on a number of factors, including initiation site of

action potential, the number of ion channels available for integration, and myelination [10].

The peripheral processes have a longer time constant for integration than do the central axons,

but they are the first to degenerate with hearing loss. A secondary loss will result in a reduced

number of auditory neurons, which reduces the number of ion channels for integration. Con-

sistent with the idea that charge integration would worsen with degeneration, results of our

parallel studies have shown that CI users with a longer duration of hearing loss before implan-

tation exhibited a much larger dynamic ranges (DRs) with increasing PPD than with increas-

ing PA [5]. Such “charge integration efficiency” may also vary across stimulation sites,

consistent with the idea that pathology is uneven along the tonotopic axis [11].

While greater charge may be required for a long PPD to maintain loudness relative to a

short PPD [2–5], it is unclear whether this greater charge would also produce greater masking.

A stimulus produces forward masking when it induces neural adaptation and reduces the

post-stimulus excitability. It is well established that neural adaptation is more likely to occur

with rigorous and/or repetitive stimulation, which could result from using high PA or high

stimulation rates [12–14]. One factor underlying the declining neural excitability over time is

the depletion of neurotransmitters in synapses. This will reduce the neurons’ response to sub-

sequent stimulation, thus producing forward masking. The first aim of the study was to exam-

ine whether sustained charging on the neural membrane with long PPDs would have similar

effects on neural fatigue as observed with repetitive stimulation. To address this, we compared

the amount of forward masking produced by equally loud maskers with relatively short or

long PPDs. Since long PPDs require less PA, the lower PA might offset the effects of long

PPDs on neural adaptation. However, if neural adaptation depends on the total charge exerted

on the neural membrane, long PPDs would produce more masking than would short PPDs,

for equally loud maskers. It is also possible that equally loud maskers with a short or long PPD

would produce the same amount of masking, if loudness (the masker-induced neural activity)

is the governing factor.

Even if the greater charge associated with longer PPDs produces greater masking, it is

unclear whether the relative spread of excitation (SOE) would differ between equally loud

short PPD and long PPD maskers. In this study, SOE, is defined as the rate of masking decay

as a function of masker-probe electrode separation and represents the place specificity of neu-

ral excitation. The spatial decay can be quantified by calculating the area under the curve
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(AUC) of the masking function after normalizing to the peak masking. Note that a stimulus

can produce a small amount of masking but a relatively large SOE. This would be the case

where the masking functions are flat but have smaller absolute threshold shifts. Factors that

contribute to SOE (e.g., loss of peripheral processes, neural density, electrode placement, etc.)

[15] have been extensively studied using fixed, short PPDs. Much research effort has been

made towards developing methods to reduce SOE and improve the place specificity of the

spectral information. Such efforts include increasing the space between activated electrodes by

removing channels [16–18], lowering the stimulation rate [19], and “current focusing” to spa-

tially restrict current spread [20–25]. Current focusing via multipolar stimulation has shown

only marginal improvements in SOE, partly due to the higher current levels needed to achieve

sufficient loudness. The putative advantage of current focusing also depends on the number

and excitability of neurons responding to the active electrode, which in turn depends on neural

health and electrode location. DeVries and Arenberg [26] proposed that current focusing

might be more effective if applied only to electrodes with greater distance from the modiolus

and/or poor spatial tuning; however, speech perception data showed no advantage with the

proposed current focusing over standard monopolar stimulation. Recent studies have also

explored the efficacy of using asymmetric pseudo-monophasic pulses to reduce the side lobes

to remove the undesired side effects with multipolar stimulation [27, 28]. These efforts have

led to moderate success, but with high individual variability.

As noted above, long PPDs require less current (PA) to maintain loudness relative to short

PPDs. If the lower PA with a long PPD results in a smaller current field, the same loudness

should come from a smaller neural population operating at a higher firing probability, com-

pared to a high PA/short PPD stimulus. This suggests that equally loud short and long PPD sti-

muli may excite different neural populations. This idea is supported by results from McKay

and McDermott [29], who proposed that if equally loud short PPD and long PPD stimuli

excite different neural populations, they should be discriminable. Some CI listeners in the

study were able to do so, and participants who were able to consistently discriminate between

short and long PPDs also reported that the stimuli differed in pitch. Nonetheless, possible dif-

ferences in SOE between equally loud short PPD and long PPD stimuli have yet to be explicitly

studied. There is indirect evidence showing that temporal information across widely spaced

electrodes can be better integrated with long PPDs than with short PPDs [29]. This suggests

that the long PPD produced a wider SOE than did the short PPD. However, the pattern was

observed only in three participants, and other factors may have contributed to the integration

of temporal information across electrodes. In the second part of this study, we explicitly com-

pared SOE between equally loud stimuli with short or long PPDs. We hypothesized that the

reduced current spread associated with long PPDs would produce less SOE (activating a

smaller neural population) than would short PPDs.

In this study, forward masking patterns were measured in CI listeners for equally loud

maskers with a short or long PPD at relatively soft, medium, and loud presentation levels. The

total amount of masking and the rate of spatial decay of the masking (SOE) produced by the

two maskers were compared.

Materials and methods

Participants and hardware

Ten CI ears (3 bilateral CI users, 4 unilateral CI users) were tested in this experiment. All par-

ticipants except for bilateral CI user S16 were post-lingual users of Cochlear© devices

(Cochlear Corporation, Englewood, CO); all had participated in a previous related study [5].

The mean age at testing was 67.8 years, the mean duration of deafness was 12.4 years, and the

PLOS ONE Pulse phase duration and forward masking

PLOS ONE | https://doi.org/10.1371/journal.pone.0236179 July 20, 2020 3 / 18

https://doi.org/10.1371/journal.pone.0236179


mean CI experience was 9.7 years. Demographic information for participants and test ears is

shown in Table 1. All subjects provided written informed consent before taking part in the

study. This study was approved by the East Carolina University institutional review board

(UMCIRB 13–001783).

All stimuli were biphasic pulse trains (MP1+2 stimulation mode); the stimulation rate was

1000 pulses per second (pps) and the interphase gap was 8 μs. Masker stimuli were presented

on Electrode (El) 11, with a 300-ms duration. Probe stimuli were presented to Els 8, 9, 10, 11,

12, 13, or 14, with a 20-ms duration. The masker-probe interval was 10 ms. The stimuli were

controlled by MATLAB program interfacing with the NIC II research software. The subjects

used a Nucleus1 Freedom processor (Cochlear Corporation, Englewood, CO) processor for

all psychophysical testing. Using a research interface allowed explicit control of all stimulation

parameters, which is not possible with the clinical speech processor.

Masker levels

For the maskers, the DR was estimated between threshold and maximum acceptable loudness.

Thresholds were measured using a method of adjustment and maximum acceptable loudness

was measured using a method of limits [30]. For the short PPD maskers, the PPD was fixed at

25 μs/phase and the PA was increased until the stimulus was clearly audible. Participants were

then instructed to adjust the PA until the stimulus was barely audible, first in steps of 5 clinical

units (CUs), then in smaller steps of 1 CU. After obtaining threshold, the PA was increased in

5 CU steps until achieving maximum acceptable loudness. For the long PPD maskers, the

threshold was the same as for the short PPD masker (i.e., 25 μs/phase with the PA measured

for the short PPD masker described above). To obtain maximum acceptable loudness, the PA

was fixed at threshold level and the PPD was increased in 5 and 1 μs/phase steps until achiev-

ing maximum acceptable loudness. Thus, the short PPD and long PPD maskers both had the

same threshold. More details for the DR estimation procedures can be found in Zhou et al. [5].

For each probe electrode, the unmasked thresholds were estimated using a 3-alternative,

forced-choice (3AFC) adaptive procedure (2-down, 1-up), converging on 70.7% correct on the

psychometric function [31]. The PPD was fixed at 100 μs/phase. During threshold testing, the

target was randomly assigned to one of the three intervals; the participant was asked to click

on the interval that contained the target. The PA of the target was adjusted according to the

correctness of response. The initial step size was 10 CUs and the step size was progressively

Table 1. Demographic information for CI test ears.

Test ear Gender Implant Processor Age test (yrs) Dur Deafness (yrs) CI exp (yrs) Etiology

S1L M CI24 (CS) CP910 79.3 0.1 16.2 Hereditary

S1R M CI24RE (CA) CP810 79.3 6 10.2 Hereditary

S10L F CI24R (CS) CP1000 68 0.8 17.1 Hereditary

S10R F CI24RE (CA) CP1000 68 12.4 5.4 Hereditary

S16L M CI24RE (CA) CP810 56.6 45.1 11.5 Hereditary

S16R M CI24RE (CA) CP810 56.6 47 9.6 Hereditary

S4L F CI24RE (CA) CP810 59.1 4.6 6.7 Hereditary

S18L F CI422 CP920 66.3 3.6 3.6 Hereditary

S19L F CI24RE (CA) CP1000 71.5 4.3 10.9 Hereditary

S22R F CI24RE (CA) CP900 73.4 0.4 5.8 Nerve damage

AVE 67.8 12.4 9.7

Age test = age at testing; Dur Deafness = duration of deafness before CI; CI exp = CI device experience.

https://doi.org/10.1371/journal.pone.0236179.t001
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reduced to 5, 2, and 1 CU. The PA at the last 6 reversal points was averaged as the threshold

for the test run. At least two test runs were completed for each probe electrode, and the average

across test runs was calculated as the probe threshold. The maximum acceptable loudness for

each probe electrode was estimated using the method of limits [30]; the PA was slowly

increased until achieving maximum acceptable loudness. The difference between threshold

and maximum acceptable loudness was calculated to be the probe DR. Probe thresholds, maxi-

mum acceptable loudness levels, and DRs are listed in S1 Appendix.

The short and long PPD maskers were loudness-balanced at relatively soft, medium, and

loud presentation levels using a method of adjustment [30]. The long PPD maskers served as

references, and were presented at 30%, 50%, or 70% DR. During loudness balancing, the long

(reference) and short PPD maskers were repeatedly presented in sequence. The PA of the

short PPD masker was adjusted until achieving equal loudness as the long PPD reference; this

procedure was repeated two times. Table 2 shows the percent DR for the short PPD maskers

Table 2. Percent DR, PPD values (μs/ph), PA values (μA), and charge values (nC) for equally loud long and short PPD maskers at the soft, medium, and loud

masker levels.

Test ear Masker level long PPD short PPD

% DR μs/ph μA nC % DR μs/ph μA nC

S1L Soft 30 49 277 13.6 37 25 485 12.1

Medium 50 65 277 18.0 57 25 602 15.1

Loud 70 81 277 22.4 74 25 695 17.4

S1R Soft 30 44 282 12.4 37 25 469 11.7

Medium 50 56 282 15.8 58 25 573 14.3

Loud 70 69 282 19.5 73 25 651 16.3

S10L Soft 30 35 367 12.8 51 25 600 15.0

Medium 50 41 367 15.0 67 25 677 16.9

Loud 70 48 367 17.6 96 25 811 20.3

S10R Soft 30 65 136 8.8 37 25 355 8.9

Medium 50 91 136 12.4 58 25 448 11.2

Loud 70 117 136 15.9 73 25 561 14.0

S16L Soft 30 77 253 19.5 56 25 639 16.0

Medium 50 112 253 28.3 77 25 787 19.7

Loud 70 146 253 36.9 89 25 869 21.7

S16R Soft 30 73 263 19.2 52 25 713 17.8

Medium 50 105 263 27.6 66 25 837 20.9

Loud 70 137 263 36.0 77 25 930 23.3

S4L Soft 30 55 126 6.9 36 25 254 6.4

Medium 50 75 126 9.5 56 25 326 8.2

Loud 70 95 126 12.0 75 25 395 9.9

S18L Soft 30 73 135 9.9 38 25 350 8.8

Medium 50 105 135 14.2 65 25 498 12.5

Loud 70 137 135 18.5 82 25 594 14.9

S19L Soft 30 52 117 6.1 42 25 227 5.7

Medium 50 71 117 8.3 71 25 301 7.5

Loud 70 89 117 10.4 88 25 345 8.6

S22R Soft 30 52 125 6.5 39 25 246 6.2

Medium 50 71 125 8.9 65 25 327 8.2

Loud 70 89 125 11.1 94 25 418 10.5

https://doi.org/10.1371/journal.pone.0236179.t002
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on a linear current amplitude scale (μA) and for the long PPD masker on a linear time scale

(μs/ph), as well as the corresponding charge (nC).

Forward masking procedure

Masked thresholds were adaptively measured at each probe electrode location for each masker

at each presentation level using a 3AFC procedure. During each trial, the masker was pre-

sented in all three intervals and the probe was randomly presented in one of the three intervals.

The listener responded by clicking on the interval in which the probe was heard. The PA of the

probe started at 50% DR and was adjusted using a 2-down 1-up rule according to the correct-

ness of response. The step sizes were the same as those used to measure unmasked thresholds

(see above). The final 6 reversals in PA were averaged as the masked threshold for the test run.

At least two test runs were completed for each probe and for each masker type (short or long

PPD) and for each masker level. For each condition, the average across test runs was calculated

as the masked threshold. In cases where thresholds differed by more than 2 dB, a third run was

performed and the threshold was averaged across the runs with the closest thresholds. The

threshold shift (masked—unmasked probe thresholds) was quantified in terms of percent DR

of the probe as in McKay [32], and the calculation was in linear units (threshold shift in μA

divided by DR in μA). Quantifying threshold shifts in percent DR (rather than in dB) allowed

for better comparison of threshold shifts across stimulation sites. The AUC was calculated for

the raw threshold shift data (in percent DR) to quantify the amount of masking produced by

each masker for the three presentation levels; larger values indicated greater masking. AUC

was calculated as the sum of the averaged masked threshold shifts between adjacent probe elec-

trodes; larger values indicated greater overall masking. To estimate SOE, the masking func-

tions were first normalized to the peak masking, and then AUC was re-calculated; larger

values indicated broader relative spread.

Results

At equal loudness, the long PPD maskers contained significantly greater charge than the short

PPD maskers [t (29) = 3.45, p = 0.002], as expected due to leaky integration (see Table 2). Figs

1–3 show masked threshold shifts with the equally loud short PPD and long PPD maskers at

the soft, medium, and loud presentation levels, respectively.

Fig 4 shows individual and mean AUC values at the soft, medium, and loud masker levels

for the equally loud short and long PPD maskers. A general linear model was performed on

the AUC data shown in Fig 4, with masker level (soft, medium, loud) and masker type (short

PPD, long PPD) as fixed factors, and test ear as the random factor. Results showed significant

effects of masker level [F(2,18) = 48.3, p<0.001], masker type [F(1,9) = 11.9, p = 0.007] and

test ear [F(9,22) = 11.26, p<0.001]. There was no significant interaction between masker type

and masker level [F(2,18) = 2.8, p = 0.089], but there were significant interactions between

masker type and test ear [F(18,18) = 8.73, p<0.001], and between masker level and test ear [F

(9,18) = 3.37, p = 0.0091].

To test the hypothesis that the amount of masking depends on the amount of charge

exerted on the cell membrane, the charge of the short and long PPD maskers was compared to

AUC produced by the maskers. First, AUC and masker charge were normalized to allow com-

parison across test ears. The mean AUC was first calculated across the 6 AUC values (3 levels

by 2 maskers) for each test ear, and then the mean AUC was subtracted from all AUC values

from that test ear. Similarly, the mean masker charge was calculated and then subtracted from

all charge values from that test ear. Thus, the normalization preserved the variation within test

ears but removed the variation across test ears. Result showed a significant relationship
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Fig 1. Threshold shift (in percent DR) at the soft presentation level for equally loud short PPD (black circles) and long PPD

maskers (red triangles), as a function of probe electrode location. The PPDs of the maskers are shown in each panel.

https://doi.org/10.1371/journal.pone.0236179.g001
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Fig 2. Same as Fig 1, but at the medium presentation level.

https://doi.org/10.1371/journal.pone.0236179.g002
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Fig 3. Same as Figs 1 and 2, but at the loud presentation level.

https://doi.org/10.1371/journal.pone.0236179.g003
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Fig 4. Area under the curve (AUC) for the masking functions shown in Figs 1–3. The error bars show the standard error.

https://doi.org/10.1371/journal.pone.0236179.g004
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between the normalized AUC and normalized masker charge (r (58) = 0.51, p< 0.001; left

panel of Fig 5).

The difference in charge between the equally loud long and short PPD maskers was also

compared to the difference in the masking effectiveness between the long and short PPD

maskers (difference in AUC between the equally loud long and short PPD maskers); data are

shown in right panel of Fig 5. A significant correlation was observed between the difference in

charge and masking effectiveness of the long and short PPD maskers (r (28) = 0.70, p< 0.001).

Note that at the loud presentation level, the charge difference exceeded 10 nC for test ears

S16L and S16R. When these data points were removed, the correlation remained significant

(r (26) = 0.54, p = 0.003).

The general linear model performed on the AUC data in Fig 4 showed no interaction

between masker level and type, suggesting that growth of masking was similar between the

short and long PPD maskers with presentation levels. The rate of masking growth for the short

and long PPD maskers was examined explicitly by fitting a linear slope between AUC values

and presentation levels. Fig 6 compares the slope of masking growth with the long PPD masker

with the slope of masking growth with the short PPD masker. With the exception of S16L and

S16R, slopes were similar between the short and long PPD maskers (paired t-test: t(10) = -1.9,

p = 0.093).

Fig 7 shows the normalized AUC values (i.e., SOE) with the short and long PPD maskers

at the soft, medium, and loud presentation levels; threshold shifts were normalized to the

peak masking before calculating AUC. A general linear model with masker level and masker

type as fixed factors and test ear as a random factor, showed that SOE was significantly

Fig 5. Left panel: Normalized AUC as a function of normalized charge for each test ear. Values were normalized to the mean values of each test ear. The line shows

the linear regression across all data; the correlation coefficient and p value are shown at bottom left. Right panel: Difference in masking effectiveness between

equally loud long and short PPD maskers, as a function of the difference in charge between the long and short PPD maskers. The line shows the linear regression

across all data; the correlation coefficient and p value are shown at top right.

https://doi.org/10.1371/journal.pone.0236179.g005
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smaller for the long PPD masker by 0.12 [F(1,9) = 6.9, p = 0.03]; there was no effect of masker

level [F(2,18) = 0.2, p = 0.81]. There was no significant interaction between masker type and

masker level [F(2,18) = 0.2, p = 0.79], or between masker type and test ear. [F(9,18) = 1.16,

p = 0.37]. However, there was an interaction between masker level and test ear [F(18,18) =

3.88, p = 0.003].

Discussion

Integration of charge on the neural membrane over the duration of a long PPD is leaky, such

that the amount of charge required to achieve a given loudness can be greater with a long PPD

than with a short PPD. The efficiency of charge integration depends at least partially on the

condition of the auditory nerve. In clinical practice, phase duration is a parameter that is

sometimes adjusted (e.g., to keep within voltage compliance, reduce facial nerve stimulation,

etc.). The present study examined two perceptual consequences associated with long PPDs.

First, we examined whether, for equally loud maskers, the greater charge with the long PPD

would result in greater forward masking, compared to short PPD. In subsequent analysis, we

evaluated differences in SOE between equally loud long and short PPD maskers. To our

knowledge, these data are the first explicit comparisons between long and short PPDs in terms

of overall masking and SOE.

Fig 6. Slope of masking growth with the long PPD masker as function of slope of masking growth with the short

PPD masker. Data above the diagonal line indicate steeper masking growth with the long PPD masker.

https://doi.org/10.1371/journal.pone.0236179.g006
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Masking effectiveness

For most test ears and presentation levels, the long PPD masker required a greater amount of

charge to match the loudness of a short PPD masker (see Table 2). Our previous related study

[5], which used the same test ears as in this study, showed that this difference in charge

Fig 7. Normalized AUC with the short and long PPD maskers at the soft, medium, and loud presentation levels;

threshold shifts were first normalized to the peak masking before calculating AUC. The error bars show the standard error.

https://doi.org/10.1371/journal.pone.0236179.g007
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(defined as “charge integration efficiency”) depended on duration of hearing loss. These find-

ings suggest that the ability of neurons to hold onto the injected charge over the duration of

the pulse phase depends on the condition of the auditory neurons. Loss of peripheral pro-

cesses, neurons with large fiber diameters, and reduction of neural density can all lead to

greater leakiness in charge integration.

The forward masking patterns with the long and short PPD maskers were used to quantify

the relationship between masker charge and masking effectiveness. This relationship was first

examined with all conditions collapsed. The most obvious effect was that as presentation level

(loudness) increased, the masker charge increased, and the amount of masking increased. A

significant relationship was observed between masker charge and AUC for the related masking

functions (left panel of Fig 5). If we assume that an increase in loudness is due to increased

neural activity [33], the linear relationship is consistent with the idea that neural excitability

following the forward masker is related to the masker-induced neural activity. There is abun-

dant evidence in the physiology literature that shows that spike-rate adaptation occurs after

repetitive stimulation, especially with high stimulation rates or rigorous stimulation with high

current levels [13, 34–36]. The increased firing rate can have an adverse effect on the neurons’

metabolism and result in cellular energy depletion, thus reducing their excitability for subse-

quent stimulation. The more important question is: if maskers are equally loud and we assume

that they evoke a similar amount of neural activity, would there be any difference in masking

effectiveness between short and long PPDs? The present data showed that the long PPD mask-

ers produced overall greater forward masking than did the equally loud short PPD maskers

(Fig 4). This effect was also dependent on test ear. For test ears or conditions where masking

effectiveness was similar between equally loud long and short PPD maskers, the maskers also

had similar amounts of charge (right panel of Fig 5). Assuming again that equal loudness cor-

responds to equal neural activity, the present data suggest that for equally loud maskers, mask-

ing effectiveness depends on the total charge in the masker rather than masker-induced

ensemble neural activity.

These results echo the findings from Zhou et al. [19], who showed that a high-rate pulse

train (1000 pps) produced more masking than an equally loud low-rate pulse train (250 pps).

This could be due to an accommodation effect, where sub-threshold pulses, which do not

evoke action potentials in the neuron, suppress neuron responses for the subsequent pulse.

This accommodation effect has been shown to be greater for high-rate than low-rate stimula-

tion [37]. Therefore, the same neural activity evoked by two equally loud maskers of different

rates, is followed by a different reduction in subsequent neural excitability. This suggests that

masking effectiveness depends on characteristic of the masker, but not necessarily on the

masker-induced neural response. We speculate that the greater amount of charge injected over

time on the neural membrane by the longer PPD masker may not necessarily evoke more neu-

ral activity due to leakiness, but it may desensitize neurons in ways that reduce responsiveness

to subsequent stimulation. This hypothesis warrants further investigation. If masking depends

on the amount of charge in the masker and loudness grows more slowly with increasing charge

when increasing PPD, then one would expect that masking should grow more steeply with pre-

sentation level for the long PPD masker, compared to the short PPD masker. Although this is

not true for the group data, test ears S16L and S16R exhibited steeper growth of masking with

increasing PPD (Fig 6); note that the PPD DR was much wider and charge integration effi-

ciency was much poorer for these test ears, possibly due to long duration of deafness [5].

Taken together, the present data show that masking effectiveness depends on the masker’s

magnitude (in charge). Therefore, for CI users that exhibit poor charge integration efficiency,

greater charge will be required to establish a criterion loudness, which in turn may produce

greater masking.
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Spread of excitation (SOE)

Given that the long PPD maskers would require less PA than equally loud short PPD maskers,

which would produce a smaller current field, we hypothesized that SOE would be smaller with

the long PPD maskers. Within the smaller current field, the long PPD masker may achieve the

same amount of neural activity as the short PPD/high PA masker by increasing the firing effi-

ciency within the smaller population of neurons. McKay and McDermott [29] reported that

equally loud long and short PPD stimuli were perceived as having different pitches, supporting

the idea that differences in PPD produced different spatial excitation patterns. They also

reported that the CI listeners could not consistently rank the pitches, which is consistent with

the idea that the center of excitation is close to the masker electrode with either a short or long

PPD, and that the pitch differences were associated with differences in the spatial spread.

In agreement with our hypothesis, the present data showed that SOE was significantly

smaller for the long PPD than for the short PPD. Note that effect size was rather small. Unlike

the effect of PPD on masking that depended on leakiness of the ear, the effect on SOE was con-

sistent across ears, despite the difference in the characteristics of the tested electrodes. The

assumption that long PPDs excite a smaller population of neurons may offer an alternative

explanation for why long PPDs produced greater masking in the present study. Because each

neuron would have to be driven harder to achieve sufficient spike activity, they may be more

likely to adapt. This seems unlikely, as Zhou et al. [19] showed that low-rate stimulation,

which produced narrower excitation than equally loud high-rate stimulation, also produced

less forward masking.

Results also showed that SOE was largely unchanged across presentation levels for both

short and long PPD maskers. In acoustic hearing, SOE is narrower at lower presentation levels

and tuning curves are extremely sharp due to active processes of the outer hair cells [38]. Exci-

tation becomes broader at high presentation levels, where the passive mechanical processes

dominate the excitation patterns. In electric hearing, the active processes are absent, therefore

the SOE patterns are expected to remain the same at all stimulation levels. This is consistent

with the previous studies that showed similar shapes of masking functions across masker levels

[39], and similar tuning curve characteristics as a function of probe level [40].

Clinical implications

It is important to note that in clinical fitting, for devices that use PPD to code intensity (e.g.,

Oticon), the PPD DR would depend on the level of the fixed PA, and the maximum PPD may

be much smaller than the long PPDs tested here. Thus, there might not necessarily be excessive

masking for PPD intensity coding, compared to PA intensity coding (which is widely used in

clinical CI mapping). While not a linear tradeoff, such small PPD ranges might also require

larger fixed PA values than used in the present study. For patients with severely poor charge

integration efficiency (and thus a large PPD DR), using PPD intensity coding might have the

detrimental effect of causing overall greater masking. For patients with good charge integra-

tion efficiency, using PPD intensity coding would not lead to greater masking, but may reduce

channel interaction. The net effect of interactions among charge, masking and SOE on speech

recognition remains unclear and warrants future research.

Conclusions

In this study, forward masking patterns were compared in CI listeners for equally loud mask-

ers with a short or long PPD; masking patterns were measured at relatively soft, medium, and

loud presentation levels. Major findings include:
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1. When data were collapsed across all presentation levels and masker types, forward masking

increased with the amount of masker charge.

2. On average, at equal loudness, the long PPD maskers contained greater charge and pro-

duced greater overall masking than did the short PPD maskers. This suggests that masking

effectiveness depends on the total charge in the masker rather than masker-induced ensem-

ble neural activity (i.e., loudness).

3. There was a significant correlation between the difference in masking effectiveness between

the long and short PPD maskers and the difference in the charge required to match loud-

ness (charge integration efficiency).

4. While the overall masking was greater with the long PPD maskers, SOE was smaller, com-

pared to the short PPD maskers.

5. Intensity coding with PPD may need to be optimized for CI patients according to charge

integration efficiency to limit overall masking and SOE.
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31. Levitt H. Transformed Up-Down Methods in Psychoacoustics. J Acoust Soc Am. 1971; 49: 467–477.

32. McKay CM. Forward masking as a method of measuring place specificity of neural excitation in cochlear

implants: A review of methods and interpretation. J Acoust Soc Am. 2012; 131: 2209–2224. https://doi.

org/10.1121/1.3683248 PMID: 22423717

33. McKay CM, Henshall KR, Farrell RJ, McDermott HJ. A practical method of predicting the loudness of

complex electrical stimuli. J Acoust Soc Am. 2003; 113: 2054–2063. https://doi.org/10.1121/1.1558378

PMID: 12703716

34. Tykocinski M, Shepherd RK, Clark GM. Acute effects of high-rate stimulation on auditory nerve function

in guinea pigs. Ann Otol Rhinol Laryngol. 1995; 104: 71–74.

35. Tykocinski M, Shephard RK, Clark GM. Reduction in excitability of the auditory nerve following electrical

stimulation at high stimulus rates. II. Comparison of fixed amplitude with amplitude modulated stimuli.

Hear Res. 1997; 112: 147–157. https://doi.org/10.1016/s0378-5955(97)00117-2 PMID: 9367237

36. Miller C, Hu N, Zhang F, Robinson B, Abbas P. Changes Across Time in Temporal Responses of Audi-

tory Nerve Fibers Stimulated by Electric Pulse Trains. J Assoc Res Otolaryngol. 2008; 9: 122–137.

https://doi.org/10.1007/s10162-007-0108-5

37. Miller CA, Woo J, Abbas PJ, Hu N, Robinson BK. Neural Masking by Sub-threshold Electric Stimuli: Ani-

mal and Computer Model Results. J Assoc Res Otolaryngol. 2011; 12: 219–232. https://doi.org/10.

1007/s10162-010-0249-9 PMID: 21080206

38. Johnstone BM, Patuzzi R, Yates GK. Basilar membrane measurements and the traveling wave. Hear-

ing Res. 1986; 22: 147–153.

39. Chatterjee M, Shannon R. Forward masked excitation patterns in multielectrode electrical stimulation.

Forward masked excitation patterns in multielectrode electrical stimulation. J Acoust Soc Am. 1998;

103: 2565–2572. https://doi.org/10.1121/1.422777

40. Nelson DA, Donaldson GS, Kreft H. Forward-masked spatial tuning curves in cochlear implant users. J

Acoust Soc Am. 2008; 123: 1522–1543. https://doi.org/10.1121/1.2836786 PMID: 18345841

PLOS ONE Pulse phase duration and forward masking

PLOS ONE | https://doi.org/10.1371/journal.pone.0236179 July 20, 2020 18 / 18

https://doi.org/10.1121/1.4869687
https://doi.org/10.1121/1.4869687
http://www.ncbi.nlm.nih.gov/pubmed/24815271
https://doi.org/10.1007/s10162-017-0625-9
http://www.ncbi.nlm.nih.gov/pubmed/28755309
https://doi.org/10.1121/1.3257231
http://www.ncbi.nlm.nih.gov/pubmed/20058980
https://doi.org/10.1121/1.428052
http://www.ncbi.nlm.nih.gov/pubmed/10462805
https://doi.org/10.1121/1.3683248
https://doi.org/10.1121/1.3683248
http://www.ncbi.nlm.nih.gov/pubmed/22423717
https://doi.org/10.1121/1.1558378
http://www.ncbi.nlm.nih.gov/pubmed/12703716
https://doi.org/10.1016/s0378-5955(97)00117-2
http://www.ncbi.nlm.nih.gov/pubmed/9367237
https://doi.org/10.1007/s10162-007-0108-5
https://doi.org/10.1007/s10162-010-0249-9
https://doi.org/10.1007/s10162-010-0249-9
http://www.ncbi.nlm.nih.gov/pubmed/21080206
https://doi.org/10.1121/1.422777
https://doi.org/10.1121/1.2836786
http://www.ncbi.nlm.nih.gov/pubmed/18345841
https://doi.org/10.1371/journal.pone.0236179

