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Abstract: Although the silicon oxide (SiO2) as an anode material shows potential and promise for
lithium-ion batteries (LIBs), owing to its high capacity, low cost, abundance, and safety, severe
capacity decay and sluggish charge transfer during the discharge–charge process has caused a serious
challenge for available applications. Herein, a novel 3D porous silicon oxide@Pourous Carbon@Tin
(SiO2@Pc@Sn) composite anode material was firstly designed and synthesized by freeze-drying and
thermal-melting self-assembly, in which SiO2 microparticles were encapsulated in the porous carbon
as well as Sn nanoballs being uniformly dispersed in the SiO2@Pc-like sesame seeds, effectively
constructing a robust and conductive 3D porous Jujube cake-like architecture that is beneficial for fast
ion transfer and high structural stability. Such a SiO2@Pc@Sn micro-nano hierarchical structure as a
LIBs anode exhibits a large reversible specific capacity ~520 mAh·g−1, initial coulombic efficiency
(ICE) ~52%, outstanding rate capability, and excellent cycling stability over 100 cycles. Furthermore,
the phase evolution and underlying electrochemical mechanism during the charge–discharge process
were further uncovered by cyclic voltammetry (CV) investigation.

Keywords: porous carbon; silica; tin; anode materials; lithium-ion batteries

1. Introduction

Lithium-ion batteries (LIBs) have been regarded as one of the critical energy storage
technologies that can be widely used in portable electronics and grid-scale energy storage
due to their high energy density and cycle longevity to make a fossil fuel-free environment
possible [1–5]. With the advent of electric vehicles (EV) in recent years, the traditional
commercialized LIBs are obviously insufficient to meet the requirement owning to their
limited capacities. Therefore, it is highly desired for LIBs with higher energy and power
densities as well as lower cost to be developed [6–8].

According to the working principle of LIBs, the electrode materials play a critical
role in the further improvement of the battery performance [9–16]. High-capacity and
low-cost materials have triggered vast interest in the past few years [15–21], which can
bring great promise for next-generation LIBs with a higher price–performance ratio. Silica
(SiO2) has recently captured great attention as a promising candidate anode materials
for LIBs because of its suitable working potential (~0.25 V vs. Li/Li+), proper theoretical
specific capacity (~1960 mAh·g−1), lesser volume variation (~100%), and expanded cycling
lifespan compared to silicon and other alloys [22–39]. In addition, SiO2 is one of the
most abundant materials on earth, and its environmentally friendly and low-cost nature
further turns it into an alternative electrode material [25–30]. However, the development of
SiO2-based anode materials so far has been impeded due to its poor electrical conductivity
and sluggish charge transfer kinetics. To overcome these limitations, extensive research
efforts have been dedicated to the development of SiO2-based composite materials and
structures, such as carbon-coated SiO2 particles [32,35,36], SiO2/Cu polyacrylonitrile-
C composite [33], Sn(SnO2)–SiO2/graphene nanocomposites [37], Bi2S3@SiO2 core-shell
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microwires [38], Ni/SiO2 hierarchical hollow spheres [39], and so on [34,40]. Even though
significant progress has been achieved, the commercialization of SiO2-based anodes is still
restricted by the low electrochemical activity. On the other hand, metallic tin (Sn) has a
good electrical conductivity (8.7 × 106 S·m−1) and low melting point (~232 ◦C). When
used as an electrode material, it shows a high theoretical capacity of 994 mAh·g−1 with
the formation of Li4.4Sn and fitting working potential (~0.5 V). However, the huge volume
changes (~260%) it suffers during Li alloying/dealloying can always lead to rapid fading
of capacity and subsequently poor cyclability [41–47].

Taking advantages of both SiO2 and Sn, herein, a feasible tactics was developed
to construct porous silicon oxide@Pourous Carbon@Tin (SiO2@Pc@Sn) composites with
tunable SiO2 to Sn molar ratios to synergistically storage Li in both porous SiO2 and
Sn. The SiO2@Pc@Sn composite was fabricated using a simple and scalable freezing-
drying and low-temperature thermal-melting combined method. The obtained composites
possessed several advantageous features: Firstly, the porous structure in the composites
largely shortened the transport path for Li ions and provided the buffering space for
volume change during the charging/discharging process; secondly, porous C (Pc) and
SiO2 provided a rigid skeleton with long cycle stability; thirdly, the presence of Sn and Pc
could improve the electrical conductivity of the SiO2-based electrode. The synergetic effect
of porous SiO2, Pc, and Sn nano-ball empowered the fabricated SiO2@Pc@Sn composite
electrodes to be competent to show good electrochemical performance, including a stable
and long cycling life, low electrochemical impedance, and enhanced specific capacity, which
demonstrated a fascinating potential as a promising anode for the next-generation LIBs.

2. Experimental Section
2.1. Preparation of SiO2@Pc Composites Material

Diatomite (325 mesh, Sinopharm Chemical Reagent Co., Ltd. Shanghai, China) was
ground for 10 h by a high-energy ball mill, then the sample was dispersed in the glucose
aqueous solution by ultrasonic for 15 mi. After that, the freeze-drying process for 60 h
was carried out, in which the mass ratio of SiO2 to glucose was 1:1 (w/w). Then, the
freeze-drying samples were transferred to a tube furnace and carbonized for 3 h at 500 ◦C
in an Ar/H2 gas environment to obtain SiO2@Pc composites.

2.2. Preparation of SiO2@Pc @Sn Composites Material

The previously obtained SiO2@Pc from the above step was weighed at ratio of 1:1
(w/w) with Sn powders (325 mesh, Sinopharm Chemical ReagentCo., Ltd. Shanghai,
China) and mixed fully. Then the mixture was transferred to a tubular furnace (OTF-
1200X), and heated at a rate of 5 ◦C/min to 300 ◦C, keeping for 1 h in an Ar/H2 protect gas.
After that, the sample of SiO2@Pc@Sn was obtained via rapid cooling.

2.3. Battery Assembly and Electrochemical Measurements

The Celgard 2320 (Shenzhen, China) film was used as a membrane and lithium foil
as a pair electrode to conduct electrochemical experiments on the CR2032 (Shenzhen,
China) coin battery. The experimental electrolyte was configured of 1.0 M LiPF6 dissolved
in ethylene carbonate (EC) and diethyl carbonate (DEC) by volume 1:1. The working
electrode was composed of 70 wt.% active materials, 15 wt.% polyvinylidene fluoride
(PVDF) binder, and 15 wt.% Super P. After fully mixing and grinding, the slurry was
spread on the copper foil evenly, and then dried in an oven at 50 ◦C for 12 h. The battery
was assembled in a glove box filled with Ar gas and the oxygen and water content below
1.0 PPM. After assemblage, the batteries were set aside for 8 h at room temperature.
The electrochemical performance was tested by electrochemical impedance spectroscopy
(EIS) and cyclic voltammetry (CV) on a DH7001 electrochemical workstation, and the
scanning rate of CV was set in the range of 0.1–0.5 mV s−1 with an applied potential 2–0 V,
and the frequency range for EIS measurement was set in 1.0 MHz–0.1 Hz. All batteries’
simulation cycling and charge/discharge were conducted on a land battery cabinet (LAND



Materials 2021, 14, 1071 3 of 10

CT2001A, Wuhan, China). In the batteries’ evaluation process, the cut-off voltage was
0.005 V vs Li/Li+ for discharge and 1.5 V for charge. All specific capacity was calculated
based on the proportion of the active material in the whole electrode.

2.4. Characterization

The morphology and structure of SiO2@Pc@Sn were obtained by a field-emission
scanning electron microscope (FESEM, JEOL JMS-7001-F, JEOL, Tokyo, Japan). The element
mapping was measured by the EDS instrument equipped in the FESEM. The phase compo-
sition of the material was obtained by X’Pert PRO diffractometer (XRD, Shimadzu, Japan:
XRD-6000, Cu–K radiation, 0.15406 nm, λ = 1.5406 Å), the measurement angle was between
10–80◦, and the scanning rate was 10◦/min. Raman spectroscopy was used to characterize
the form of carbon, and the excited wavelength of the laser was 532 nm (Raman, InVia and
Ntegra Spectra, Renishaw & NT-MDT, London, UK). The thermogravimetry (TG) analysis
was performed by the vertical zero friction dilatometer L75VS Linseis (Selb, Germany)
from 25 to 800 ◦C in air to calculate the carbon weight percent in the composite.

3. Results and Discussion

The preparation flow chart of the SiO2@Pc@Sn composite is shown in Figure 1. As de-
picted in the schematic diagram, firstly, the SiO2@Pc composite with a porous structure
was prepared by the freeze-drying method, and secondly, the SiO2@Pc@Sn composite was
obtained via the low-temperature thermal melting and self-assembly process.

Figure 1. Schematic diagram of the synthesize process of silicon oxide@Pourous Carbon@Tin
(SiO2@Pc@Sn) composite.

Figure 2a shows the comparison of the XRD pattern of SiO2, SiO2@Pc, SiO2@Pc@Sn,
and PDF card of standard XRD, correspondingly. The characteristic peaks at 21.6◦ and
35.6◦ belonged to SiO2 [26], and the peak value of SiO2@Pc was consistent with that of SiO2,
indicating that SiO2 did not change significantly after Pc coating. In the SiO2@Pc@Sn com-
posite, the characteristic peaks for Sn were centered at 30.6◦, 32.1◦, 43.9◦, 44.9◦, and 55.3◦.
The characteristic peaks that belonged to SiO2 and Sn in the SiO2@Pc@Sn composite were
matched well with the standard PDF cards. The synthesized Pc was characterized by the
Raman spectrum as indicated in Figure 2. It can be seen that the peaks around 1357 and
1591 cm−1 corresponded to the disordered D peak and graphitized G peak for the obtained
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Pc. The D peak was generally the crystallization defect of carbon atoms and the G peak
represented the in-plane vibration of sp2 hybridization of carbon atoms [48,49]. The exis-
tence of the G peak and D peak indicates that the microstructure of Pc in the SiO2@Pc@Sn
composite was graphitized carbon. In addition, the main peak of SiO2 at 480–490 cm−1

was not present in the current Raman spectrum 500–3000 cm−1 [27], while the peak around
1080 cm−1 under D peak of carbon was also invisible due to the encapsulation of SiO2 in a
carbon shell [26]. From the TG analysis result in the Raman spectrum, the C weight percent
in the SiO2@Pc composite was ~27.3%.
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The morphology and elements distribution of the obtained SiO2@Pc@Sn composite
was measured by scanning electron microscopy (SEM). As shown in Figure 3, the pris-
tine SiO2 was in the shape of a sunflower (Figure 3a), and its average size was between
20–40 µm, with many nano-pores on the surface (Figure 3b). The size of the pores was in
the range of 50–600 nm (Figure 3b). From the images as shown in Figure 3c, after rapid
cooling, the Sn nano-balls were formed and dispersed uniformly in the SiO2@Pc composite,
which filled into the pores in Pc or embedded among the SiO2@Pc blocks. As shown in
Figure 3f, the statistical distribution of size for the Sn balls was mainly centered around
100 nm. The element mapping for Si, Sn, and C in the SiO2@Pc@Sn composite is shown in
Figure 3g–i. From the result, it is found that three elements are distributed in all the areas
detected in the SiO2@Pc@Sn.

The electrochemical performance is displayed in Figure 4. The charge/discharge
curves of different samples at the same current density of 100 mA·g−1 are compared in
Figure 4a. It was found that the first discharge capacity reached to 1228 for SiO2@Pc@Sn,
990 for SiO2@Pc, 672 for bare SiO2, and 352 mA·h·g−1 for the synthesized Pc. The initial
coulomb efficiency (ICE) was 52%, 37.7%, 29.9%, and 27.4%, respectively. The improved
specific capacity and ICE of SiO2@Pc@Sn were attributed to the fact that Pc and Sn can
improve the electrical conductivity of the composite and enhance the electrochemical
activity of SiO2. The poor conductivity of SiO2 was the cause of the low initial coulombic
efficiency, and most of Li ions combined with SiO2 to produce irreversible Li4SiO4 and
Li2O at the first charge and discharge [50,51], while the presence of Pc and Sn improved the
whole electrical conductivity of SiO2@Pc@Sn, which is helpful for the electrons to arrive
at the surface of SiO2, and as a result, facilitated the Li ions transfer in the composite.
Meanwhile, the existence of Pc further prevented the by-products brought by the direct
reaction between electrolyte and SiO2 and Sn, thus improving the ICE of the composite [52].
The cycling performance at 100 mA·g−1 is compared in Figure 4b. It is evident that
SiO2@Pc@Sn shows the highest specific capacity and best capacity retention through
100 cycles. While for bare SiO2, the capacity underwent continuous increasing during the
initial 100 cycles that changed from the initial 200 to 400 mA·h·g−1 after 100 cycles. Though
the capacity of SiO2@Pc could not reach SiO2@Pc@Sn, it was still better than bare SiO2 and
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Pc. Moreover, the rate capability for different samples was listed in Figure 4c. It is clear
that the SiO2@Pc@Sn exhibited capacities of 650, 610, 580, and 520 mA·h·g−1 at 100, 200,
500, and 1000 mA·g−1, respectively, whereas the bare SiO2 and SiO2@Pc exhibited a lower
capacity and faster capacity decay. Obviously, the rate capability of SiO2@Pc@Sn was better
than that of the others, especially at high current density due to the fact that Pc and Sn had
better conductivity than SiO2, which provided higher mobility for Li ion diffusion through
the whole electrode. Without the addition of other assistance, such as an electrolyte additive
(for instance, FEC) and so on, the good rate capability and stable cycling performance of
SiO2@Pc@Sn was believed to be originated from the unique structure. Firstly, the built-in
void in Pc and SiO2 shorted the Li ions transfer distance in the electrode; secondly, Sn
and Pc were conductive for electrons and ions, and the face-to-face contact between Pc
and SiO2 as well as Sn aroused more efficient channels for fast transfer of electrons and Li
ions [15,17]. The CV test could detect electrode surface reaction process, electrochemical
activity, and reversibility of the active material. Figure 4d is the CV curve of SiO2@Pc@Sn.
As shown, the cathode peak of 0.98 V in the first cathode scan was caused by electrolyte
decomposition and the generation of the SEI layer [50], while the reductive peaks at 0.63
and 0.32 V were attributed to the phase LixSiOy and LixSi formed while SiO2 was combined
with Li+ in the discharge process [30,40]. On the contrary, the oxidation peaks at 0.64, 0.74,
and 0.82 V were caused by the dealloying process of LixSn and Li2Si2O5 [53].

Figure 3. (a,b) SEM of bare SiO2 with different magnification; (c–e) SEM of SiO2@Pc@Sn with different magnification; (f)
size distribution for Sn in the SiO2@Pc@Sn composite; (g,i) element mapping of SiO2@Pc@Sn for Si (g); Sn (h); and C (i).
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Furthermore, the electrochemical impedance spectra (EIS) were compared and an-
alyzed in Figure 5. From the Nyquist plots diagram of different samples, as shown in
Figure 5a, it was found that all impedance spectra consisted of a semicircle in the high
frequency region and an inclined line in the low frequency region, which corresponded
to the Li+ migration resistance and interface contact resistance in the active materials,
respectively [54,55]. The impedance resistance was 205 for bare SiO2, 129 for the SiO2@Pc,
and 77 Ω for SiO2@Pc@Sn, indicating that the migration impedance of Li ions was minimal
in the active material of SiO2@Pc@Sn. In addition, EIS was often used in the qualitative
determination of Li ions’ diffusion coefficient in LIB materials. Figure 5b is the plots of
correlation curve of Zre (real part of impedance) and w−1/2 (w is the frequency) within the
frequency range of 1–0.1 Hz for the electrode composed of different materials. According
to the relation, Zre = G−k·w−1/2, where, k is the slope of the correlation curve between Zre
and w−1/2, from which the diffusion coefficient of lithium ions in different electrode mate-
rials can be qualitatively deduced [20]. In order to ensure the accuracy of the experiment,
each set of data tested 5–10 batteries for analysis. From the fitting results (Figure 5b), the
curve slopes k of SiO2, SiO2@Pc, and SiO2@Pc@Sn were 0.33, 0.20 and 0.07, respectively.
The result showed that the diffusion coefficient of Li+ was the largest in the SiO2@Pc @Sn
composite according to the relation formula [21], DLi+ = A/k, where, A is constant related
to the Li ions content and electrode area, etc.

Meanwhile, the CV measurement with different scanning rates (mV·s−1) is shown in
Figure 6. The CV curves of SiO2 (Figure 6a), SiO2@Pc (Figure 6b), and SiO2@Pc@Sn
(Figure 6c) electrodes under scanning rates of 0.1, 0.2, 0.3, 0.4, and 0.5 mV·s−1 were
measured. The obtained peak current Imax and the quadratic root of scanning rate v1/2

were fitted linearly, from which the diffusion strength of Li+ in different electrode ma-
terials could be qualitatively determined. According to the Randle–Sevcik equation:
Imax = Av·1/2·DoLi [56], where A is the constant related to charge and surface area, v is the
scanning rate of CV, and DoLi is the diffusion coefficient of Li+ in oxide [54]. According to
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the test results shown in Figure 6d, the slopes were 0.49, 0.44, and 0.12 for SiO2@Pc@Sn,
SiO2@Pc, and bare SiO2, respectively, indicating that the diffusion coefficient of Li+ ions
was the highest in SiO2@Pc@Sn compared with the two others [57]. The result was also
consistent with the fitting results of the correlation curve between Zre and v−1/2 of EIS in
the frequency range of 1–0.1 Hz (Figure 5b), which further demonstrated that Sn could
improve the electrochemical performance of SiO2-based anode materials for LIBs.

Figure 5. (a) Comparison for the Nyquist diagram of different samples; (b) impedance real part Zre Vs w−1/2 in the
frequency range 1–0.1 Hz.

Figure 6. (a–c) CV curve of SiO2, SiO2@Pc, and SiO2@Pc@Sn with different scanning rates of 0.1–0.5 mV·s−1; (d) relationship
between scan rate and peak current.
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4. Summary

The SiO2@Pc@Sn composite anode material was prepared by the freeze-drying and
low-temperature thermal melting method, which exhibited improved electrochemical
performance and faster Li+ transfer kinetic. The synergetic effect of porous carbon, SiO2,
and Sn endows the as-fabricated SiO2@Pc@Sn composites to be competent to show good
electrochemical performance. When used as an anode in LIBs, the SiO2@Pc@Sn composite
could deliver a large reversible capacity of 650 at 100 mA·g−1, a remarkable rate capability
of 500 retained at 1000 mA·g−1, and a long-term cycling durability with ~87% capacity
retention over 100 cycles. EIS and CV measurements demonstrated that, with the partici-
pation of Sn phase and Pc, the diffusion and migration kinetics of Li ions in SiO2@Pc@Sn
composites was significantly improved. The understanding of the synergistic effect of Li
storage between SiO2 and Sn in this work will not only provide insight towards exploring
new SiO2-based anode materials, but also shed light on the design of other low-cost and
environmentally friendly electrode materials for the next-generation LIBs.
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