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NERVOUS SYSTEM

Epididymal Fat-Derived Sympathoexcitatory 
Signals Exacerbate Neurogenic Hypertension in 
Obese Male Mice Exposed to Early Life Stress
Carolina Dalmasso, Jacqueline R. Leachman, Sundus Ghuneim, Nermin Ahmed, Eve R. Schneider , Olivier Thibault,  
Jeffrey L. Osborn, Analia S. Loria

ABSTRACT: Previously, we have shown that male mice exposed to maternal separation and early weaning (MSEW)—a mouse 
model of early life stress—display increased mean arterial pressure compared with controls when fed a high-fat diet. As the 
stimulation of sensory nerves from fat has been shown to trigger the adipose afferent reflex, we tested whether MSEW 
male mice show obesity-associated hypertension via the hyperactivation of this sympathoexcitatory mechanism. After 16 
weeks on high-fat diet, MSEW mice displayed increased blood pressure, sympathetic activation, and greater depressor 
response to an α-adrenergic blocker when compared with controls (P<0.05; n=8), despite no differences in adiposity and 
plasma leptin. The acute infusion of capsaicin in epididymal white adipose tissue (1.5 pmol/μL of capsaicin, 8 μL/per site, 
4 sites, bilaterally) increased the total pressor response in MSEW mice compared with controls (110±19 versus 284±33 
mm Hg×30 minutes; P<0.05; n=8). This response was associated with neuronal activation in OVLT, posterior paraventricular 
nucleus of the hypothalamus, and RVLM (P<0.05 versus control; n=6–7). Renal denervation abolished both the acute and 
chronic elevated mean arterial pressure in obese MSEW mice. Moreover, selective sensory denervation of epididymal white 
adipose tissue using resiniferatoxin (10 pmol/μL solution; n=6) decreased mean arterial pressure in obese MSEW mice only 
(P<0.05 versus control). Obese MSEW mice displayed increased epididymal white adipose tissue levels of both tryptophan 
hydroxylase (Tph1) mRNA expression and its synthesis product serotonin (8.3±1.9 versus 16.6±1.7 ug/mg tissue; P<0.05 
versus control). Thus, afferent sensory signals from epididymal white adipose tissue may contribute to the exacerbated 
fat–brain–blood pressure axis displayed by obese male mice exposed to early life stress. (Hypertension. 2021;78:1434–
1449. DOI: 10.1161/HYPERTENSIONAHA.121.17298.) • Data Supplement
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Obesity is one of the major risk factors for hyperten-
sion and cardiovascular disease affecting ≈40% of 
Americans.1,2 In just 2 decades (1999–2018), the 

prevalence of obesity increased from 30.5% to 42.4%, 
unveiling the uncontrolled status of this epidemic.2 
Obesity-related conditions including heart disease, 
hypertension, and type 2 diabetes are some of the lead-
ing causes of preventable, premature death. Among 
adults, the prevalence of obesity is the highest among 
non-Hispanic Blacks and Hispanics,2 suggesting that 

groups with health disparities and disadvantaged popu-
lations may be at higher risk. Thus, an unhealthy diet 
combined with genetics and psychosocial factors could 
favor the development of comorbidities such as obesity 
and hypertension.

The overactivation of the sympathetic nervous system 
(SNS) is one of the most studied mechanisms underlying 
the development of obesity-induced hypertension.3–6 The 
fat-derived hormone leptin has been shown to increase 
energy expenditure and enhance the sympathetic drive 
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to key organs implicated in blood pressure regulation, 
such as the kidney.7–10 However, experimental stud-
ies have demonstrated that afferent signals from white 
adipose tissue (WAT) can also influence blood pressure 
through a sympathoexcitatory mechanism known as the 
adipose afferent reflex (AAR).11–13 Under physiological 

conditions, the activation of the AAR prevents fat deposi-
tion by inducing lipolysis and lipid mobilization in WAT and 
promoting leptin release.14–17 However, pathophysiologi-
cal conditions with metabolic compromise such as obe-
sity and diabetes result in the overactivation of the AAR, 
contributing to increases in the SNS outflow and blood 
pressure. Xiong et al11,18 reported that the experimental 
stimulation of the AAR in inguinal WAT using capsaicin—
a TRPV1 (transient receptor potential cation channel 
subfamily V member 1) ligand that activates sensory 
neurons—increased blood pressure in rats undergoing 
diet-induced obesity and hypertension. Acute AAR stim-
ulation increased both the fat afferent nerve activity, the 
renal sympathetic nerve activity (RSNA), and correlated 
with increased neuronal activation in the paraventricu-
lar nucleus of the hypothalamus (PVN).11,19 Furthermore, 
the selective ablation of adipose tissue sensory neurons 
reduced RSNA and blood pressure. In previous work 
from the same group, the authors demonstrated that the 
AAR could also be stimulated by WAT infusions of bra-
dykinin, adenosine, or leptin, resulting in increased RSNA 
and mean arterial pressure (MAP) in normotensive rats.18 
Moreover, bilateral infusions of a leptin antagonist in 
inguinal and retroperitoneal WAT in obese hypertensive 
rats were able to decrease the RSNA and MAP.11

Recently, our laboratory has demonstrated, for the 
first time in mice, that the stimulation of sensory neu-
rons from WAT can increase blood pressure similarly to 
what has been reported in rats.20 In addition, we showed 
that the AAR stimulation of subcutaneous WAT with cap-
saicin did not induce any hemodynamic effect, whereas 
the epididymal WAT (eWAT) stimulation increased blood 

Nonstandard Abbreviations and Acronyms

AAR adipose afferent reflex
eWAT epididymal white adipose tissue
FG FluoroGold
HF high fat diet
HR heart rate
Lepr leptin receptor
LF low fat diet
MAP mean arterial pressure
MSEW maternal separation and early weaning
PD postnatal day
PVN  paraventricular nucleus of the 

hypothalamus
RSNA renal sympathetic nerve activity
RTX resiniferatoxin
Tph1 tryptophan hydroxylase 1
TRPA1  transient receptor potential cation chan-

nel, subfamily A, member 1
TRPV1  transient receptor potential cation chan-

nel, subfamily V, member 1
WAT white adipose tissue

Novelty and Significance

What Is New?
• The study of the fat–brain–blood pressure axis mediat-

ing obesity associated hypertension in a model of early 
life stress.

• The use of selective afferent denervation of the adi-
pose tissue to attenuate blood pressure.

• The identification of serotonin as an endogenous fac-
tor that may contribute to the stimulation of the affer-
ent sensory neurons.

What Is Relevant?
• Early life stress exacerbates afferent signals from vis-

ceral white adipose tissue, which increases neuronal 
activation in brain areas that contribute to blood pres-
sure regulation by mediating sympathetic outflow to 
the kidneys of obese male mice.

• As obesity increases the risk of drug-resistant hyper-
tension, identifying novel contributors enhancing 
sympathetic activation is critical in developing more 
specific therapeutic approaches. This will be of par-
ticular importance for the successful management 
of hypertension associated with obesity in patients 
affected by nontraditional risk factors.

Summary
This study demonstrates that afferent signals from 
visceral white adipose tissue contribute to the sympa-
thetic drive activation and hypertension in male mice 
exposed to early life stress when fed an obesogenic 
diet. This enhanced sympathetic outflow is most likely 
mediated by increased afferent signals from epididy-
mal white adipose tissue projecting to brain areas with 
a pivotal role developing neurogenic hypertension.
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pressure.20 These findings are in line with numerous 
studies demonstrating the contribution of visceral adi-
posity to increased blood pressure during obesity.3

Early life stress is defined as any form of abuse, 
neglect, or loss during the first decade of life, promoting 
long-lasting effects on physiological and mental function, 
increasing the overall risk for chronic disease.21 Epide-
miological studies have established early life stress as an 
independent risk factor associated with increased body 
mass index and blood pressure, contributing to the devel-
opment of hypertension and cardiovascular disease.22–25 
Postnatal maternal separation and early weaning 
(MSEW) is an experimental mouse model that recapitu-
lates several aspects of the impact of early life stress on 
the cardiovascular and metabolic system.26–28 Previous 
studies from our laboratory have shown that male mice 
exposed to MSEW and fed a high fat diet (HF) display 
significantly increased blood pressure compared with 
controls.28 However, the mechanism by which MSEW 
exacerbates blood pressure sensitivity is not completely 
understood.

The fact that the maternal separation paradigm induces 
neuronal activation in PVN29–32 supports the notion that 
the AAR mechanism could be sensitized in response to 
acute or chronic stimuli in which the PVN plays a piv-
otal role. Therefore, this study tested the hypothesis that 
exacerbated AAR contributes to the development of 
obesity-induced hypertension in MSEW male mice com-
pared with controls. We assessed the AAR function at 3 
different levels: (1) we investigated the effects of cap-
saicin on the acute blood pressure response and on the 
neuronal activation in different brain areas and whether 
the changes in blood pressure are mediated by the renal 
nerves, (2) we tested whether the selective ablation of 
afferent sensory neurons innervating eWAT lowered 
blood pressure, and (3) we determined the eWAT gene 
expression of key factors known to stimulate sensory 
neurons, looking for endogenous ligands that may exac-
erbate the AAR in obese MSEW male mice.

METHODS
The data that support the findings of this study are available 
from the corresponding author upon reasonable request.

Animals
All experiments followed the National Institutes of Health 
Guide for the Care and Use of Laboratory Animals and were 
approved and monitored by the Institutional Animal Care and 
Use Committee at the University of Kentucky. C57BL/6 female 
and male mice (The Jackson Laboratory, East Division) used 
for breeding had ad libitum access to food and water and were 
housed in a pathogen-free environment with constant tempera-
ture and humidity, with a 14:10-hour light:dark cycle. Animals 
were fed a regular chow diet (Teklad 8604; Madison, WI).

MSEW was conducted as described previously.28 Briefly, 
culled litters (6–8 pups) were separated from the dams and 
transferred to a clean cage in an incubator (30±1 °C; humidity, 
60%) for 4 hours from postnatal day (PD) 2 to PD 5 and for 
8 hours from PD 6 to PD 16. Early weaning was performed at 
PD 17. Normally reared, nonhandled litters that remained with 
the dams served as control groups and were weaned at PD 21. 
Male littermates were randomized at weaning and used for the 
experiments outlined in this study, whereas female littermates 
were used for other projects. Only one mouse per litter was 
used in each experiment.

Experimental Design
Detailed in vivo procedures, staining, and imaging techniques 
can be found in the Data Supplement. At weaning, MSEW 
and control male mice were randomly placed for 16 weeks 
on a low fat diet (LF, 10% kcal from fat, D12450J; Research 
Diets, New Brunswick, NJ) or HF (60% kcal from fat, D12492; 
Research Diets). Then, body composition was measured using 
an Echo magnetic resonance imaging system (Echo Medical 
Systems, Houston, TX). A subset of mice (n=8 per group) was 
used to perform an in vivo lipolysis assay by injecting sterile 
saline or CL-316,243 hydrate (50 μL, 1 mg/kg, intraperitoneal 
[IP] injection). After 1 hour, a submandibular blood sample was 
collected. A week later, mice were euthanized for blood collec-
tion to measure plasma leptin by ELISA (Cayman Chemical, 
Ann Arbor, MI), following the manufacturer’s protocol. Aliquots 
of eWAT were snap-frozen to determine gene and protein 
expression or incubated in DMEM +2% FFA-BSA (50 mg/250 
μL, 1 hour, 37 °C) to measure eWAT-derived leptin. Another ali-
quot of eWAT (≈100 mg) was incubated with HEPES-KRH 
buffer (125 mmol/L NaCl, 5 mmol/L KCl, 1.8 mmol/L CaCl2, 
2.6 mmol/L MgSO4, 5 mmol/L HEPES, pH 7.2) in the pres-
ence of saline or isoproterenol (10 μM, 1 hour) to determine ex 
vivo lipolysis. Glycerol levels in plasma and KRH media explant 
in response to lipolysis tests were measured by ELISA (≈1:8 
dilution; Cayman Chemical, Ann Arbor, MI).

Acute Hemodynamic Measurements to Assess 
Sympathetic Activation
After 15 weeks on HF, mice were subjected to a transcuta-
neous glomerular filtration rate measurement as described 
previously.33 Then, mice were implanted with radiotelemeters 
(TAA11PA−C10; Data Sciences International, New Brighton, 
MN). After a 10-day recovery period, systolic, diastolic, MAP, 
and heart rate (HR) baselines were measured for 5 consecu-
tive days in a 10-second sampling period, recorded and aver-
aged every 5 minutes. Then, the response to prazosin (1 mg/
kg, IP; Sigma-Aldrich, St. Louis, MO), mecamylamine (5 mg/kg, 
IP; Sigma-Aldrich), propranolol (5 mg/kg, IP; Sigma-Aldrich), 
and atropine (1 mg/kg, IP; Sigma-Aldrich) was assessed allow-
ing full recovery between the different treatments. To determine 
the effects on blood pressure and HR, a 5-minute average was 
analyzed for 2 hours before and 6 hours after each injection. 
In a subset of mice, bilateral renal denervation (RNDX) was 
performed to determine its effect on baseline MAP. Renal 
cortical norepinephrine content was measured by ELISA (BA 
E-5200R; Rocky Mountain Diagnostic, Inc, Colorado Springs, 
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CO) in RDNX and in control surgery for RDNX (Sham) renal 
cortexes homogenized in metabisulfite buffer (1 mmol/L EDTA 
and 4 mmol/L metabisulfite in 0.01 N HCl, 1:100 dilution 
Sham, 1:20 dilution RDNX) as described previously.34

Fat–Brain–Blood Pressure Axis Evaluation via 
the Acute AAR Stimulation
In a set of control and MSEW mice fed LF or HF for 16 weeks, 
carotid catheters were implanted under isoflurane anesthesia 
for MAP measurements (Power Lab; ADIntstruments, CO) in 
response to the acute stimulation of the AAR in subcutane-
ous or eWAT with vehicle or capsaicin as described previously.20 
Subcutaneous WAT or eWAT depots were exposed and 4 thin 
and sharp stainless steel needles (0.31 mm outer diameter; 
4 mm apart) were inserted into the fat pad bilaterally (3 mm 
below the surface). The needles were connected with PE-10 
tubes to an infusion pump (PHD Ultra Harvard Apparatus, MA). 
The AAR was induced by the infusion of vehicle (20 μL ethanol, 
10 μL tween 80/mL normal saline) or 1.5 pmol/μL of capsaicin 
(8 μL capsaicin solution over a period of 2 minutes in 4 dif-
ferent sites, bilaterally). Capsaicin solution consisted of 5 ng 
capsaicin (M2028; Sigma-Aldrich), 20 μL ethanol, and 10 μL 
tween 80/mL normal saline. Baseline MAP was recorded for 
20 minutes. Next, blood pressure was recorded in response to 
vehicle or capsaicin for another 30 minutes. After stimulation, 
animals were euthanized.

The total pressor area under the curve was calculated using 
a 20-minute recording prior to the stimulation as a baseline, as 
reported previously.35 In a second set of mice, bilateral RDNX 
(10% phenol in alcohol solution) was performed 4 days before 
the acute response to capsaicin, to determine the role of the 
renal nerves on blood pressure response to eWAT stimula-
tion. Blood pressure response was measured continuously and 
averaged every 30 seconds for 30 minutes. Sham surgery for 
RDNX was conducted by carefully exposing the renal nerves, 
painting them with normal saline and closing the muscle and 
skin. In a third set of mice, neuronal activation was evaluated 
using c-Fos, a marker of neuronal activation, combined with 
the retrograde fluorescent tracer FluoroGold (FG; 40 mg/kg, 
IP; Fluorochrome, Denver, CO) FG only labels neuroendocrine 
neurons in the brain that receive projections from areas that are 
in direct contact with fenestrated capillaries, since it does not 
cross the blood-brain barrier.36 Neuroendocrine neurons are 
positive for both FG and c-Fos, while nonendocrine neurons, 
for example, the parvocellular nonendocrine neurons in PVN, 
are positive only for c-Fos. Five days after FG injection, mice 
were euthanized, and brains were fixed with 4% paraformal-
dehyde to determine Fos immunoreactivity (1:4000, RPCA-c-
FOS; EnCor Biotechnology, FL).

Sensory Denervation of eWAT
After a 5-day baseline MAP measurement, mice implanted with 
radiotelemetry were injected with vehicle in eWAT (SHAM). 
Under isoflurane anesthesia, epididymal fat depots were 
exposed through a 1-cm incision to the left of the abdominal 
midline. Sharp stainless steel needles were inserted following 
the procedure described for capsaicin infusion. First, mice were 
infused with vehicle (0.6% ethanol in normal saline; 4 μL per 
site; 8 sites; bilateral), and blood pressure was recorded for 4 

consecutive days. In a second surgery, with the incision per-
formed to the right of the midline, mice were denervated using 
RTX following the same infusion protocol. RTX stock solution 
was prepared to a final concentration of 10 pmol/μL in normal 
saline (4 μL RTX solution per site; 8 sites; bilateral). After 2 
days, the mecamylamine response was repeated. The eWAT 
denervation procedure was validated using male mice with a 
GFP reporter in CGRP+ sensory neurons,37,38 B6.129P2(Cg)-
Calcatm1.1(EGFP/HBEGF)Mjz/Mmnc (Calca; stock number: 036773-
UNC; citation ID: RRID:MMRRC_036773-UNC) as detailed in 
the Data Supplement.

Gene Expression in eWAT
Frozen tissue (n=5–8 per group) was used to extract mRNA 
as reported previously.28 A custom-designed Real Time quan-
titative Reverse Transcription Polymerase Chain Reaction 
(RT-qPCR) array (Bio-Rad PrimePCR; Bio-Rad Laboratories, 
Inc) included the following targets: Tph1 (tryptophan hydroxy-
lase 1), Htr2a (hydroxytryptamine [serotonin] receptor 2A), 
TrpV1, Ngf (nerve growth factor), Bdkrb1 (bradykinin receptor, 
beta 1), Bdkrb2 (bradykinin receptor, beta 2), NOX4 (NADPH 
oxidase 4), p47phox, Ilb1 (interleukin 1 beta), Tnf (tumor necro-
sis factor), Lepr (leptin receptor), Cybb (cytochrome b-245, beta 
polypeptide), Ptgs2 (prostaglandin-endoperoxide synthase 2), 
Cy2c44 (cytochrome P450-family 2, subfamily c-polypeptide 
44), VEGFa (vascular endothelial growth factor A), Trpa1 (tran-
sient receptor potential cation channel, subfamily A, member 1), 
and IL17 (interleukin 17). GAPDH was used as a housekeeper 
gene. Arrays were run in a Bio Rad CFX96 Touch, and data 
were analyzed using the Maestro software (CFX Maestro 2.0 
Software; Bio-Rad Laboratories, Inc).

Serotonin Concentration in Tissue
Frozen eWAT was homogenized in cold ELISA buffer (≈200 
mg/500 μL), centrifugated (30 minutes, 8000 rpm, 4 °C) and 
diluted 1:2 to perform the analysis following the manufacturer’s 
specifications (ADI-900-175; Enzo Life Sciences, CA).

Statistical Analysis
All data are presented as mean±SEM. Two-way ANOVA fol-
lowed by the Tukey post hoc test was used to assess the dif-
ferences between control and MSEW mice in different dietary 
conditions. Comparisons between 2 observations in the same 
animal were assessed by the Student paired t test. One-way 
ANOVA repeated measures followed by Tukey was used to 
analyze progressive changes in MAP. In vivo and ex vivo glyc-
erol concentration in plasma and eWAT explants was analyzed 
by 3-way ANOVA followed by the Tukey post hoc test. Analyses 
were performed using the GraphPad Software, version 9.0.0 
(La Jolla, CA; www.graphpad.com). Statistical significance was 
determined by P<0.05.

RESULTS
Body Composition and Lipolysis In Vivo and Ex 
Vivo
Although there was a main effect of diet on body weight, 
fat mass, and lean mass; MSEW showed similar body 
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composition compared with controls (Table). There was 
a main effect of MSEW on body weight; however, the 
adiposity was not different between groups. Accordingly, 
plasma and eWAT-derived media explant leptin were sim-
ilar in control and MSEW, lean and obese mice (Table).

In vivo lipolysis assessment showed that HF increased 
the basal glycerol levels in plasma, while the response to 
CL-316,243 was not different between groups in either 
diet (Table S1 in the Data Supplement). Ex vivo lipoly-
sis assay showed that glycerol levels at baseline were 
similar in all groups regardless of diet, and the stimulated 
lipolysis with isoproterenol increased glycerol concentra-
tion similarly in media eWAT explants from control and 
MSEW mice; however, media glycerol was reduced in 
explants from mice fed a HF compared with LF (Table 
S1). The 3-way ANOVA analysis showed no interaction 
between diet, stimulation, and MSEW factors (Figure S1).

Blood Pressure and Autonomic Function in 
Obese Mice
MSEW did not influence the hemodynamic parameters 
in mice fed a LF. However, HF-induced increases in MAP 
and systolic blood pressure were significant in MSEW 
compared with controls, while changes in diastolic blood 
pressure and HR were similar between groups (Table). 
Although obese MSEW mice showed a ≈20% reduction 

in the glomerular filtration rate, there was no significant 
interaction between MSEW and diet (Table).

To further investigate the origins of the exacer-
bated blood pressure in obese MSEW mice, we tested 
the autonomic status at baseline in both groups. Over-
all, no differences were observed between MSEW and 
control mice fed a LF. As shown in the Table, HF-fed 
MSEW mice displayed greater mecamylamine-induced 
decrease in MAP and propranolol-induced reduction 
in HR. Prazosin—an α-1 adrenergic receptor blocker—
significantly decreased MAP further in MSEW males 
compared with controls (Table). Moreover, the decrease 
in MAP in response to prazosin was greater compared 
with the reduction induced by mecamylamine in HF-fed 
MSEW mice, which suggests a contribution of the vas-
cular bed in the increased blood pressure in male MSEW 
mice. Finally, the blood pressure response to atropine-
induced blockade of parasympathetic tone was similar 
in control and MSEW mice (Table). Figure S2 shows the 
4-hour time course for each experiment. Table S2 shows 
the absolute MAP or HR changes in response to the 
autonomic function’s evaluation.

Acute AAR Stimulation With Capsaicin
In mice fed a LF, vehicle infusions in eWAT did not 
change MAP in control and MSEW mice (Figure 1A), 

Table. Effect of MSEW on Body Composition, Plasma and Tissue Leptin, Blood Pressure, Glomerular Filtration Rate, and 
Autonomic Function, in Mice Fed an LF or HF

 Control-LF MSEW-LF Control-HF MSEW-HF Pdiet PMSEW Pint

Body composition (n=22 LF, n=22 HF)

 Body weight (BW), g 28.37±0.63 29.20±0.49 45.93±0.74 48.15±0.56 <0.0001 0.152 0.260

 Fat mass, %BW 11.95±0.90 13.20±1.09 37.38±0.67 38.39±0.63 <0.0001 0.183 0.890

 Lean mass, %BW 84.92±0.80 83.56±1.00 59.95±0.59 59.33±0.58 <0.0001 0.233 0.643

Leptin (n=8 LF, n=8 HF)

 Plasma, ng/mL 22.66±2.77 21.38±1.88 104.51±6.84 102.84±6.05 <0.0001 0.778 0.970

 eWAT, ng/mg tissue 64.60±4.97 59.26±10.21 110.66±16.05 115.04±6.95 <0.0001 0.965 0.663

Hemodynamics (n=8–9 LF, n=10 HF)

 MAP, mm Hg 108±3 109±4 110±5 120±4*† 0.004 0.024 0.048

 Systolic, mm Hg 124±5 125±6 128±2 137±1*† 0.002 0.040 0.056

 Diastolic, mm Hg 98±12 95±8 97±1 104±2 0.003 0.308 0.214

 HR, bpm 585±23 581±30 574±11 597±8 0.291 0.758 0.396

Glomerular filtration rate (n=7 LF, n=11 HF)

 GFR, µL/min per 100 g BW 1039±96 1053±51 960±46 778±25 0.249 0.019 0.067

Autonomic function, Δ from baseline (n=8–9 LF, n=10 HF)

 ΔMAP mecamylamine, mm Hg −3.2±3.3 −7.4±2.0 −5.7±2.8 −17.2±1.3† 0.026 0.006 0.048

 ΔHR propranolol, bpm −42.9±11.1 −31.9±12.1 −37.5±15.2 −83.9±12.1 0.086 0.189 0.037

 ΔMAP prazosin, mm Hg −9.7±3.4 −7.3±3.7 −19.9±3.9 −36.0±3.2† <0.0001 0.047 0.024

 ΔHR atropine, bpm −13.4±12.1 −21.8±13.7 −3.9±14.5 −3.5±20.5 0.912 0.274 0.649

Data were analyzed by 2-way ANOVA followed by Tukey multiple comparisons post hoc test. Data were reported as mean±SEM. eWAT, epididymal white adipose 
tissue; GFR, glomerular filtration rate; HF, high fat diet; HR, heart rate; LF, low fat diet; MAP, mean arterial pressure; and MSEW, maternal separation and early weaning.

*P<0.05 vs MSEW-LF.
†P<0.05 vs control.
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while capsaicin infusion increased MAP levels similarly 
in both groups. In mice fed a HF, eWAT stimulation with 
vehicle did not modify MAP in either group; however, 
capsaicin infusions increased MAP responses in obese 
MSEW mice compared with controls. The MAP peaked 
after 5 minutes of infusion and lasted for 30 minutes 
(Figure 1B). As shown in Figure 1C, the area under the 
curve of the MAP, calculated as the pressor response 
in a 30-minute period, was further increased in HF-fed 
MSEW compared with controls. Figure S3 shows that 
subcutaneous WAT did not respond to capsaicin infu-
sions in either group. Therefore, these data indicate that 
capsaicin-induced blood pressure in obese MSEW mice 
is fat depot specific.

Neuronal Activation in Response to Vehicle and 
Capsaicin eWAT Stimulation
In control and MSEW mice fed a LF, the AAR stimulation 
with vehicle and capsaicin did not change the number 
of Fos positive cells in the OVLT, posterior PVN, RVLM, 
and NTS (Table S4A). Figure 2A shows representative 
microphotographs of Fos expression in the OVLT, PVN, 
and RVLM of control and MSEW mice fed a HF. Over-
all, capsaicin infusions in eWAT significantly increased 
the number of Fos positive cells in OVLT, posterior PVN, 
and RVLM in obese MSEW mice compared with vehicle 
infusions and capsaicin infusion in controls, whereas 
neuronal activation in NTS was similar between groups 
(Figure 2B). In addition to the OVLT, the other circumven-
tricular organs quantified, the subfornical organ (SFO), 
and the area postrema (AP) showed no significant differ-
ences between groups, diets, and AAR stimulation (Table 
S4B). Also, capsaicin infusion in eWAT induced a similar 
increase in the number of Fos positive cells in the lat-
eral parabrachial LPBN) and neuroendocrine neurons in 
the PVN and supraoptic nucleus, brain areas involved in 
pain sensing and response (Table S4B). Representative 
microphotographs of Fos-FG expression in the middle 
and posterior part of the PVN demonstrating no colo-
calization between Fos and FG in the PVN are shown in 
Figure S3A and S3B. Figure S4C shows representative 
images of Fos immunohistochemistry in NTS. Figure S4D 
shows schematic diagrams of the analyzed nuclei in ste-
reotaxic coordinates of coronal sections.

Effect of RDNX on Acute AAR Stimulation and 
Chronic Blood Pressure
Under anesthesia, obese male mice from both groups 
subjected to a prior RDNX showed a ≈15-mm Hg MAP 
reduction (Figure 3A). Vehicle infusion did not influence 
MAP in either group; however, capsaicin infusion in eWAT 
significantly increased MAP in SHAM-MSEW mice com-
pared with the SHAM-control group. When capsaicin 
was infused in eWAT of mice that underwent RDNX, 

the acute increase in MAP was blunted. In addition, 
RDNX lowered MAP in obese control and MSEW con-
scious mice (Figure 3B), abolishing the blood pressure 
differences between groups. Norepinephrine content in 
renal cortexes, as a general indication of the degree of 
innervation of these kidneys, was reduced in both acute 
and chronic experiments (Figure 3C). Noteworthy, the 
results we have obtained in the SHAM operated mice in 
response to capsaicin replicate the findings reported in a 
separate set of intact mice in Figure 1B.

Selective Sensory Denervation in eWAT
To further assess the contribution of the AAR in the 
exacerbated obesity-induced hypertension displayed 
by in MSEW, mice were subjected to selective affer-
ent denervation using RTX. As shown in Figure 4A, 
bilateral eWAT infusions with vehicle did not change 
MAP from baseline in both groups. Sensory denerva-
tion significantly decreased MAP only in MSEW mice, 
a reduction that lasted for 3 days. Figure 4B shows 
the differences in 24-hour MAP after SHAM or RTX 
surgeries. In addition, the greater mecamylamine-
induced decrease in blood pressure from baseline in 
MSEW-SHAM mice was blunted after RTX ablation 
(Figure 4C). Validation of the afferent-selective RTX 
denervation assessed by intravital 2-photon micros-
copy using the Calca reporter mouse is shown in Fig-
ure 4D. Focal denervation areas after 5 days can be 
observed in Figure S5.

RT-qPCR of Targets Linked to Sensory 
Stimulation in eWAT
Figure 5A shows the gene expression panel of factors 
and receptors that are known to increase/mediate the 
activity of sensory neurons. No significant gene expres-
sion changes in LF-fed control and MSEW mice were 
observed (Table S4). In HF-fed MSEW mice, mRNA 
expression of Tph1 was significantly increased com-
pared with controls, while Htr2a mRNA expression was 
elevated but not statistically different (Figure 5A). Fur-
ther, eWAT serotonin concentration was significantly 
higher in MSEW compared with controls (Figure 5B).

DISCUSSION
This study shows that afferent signals from eWAT con-
tribute to exacerbating the sympathetic activation and 
hypertension in male HF-fed MSEW mice. The acute 
stimulation of eWAT with capsaicin induced a greater 
increase in the blood pressure response and increased 
the neuronal activation in the OVLT, PVN, and RVLM in 
obese MSEW mice, despite similar amount of adipos-
ity and circulating leptin levels compared with obese 
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control mice. In addition, renal denervation prevented 
the chronic elevation of blood pressure and the acute 
capsaicin-induced pressor response in obese MSEW 
mice. Furthermore, selective afferent eWAT denervation 
reduced the blood pressure response and attenuated 

the sympathetic index in these mice. Finally, we iden-
tified local serotonin as a potential endogenous fac-
tor that may stimulate the afferent sensory neurons. 
Taken together, these data indicate that male mice 
exposed to MSEW display exacerbated sympathetic 

Figure 1. Acute eWAT stimulation with capsaicin (CAP) exacerbated mean arterial pressure (MAP) response in obese MSEW 
male mice.
A, Blood pressure trace in mice fed a low fat diet (LF). B, Blood pressure trace in mice fed a high fat diet (HF) (C), 30-min area under the 
curve (AUC) in response to CAP. Data were analyzed by ANOVA repeated measures for continuous blood pressure trace and 2-way ANOVA 
followed by Tukey multiple comparisons post hoc test for AUC analysis. Data were reported as mean±SEM. n=8 per group. eWAT indicates 
epididymal white adipose tissue;  MSEW, maternal separation and early weaning; and VEH, vehicle. *P<0.05 vs control.
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Figure 2. Acute eWAT stimulation with capsaicin (CAP) increases neuronal activation in organum vasculosum of the lamina 
terminalis (OVLT), paraventricular nucleus of the hypothalamus (PVN), and rostroventrolateral medulla (RVLM) in obese MSEW 
male mice. 
A, Pattern of Fos immunoreactivity in the OVLT (0.50 mm from bregma; top), posterior PVN (−1.06 mm from bregma; middle), and RVLM 
(−6.72 mm from bregma; bottom) of control and MSEW mice infused with vehicle (VEH) or CAP in eWAT. A dotted shape delimits the brain 
areas in each image in which the quantification was performed.95 White arrows indicate Fos positive cells. Microphotographs (×10) for OVLT, 
PVN, and RVLM were acquired using upright Zeiss LSM 880 multiphoton microscope and ZEISS ZEN Digital Imaging for Light Microscopy 
software (cFos: red filter). Scale bar, 100 µm. Representative schematic figures in stereotaxic coordinates for each brain area analyzed 
are included in the Data Supplement. B, Average number of Fos positive cells in OVLT, posterior PVN, RVLM, and nucleus of the solitary 
tract (NTS) control and MSEW mice infused with VEH or CAP in eWAT. Data were analyzed by 2-way ANOVA followed by Tukey multiple 
comparisons post hoc test. Data were reported as mean±SEM. n=6-7 per group. For Fos positive cell quantification, ×10 magnification images 
were visualized with Nikon Super Resolution Inverted Microscope (cFos: red filter) and acquired with Nikon NIS-Elements (NIS-Elements 
Software, version 4.00.08; Nikon Instruments, Inc). 3 V indicates third ventricle; eWAT, epididymal white adipose tissue; MSEW, maternal 
separation early weaning; and NA, nucleus ambiguus. *P<0.05 vs MSEW-high fat (HF), VEH and control-HF CAP.
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outflow to the kidneys when fed a HF, eliciting long-
term increased blood pressure. This heightened sym-
pathetic outflow is most likely mediated, in part, by 

afferent signals from eWAT projecting to brain nuclei 
with a pivotal role in the development of neurogenic 
hypertension.

Figure 3. Renal denervation 
abolishes the differences in blood 
pressure in obese MSEW male mice.
A, Bilateral renal denervation (RNDX) 
abolished the acute changes in mean 
arterial pressure (MAP) in response 
to epididymal white adipose tissue 
stimulation with capsaicin (CAP). B, 
RNDX blunts the differences in chronic 
MAP. C, Renal cortex norepinephrine 
(NE) content was dramatically reduced in 
all mice subjected to RDNX. Data were 
analyzed by 2-way ANOVA followed by 
Tukey multiple comparisons post hoc 
test. Data were reported as mean±SEM. 
n=5 to 6 per group. HF indicates high 
fat diet; MSEW, maternal separation early 
weaning; and VEH, vehicle. *P<0.05 vs 
control; #P<0.05 vs SHAM.
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Compared with essential hypertension in lean sub-
jects, obesity-related hypertension has an important 
neurogenic component and is characterized by sympa-
thetic hyperactivity to the kidneys and skeletal muscle 

vasculature and an absence of the suppression of the 
cardiac sympathetic outflow seen in the normotensive, 
obese subjects.39–41 Renal nerve ablation is a cur-
rent approach to control drug-resistant hypertension in 

Figure 4. Selective afferent denervation in eWAT lowers blood pressure and sympathetic index in obese MSEW male mice.
A, Blood pressure trace before and after resiniferotoxin (RTX) injections in eWAT. B, Twenty-four–hour blood pressure after 2 d of sham or 
RTX surgery. C, Acute mecamylamine-induced blood pressure reduction. D, Representative images of Sham and RTX-treated eWAT using the 
CGRP (calcitonin gene-related peptide) reporter for sensory neuron Calca mouse. White arrows indicate the GFP (green fluorescence protein) 
labeled sensory neurons in eWAT. Intravital imaging of exposed fat pads was assessed on the stage of the multiphoton photon microscope 
(30 Hz full frame acquisition, Scientifica, Ltd, Uckfield, United Kingdom) using a 16X Nikon objective. Green pseudo coloring and contrast 
were applied after images were acquired using Image J processing software (Image J 1.53c, http://imagej.nih.gov/ij; National Institutes of 
Health). Scale bar, 50 µm. Data were analyzed by 2-way ANOVA followed by Tukey multiple comparisons post hoc test. Data were reported 
as mean±SEM. n=8 per group. HF indicates high fat diet; eWAT, epididymal white adipose tissue; MAP, mean arterial pressure; and MSEW, 
maternal separation early weaning. *P<0.05 vs control.
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humans, while numerous preclinical studies have shown 
its significant effect in different animal models of hyper-
tension.42–46 Furthermore, the stimulation of renal affer-
ent sensory neurons is implicated in renorenal reflexes 
that “enable total renal function to be self-regulated and 
balanced between the two kidneys” or a “self-regulated 
renorenal reflex loop.”47–49 It also has been proposed that 
the renal afferent reflex may play a critical role in chronic 
renal hypertension, especially when the baroreflex is 
impaired and activation of the renin-angiotensin system 
is reduced.50

The presence of organ-specific sympathetic neural 
activation in human obesity is now accepted. The con-
tribution of hyperinsulinemia, high plasma leptin levels, 
obstructive sleep apnea, and reduced gain of the arterial 
baroreflex has been widely studied as underlying mecha-
nisms.10,51–54 In studies using a combination of trans-syn-
aptic retrograde viral tract tracers with an anterograde 
transneuronal viral tract tracer into the inguinal WAT or 
eWAT of rats and Siberian hamsters, Bartness et al were 
able to demonstrate a cross talk between the central 
nervous system and the adipose tissue.15,17,55,56 In these 
studies, sensory neurons that innervate WAT project 
from the dorsal root ganglia to OVLT, PVN, RVLM, and 
NTS among other brain areas.17,57,58 The PVN is one of 
the major integrative centers in the brain that receives 
sensory signals from the periphery and regulates sym-
pathetic nervous system outflow and cardiovascular 
function via the activation of preautonomic neurons 
that project to the RVLM, NTS, and spinal cord.59–63 In 

addition, the, OVLT—a circumventricular organ that lacks 
a complete blood-brain barrier and is in direct contact 
with the plasma and cerebrospinal fluid—also projects to 
the PVN, contributing to blood pressure regulation.64–66

Maternal separation is used as a rodent paradigm of 
early life stress.21 Several studies have shown that male 
rats subjected to maternal separation are normotensive 
when kept on a normal diet while displaying mild effects 
on cardiac autonomic balance and heart structure and 
reduced renal function.67 Specifically, lower glomeru-
lar filtration rate was normalized after renal denerva-
tion, and the renal dysfunction was associated with the 
α-adrenergic receptor desensitization in isolated renal 
vasculature.34,68,69 Furthermore, borderline hypertensive 
rats exposed to maternal separation display enhanced 
neuronal activation and cardiovascular responses to 
acute stress.32 Male control and maternally separated 
rats fed a HF for 22 weeks display similar blood pres-
sure and body weight.70 However, in this study, we 
reported that male mice exposed to MSEW show sym-
pathetic activation associated with increased blood 
pressure despite similar amount of adiposity and plasma 
leptin levels compared with control mice. Accordingly, 
the in vivo and in vitro assays using a β3-adrenergic 
receptor agonist indicate that sympathetic activation 
does not promote lipolysis to prevent fat expansion in 
obese MSEW male mice. Moreover, we demonstrated 
that bilateral renal denervation abolished the chronic 
blood pressure differences between control and MSEW 
mice. Renal denervation also abrogated the exacerbated 

Figure 5. Obese MSEW male mice display increased serotonin content in epididymal eWAT.
A, RT-qPCR profiler showing significant increases in trytophan hydroxylase 1. B, Serotonin content is eWAT determined by ELISA. Data were 
analyzed by the Student t test. Data were analyzed by 2-way ANOVA followed by Tukey multiple comparisons post hoc test when considering 
low fat (LF)–high fat (HF; Table SIV). Data were reported as mean±SEM. n=5 to 8 per group. Bdkrb1 indicates bradykinin receptor, beta 1; 
Bdkrb2, bradykinin receptor, beta 2; Htr2a, hydroxytryptamine (serotonin) receptor 2A; IL1β, interleukin 1 beta; IL6, interleukin-6; Lepr, leptin 
receptor; Ngf, nerve growth factor; NOX4, NADPH oxidase 4; p47phox (Ncf1), neutrophil cytosolic factor 1; Tnf, tumor necrosis factor; Tph1, 
tryptophan hydroxylase 1; and TrpV1, transient receptor potential cation channel, subfamily V, member 1. eWAT indicates epididymal white 
adipose tissue; MSEW, maternal separation early weaning; and RT-qPCR, Real Time quantitative Reverse Transcription Polymerase Chain 
Reaction. *P<0.05 vs control.
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acute pressor response to capsaicin infused in eWAT 
seen in obese MSEW mice. Taken together, these data 
indicate that renal nerves play a critical role as the effer-
ent arm of the AAR. This scenario points to a neuro-
genic mechanism implicated in the sensitization of the 
acute and chronic blood pressure response displayed by 
obese male MSEW mice.

Several studies have reported that maternal sepa-
ration induces neuronal activation in PVN.30,32,71 How-
ever, these studies do not provide in depth neuronal 
characterization within the PVN. In the present study, 
using Fos expression as a marker of neuronal activa-
tion, we observed that eWAT stimulation with capsaicin 
increased the neuronal activation of nonendocrine neu-
rons in the posterior PVN and RVLM in obese MSEW 
mice. Based on these results, we speculate that these 
activated neurons in the posterior PVN are most likely 
preautonomic and, project to RVLM, and therefore, are 
responsible for increasing blood pressure in response 
to capsaicin stimulation. However, further neuroana-
tomical and functional studies are needed to demon-
strate that these neurons in the posterior PVN receive 
afferent signals from eWAT and project to the brain 
stem regulating sympathetic tone and blood pressure. 
Our results also showed increased capsaicin-induced 
neuronal activation in the OVLT of obese MSEW males. 
However, based on the approach utilized in this study, 
we cannot determine that these neurons receive affer-
ent signals directly from eWAT or project to the PVN.

To further assess the contribution of depot-specific 
afferent signals on blood pressure responses, we ablated 
the sensory neurons with RTX—a TRPV1 agonist that 
functions as a 1000× more potent capsaicin analog and 
destroys sensory neurons.72–75 Bilateral denervation of 
eWAT with RTX reduced blood pressure in MSEW males 
fed HF to similar levels as control mice suggesting that 
fat afferent activity could be responsible for the increased 
blood pressure and sympathetic activity in MSEW mice. 
The measurement of afferent eWAT nerve activity and 
efferent renal nerve activity will provide irrefutable evi-
dence of the sensitization of the fat–brain–blood pres-
sure axis in obese MSEW mice.

One of the main findings of this study is that obese 
MSEW mice show greater blood pressure sensitivity to 
acute eWAT stimulation. Although capsaicin is not an 
endogenous ligand, it has been widely used to study its 
excitatory afferent effects and the physiological func-
tion of afferent neurons. Xiong et al11 have shown that 
obese hypertensive rats display greater WAT afferent 
nerve activity and RSNA in response to capsaicin.18 
Moreover, in previous studies, Niijima has reported simi-
lar nerve activity increases after stimulating adipose 
tissue depots with leptin.14 To investigate a possible 
endogenous factor that could chronically activate the 
sensory neurons in eWAT from MSEW mice, we analyzed 
a range of potential ligands and receptors expressed in 

these neurons. Based on the literature, we tested the 
gene expression of several potential ligands stimulating 
the sensory neurons in eWAT, including oxidative stress, 
inflammation, prostaglandins, bradykinin, and different 
growth factors.76–80 Nevertheless, only Tph1 showed a 
significant upregulation in MSEW mice fed HF. Sero-
tonin (5-HT) is synthesized by Tph1 (peripheral expres-
sion) and Tph2 (central nervous system expression). 
Inhibition of peripheral 5-HT synthesis (eg, telotristat) 
is a novel therapeutic strategy for pulmonary hyperten-
sion, inflammatory diseases, thrombosis, and obesity, 
aiming to avoid the adverse effects of Tph2 inhibition 
on the central nervous system.81 Thp1 enzyme is the 
rate-limiting step of serotonin biosynthesis by masto-
cytes,82 macrophages,83 and adipocytes.84,85 Thus, we 
identified Tph1-derived serotonin as a potential endog-
enous stimulator of the sensory neurons in eWAT from 
MSEW mice. The mechanism by which MSEW upregu-
lates Tph1 expression remains under investigation.

Serotonin can activate sensory neurons directly by 
binding to 5HT 2, 3, 4, and 7 receptors.86–89 In addition, it 
has been shown that this specific ligand-receptor inter-
action induces GPCR-mediated PKC (protein kinase C) 
to phosphorylate TRPV1 channels increasing the sen-
sory neuron activation.90,91 Moreover, 5HT can indirectly 
sensitize sensory neurons by binding to 5-HT2 receptors 
and triggering PKC activation that increases the expres-
sion of neuronal acid-sensing ion channels in the neu-
rons.92,93 These channels sense extracellular protons and 
mediate increased signaling during sensory stimulation 
such as pain.90,94

In the current study, we found that a subset of 
TRPV1+ sensory afferents could be implicated in 
greater capsaicin-induced blood pressure increases in 
obese MSEW mice via the direct connection with PVN-
RVLM, contributing to chronic AAR stimulation. We also 
stimulated pain-sensing neurons projecting to magno-
cellular neurons in the lateral magnocellular division of 
the PVN (PaML), supraoptic nucleus, and lateral para-
brachial nucleus brain areas involved in pain-sensing 
and response95–97; however, we found similar capsaicin-
induced neuronal activation in both control and MSEW 
obese mice. Future studies will address whether this 
effect also extends to other populations of sensory neu-
rons, such as low-threshold mechanoreceptors. These 
afferents could be further characterized, for instance, by 
performing anterograde and retrograde neuronal trac-
ers in combination with electrophysiology or calcium 
imaging from dissociated dorsal root ganglia neurons 
in culture, which would allow us to determine whether 
increased local serotonin displayed by obese MSEW 
mice is responsible for the afferent neuron activation in 
eWAT. While exogenous capsaicin specifically stimulates 
TRPV1 channels, this study does not allow the conclu-
sion of whether the excitability of the sensory neuron 
is exclusive to TRPV1 activation. Therefore, in addition 
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to the increased serotonin levels, AAR hypersensitiv-
ity could be given by increased terminal branching of 
sensory afferents, the plasticity of sensory neuron syn-
apses onto spinal neurons, such as alteration in CGRP 
or substance P release, or an overall increase in the 
number of nociceptors in response to early life stress. 
As a result, increases in sensory neuron innervation and 
excitability in eWAT could be determined by quantifying 
the number and excitability of peptidergic/nonpeptider-
gic nociceptors in dorsal ganglia root cultures.

Of note, we have shown that both male and female 
MSEW mice display exacerbated hypertension asso-
ciated with HF feeding; however, only females show 
greater adiposity and metabolic compromise compared 
with control mice.98,99 Thus, male MSEW mice show neu-
rogenic hypertension, while female MSEW mice appear 
to develop hypertension secondary to cardiometabolic 
dysfunction. This is in accordance with other studies of 
developmental programming where similar mechanisms 
underlying sex differences have been described.100 To 
consider other potential mechanisms underlying hyper-
tension in our model, the greater acute responses to 
mecamylamine and prazosin in obese MSEW mice sug-
gest an important contribution of the systemic vascu-
lature and the control of total peripheral resistance. In 
addition, acute and long-term changes in blood pressure 
in our mice undergoing total renal denervation indicate a 
similar importance of the renal vasculature in our model. 
However, chronic inhibition of systemic vascular constric-
tion may provide additional evidence of the contribution 
of other vascular beds as well.

In conclusion, this study shows that afferent sen-
sory signals derived from eWAT may contribute to the 
exacerbated fat–brain–blood pressure axis in male 
mice exposed to early life stress. Also, we propose that 
increased local serotonin levels, or the hyperresponsive-
ness of sensory neurons itself, could contribute to the 
mechanism by which MSEW displays exacerbated neuro-
nal activation in PVN and RVLM. Thus, AAR may further 
enhance the physiological cardiovascular response to HF, 
as male MSEW mice show higher blood pressure than 
controls while having similar increases in fat mass and 
circulating leptin. In addition, this increase in blood pres-
sure is most likely neurogenic, as an α-receptor blocker 
or renal denervation induced significant changes in rest-
ing blood pressure. Nevertheless, extending this study to 
afferent signals from kidney and perirenal fat will provide 
a better understanding of the contribution of afferent sig-
nals during obesity-induced hypertension in this model.

PERSPECTIVES
Using a mouse model, this study shows that early life 
stress enhances the reactivity of the fat–brain–blood 
pressure axis during obesity. As obesity increases the 

risk of drug-resistant hypertension, identifying novel 
underlying mechanisms may help developing therapeutic 
approaches for successfully managing neurogenic hyper-
tension associated with obesity, particularly in patients 
affected by nontraditional risk factors. A comprehensive 
understanding of how afferent reflexes could exacerbate 
blood pressure in subjects exposed to adverse childhood 
experiences (ACEs) or any other kind of early life insults 
could provide insights to improve personalized antihyper-
tensive therapeutic approaches.
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