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Abstract. Lung cancer is the most critical type of malignant 
tumor that threatens human health. Traditional preclinical 
models have certain defects; for example, they cannot accurately 
reflect the characteristics of lung cancer and their development 
is costly and time‑consuming. Through self‑organization, 
cancer stem cells (CSCs) generate cancer organoids that have 
a structure similar to that of lung cancer tissues, overcoming to 
some extent the aforementioned challenges, thus enabling them 
to have broader application prospects. Lung cancer organoid 
(LCO) development methods can be divided into three broad 
categories based on the source of cells, which include cell lines, 
patient‑derived xenografts and patient tumor tissue/pleural 
effusion. There are 17 different methods that have been 
described for the development of LCOs. These methods can be 
further merged into six categories based on the source of cells, 
the pre‑treatment method used, the composition of the medium 
and the culture scaffold. These categories are: i) CSCs induced 
by defined transcription factors; ii) suspension culture; iii) rela‑
tive optimal culture medium; iv) suboptimal culture medium; 
v) mechanical digestion and suboptimal culture medium; and 

vi) hydrogel scaffold. In the current review, the advantages 
and disadvantages of each of the aforementioned methods are 
summarized, and references for supporting studies are cited.
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1. Introduction

Lung cancer constitutes 11.4% of all newly diagnosed cases of 
cancer, and is the leading cause of cancer‑associated mortality 
worldwide (1). Lung cancer is a heterogenous disease that is 
divided into two major categories based on histopathology: 
Small cell lung cancer (SCLC) and non‑SCLC (NSCLC). 
NSCLC accounts for 85% of lung cancer cases, and has several 
subtypes, including lung adenocarcinoma (LUAD), lung squa‑
mous cell carcinoma and large cell lung carcinoma (2). SCLC 
is a type of neuroendocrine tumor that is classified into two 
subtypes: SCLC and combined SCLC (3,4). Importantly, in 
addition to different histopathological subtypes, the heteroge‑
neity of lung cancer also refers to differences between patients 
with the same subtype, or differences among cells in the same 
tumor tissue (5‑10). The heterogeneity of lung cancer affects 
clinical treatment, since patients with the same pathological 
type may have diverse reactions to the same treatment (11‑14). 
To effectively treat lung cancer, it is necessary to explore the 
source of lung cancer heterogeneity, identify specific antitumor 
drugs and achieve personalized treatment for patients.

Conventional two‑dimensional (2D) culture and 
patient‑derived xenograft (PDX) models are useful tools 
that assist in understanding the mechanisms underlying the 
occurrence, development and heterogeneity of lung cancer. 
However, these tools have certain limitations. Culture 
methods, passage numbers and other unexpected factors may 
cause tumor cell lines to lose the phenotype and genotype of 
a primary tumor in a 2D culture model (15‑17). Moreover, 
as 2D culture models lack extracellular matrix, stromal 
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cells and immune cells, they cannot accurately simulate the 
tumor microenvironment (TME) and hence the conditions 
affecting cancers in vivo (18‑21). Moreover, the defects of 
2D culture models frequently cause antitumor drugs to show 
efficacies and toxicities in vivo that are different from those 
obtained in vitro during drug screening, which causes rapid 
drug screening to be challenging (22,23). Compared with 2D 
culture models, PDX models in which researchers transplant 
surgically resected tumor tissues into immunodeficient 
mice, are more accurate in representing the phenotype, 
genotype and TME of the parental tumor (24‑28). However, 
the following issues can be observed: i) The proportion of 
transplantations that are successful in the establishment of 
PDX models is sometimes too low (29‑31); ii) the process 
of successfully developing PDX models for drug screening 
is time consuming (32,33), and the condition of the patient 
often deteriorates during this period; iii) murine stromal 
cells gradually replace patient stromal cells, which changes 
the TME of the PDX model (34,35); and iv) the mechanism 
of interaction between tumor cells and immune cells in a 
PDX model is challenging to investigate because general 
PDX models lack immune cells (36,37).

The narrow limitations of conventional tumor cell lines 
and PDX models have driven researchers to investigate 
improved preclinical tumor models that preserve the char‑
acteristics of primary tumors to the largest extent. Such 
models are designed to be built in a short amount of time 
for rapid antitumor drug screening and expanded for the 
long‑term investigation of cancer mechanisms and modifi‑
cation of treatment plans. Tumor organoids, also known as 
tumoroids (38), have thus emerged. Through self‑organiza‑
tion, stem cells generate organoids that retain almost all the 
features of parental tissues (39,40). Numerous studies have 
demonstrated that tumor organoids have broad applications 
in different types of cancer (41‑47). Researchers are using 
organoids to investigate lung cancer, with different studies 
describing various methods for the establishment of lung 
cancer organoids (LCOs) (48‑80). These methods can be 
divided into three broad categories based on the source of 
cells used, namely cancer cell line‑based LCOs, PDX‑derived 
LCOs and patient‑derived LCOs (Fig. 1). At present, 17 
different methods for building LCOs have been described 
in the literature (Tables Ⅰ and SⅠ). These methods can be 
merged into six categories based on the source of cells, the 
pre‑treatment method used, the composition of the medium 
and/or the culture scaffold: i) Cancer stem cells (CSCs) 
induced by defined transcription factors (48); ii) suspension 
culture method (52,66); iii) relative optimal culture medium 
with serum‑free additive, amino acids, growth factor, 
stemness‑related signaling pathway activators and apoptosis 
signaling pathway inhibitors (49‑51,53,55,57,68,76,79,80); 
iv) suboptimal culture medium (relative optimal culture 
medium without stemness‑associated signaling pathway 
activators) (71); v) mechanical digestion and suboptimal 
culture medium (70); and vi) hydrogel scaffold (69,78) 
(Fig. 1; Tables Ⅰ, Ⅱ, SⅠ and SⅡ). The current review presents 
the advantages and drawbacks of these methods, and cites 
references for relevant studies. The three broad categories of 
LCOs are discussed, along with the different methods used 
to establish LCOs. 

2. Cancer cell line‑based LCOs 

Stem cells are indispensable for organoid generation (81). The 
ideal methodology for medical research is the use of CSCs 
from patient tissues to create lung tumoroids. However, ethical 
issues, success rates and the scarcity of specimens require 
consideration when using patient tissues. These factors limit 
the repeatability of studies to a certain extent, and may result 
in researchers being forced to seek alternative options for the 
transformation of cancer cell lines into CSCs. Researchers have 
used transformed CSCs to generate tumoroids, and various 
methods have been used to transform cancer cell lines into 
CSCs (82,83). In addition, researchers may be able to expand 
the CSC population by three‑dimensional (3D) spheroid culture 
to acquire a sufficient number of CSCs for the establishment 
of tumoroids (84,85). Oshima et al (86) showed that colon 
cancer line cells can be successfully induced to form CSCs 
by the transfection of stem cell transcription factors, namely a 
combination of octamer‑binding protein 3/4 (OCT3/4), SRY‑box 
transcription factor 2 (SOX2) and Kruppel‑like factor 4 (KLF4), 
known as OSK, into colon cancer cells (87). Subsequently, 
the authors attempted to induce lung cancer A549 cells into 
CSCs using this method, and colonies of OSK‑A549 cells with 
chemoresistance, a delayed cell cycle, enhanced sphere forma‑
tion ability and tumorigenicity were successfully obtained (48). 
Lung tumoroids were subsequently established by co‑culturing 
the OSK‑A549‑colony cells with human umbilical vein endothe‑
lial cells and human mesenchymal stem cells (Fig. 1) (48). The 
results of hematoxylin and eosin staining and immunostaining 
showed that these tumoroids comprised distinctive cohesive 
cell nests that were analogous to lung cancer tissues (48). Gene 
expression analysis was conducted to explore changes in the 
gene expression profile during stem cell transformation (48). The 
results revealed that interleukin (IL)‑6 was expressed at high 
levels in OSK‑A549‑colony cells compared with control cells, 
which increased the resistance of the OSK‑A549‑colony organ‑
oids to chemotherapy and facilitated the ability to construct lung 
tumoroids from them (48). IL‑6 was also found to be expressed 
at high levels in the majority of patient tissue samples, indepen‑
dently from their gene mutation status and tumor staging (48). 
These findings suggest that IL‑6 has the potential to become a 
novel therapeutic target for LUAD. This method is a feasible 
strategy for the generation of lung tumoroids and exploration 
of the mechanism of lung cancer development by driving lung 
CSC transformation. The use of cancer cell lines to generate 
LCOs has the following advantages: i) Cell lines are readily 
available; ii) there are few ethical issues concerning the use of 
cell lines to conduct medical research; and iii) repeat tests with 
the same cell lines can be carried out. However, there are also 
some disadvantages: i) Random gene mutations may be gener‑
ated during long‑term cell line 2D culture, leading to cell line 
diversity in terms of the gene profile in different laboratories; 
and ii) stromal, immune and nerve cells, and capillaries are 
absent from the tumoroid system, and consequently the interac‑
tion of cancer cells with the TME cannot be studied using this 
type of model. However, this is a common issue in all types of 
tumoroid models.

Despite their disadvantages, cancer cell line‑based LCOs 
have certain practical utility. There are, however, some aspects 
of such LCOs that require further investigation: i) Whether 
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lung cancer cells can be transformed into lung CSCs by 
transfection with other combinations of stem cell transcription 
factors such as OCT3/4, SOX2, KLF4, cellular myelocyto‑
matosis oncogene and/or Nanog homeobox; ii) differences 
among stem cells induced by transfection with different 

combinations of stem cell transcription factors; iii) whether 
other lung cancer cell lines, especially SCLC cell lines, can 
also be transformed into lung CSCs and used to successfully 
establish tumoroids using this method,; and iv) whether this 
approach is suitable for use in drug screening. In addition, as 

Figure 1. Schematic diagram of lung cancer organoid culture and application. Processes I‑VI are shown. AOO, application of organoids; BFBR, biobank for 
basic research; DS, drug screening; H&E, hematoxylin‑eosin staining; HUVECs, human umbilical vein endothelial cells; IF, immunofluorescence; IHC, 
immunohistochemistry; IOO, identification of organoids; KLF4, Kruppel‑like factor 4; MSCs, mesenchymal stem cells; OCT3/4, octamer‑binding protein 
3/4; PDXs, patient‑derived xenografts; PE, pleural effusion; PTRT, production of tumor‑reactive T cells; PTT, patient tumor tissue; SDEGs, screening for 
differentially expressed genes; SOX2, SRY‑box transcription factor 2; WES, whole exome sequencing. Some parts of the figure were made using Biorender 
(https://biorender.com) and ScienceSlides (http://www.scienceslides.com).

https://www.spandidos-publications.com/10.3892/etm.2024.12672
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some studies have reported that pyroptosis plays an important 
role in the occurrence and development of lung cancer (88‑90), 
it is not yet known if cancer cell line‑based LCOs can be used 
for researching the mechanism of drug‑induced lung cancer 
cell pyroptosis. To broaden the application scope of cancer cell 
line‑based LCOs, these unknown factors require elucidation.

3. PDX‑derived LCOs

As PDXs effectively maintain the characteristics of primary 
tumors, including the phenotype, genetic profile and TME, 
they are widely used as preclinical models to explore the 
mechanisms of tumorigenesis and development, screen anti‑
tumor drugs and discover novel therapeutic methods (91‑94). 
However, the high cost and time‑consuming process of 
developing PDXs limit their usage (95,96). To use the full 
advantages of PDXs while avoiding their disadvantages, inves‑
tigators have developed PDX‑derived organoid models that 
have already been applied to multiple tumor types, and shown 
to preserve the genomic and transcriptomic profiles, protein 
markers and drug response of primary PDXs (94,97‑99). 
These models have been used to study the pathogenesis of 
lung cancer and screen antitumor drugs (Fig. 1). A total of four 
methods to create PDX‑derived LCOs are presented in the 
current review (Table Ⅰ) (55,78‑80). Only one of these was used 
to establish PDX‑derived organoids of NSCLC (55), while the 
other three were used to generate PDX‑derived organoids of 
SCLC (78‑80). 

Shi et al (55) reported a method for the creation of 
PDX‑derived organoids of NSCLC using relatively optimal 
culture medium, with short‑ and long‑term PDX‑derived 
LCO cultures. The study found that the PDX‑derived LCOs 
reflected the histological and cell lineage characteristics, and 
drug sensitivity of the parental PDXs to a large extent, in both 
short‑ and long‑term culture. Even following the prolonged 
culture of LCOs, the mutations, copy number landscape and 
gene expression profiles of organoids and primary PDXs were 
comparable. In addition, short‑term PDX‑derived LCO culture 
was able to establish tumoroid models rapidly, and the drug 
sensitivity of the LCOs was consistent with that of the parental 
PDXs. These findings indicate that these LCOs have certain 
application prospects in drug screening.

Delayed diagnosis, high aggressiveness, susceptibility 
to relapse and poor prognosis are the basic characteristics 
of SCLC (4,100‑102). Although SCLC is divided into four 
subtypes based on expression of the transcription factors 
achaete‑scute homolog 1, neuronal differentiation 1, POU 
class 2 homeobox 3 and Yes1 associated transcriptional 
regulator (103), there is no specific and effective treatment for 
each subtype (104). Traditional preclinical models perform 
poorly in the exploration of novel markers and treatment 
methods for SCLC (105). Therefore, it is urgently necessary 
to develop more efficient preclinical models. Tumor organoids 
have unique advantages in that regard, and researchers have 
been attempting to establish SCLC organoids (71,72,77‑80). 
Gmeiner et al (78), Chen et al (79) and Redin et al (80) have 
each reported methods for the culture of SCLC PDX‑derived 
organoids to explore drug resistance mechanisms and screen 
specific antitumor drugs. The study by Gmeiner et al (78) 
indicated that overexpression of the transcription factor 
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E2 promoter binding factor 1‑3 caused the upregulation of 
thymidylate synthase and the increased malignancy of SCLC. 
To test the efficacy of thymidylate synthase inhibitors in the 
treatment of SCLC, the authors created SCLC PDX‑derived 
organoid models and used them to demonstrate that SCLC is 
sensitive to CF10, a novel fluoropyrimidine polymer. Retinoic 
acid receptor‑related orphan receptors (RORs), including 
RORα, RORβ and RORγ, participate in a variety of physi‑
ological and pathological reactions through ligand‑dependent 
interactions with co‑regulators (106). Chen et al (79) found 
that the high expression of RORγ improved SCLC cell growth 
and inhibited apoptosis, while the RORγ antagonists XY018 
and GSK805 eliminated this effect in H446 and H1048 cells. 
These results were verified in SCLC PDX‑derived organoids. 
Chemical library screening, and cellular thermal shift and 
surface plasmon resonance assays were used to identify 
N‑hydroxyapiosporamide (N‑hydap), as a potent and selective 
RORγ antagonist. N‑hydap was more efficient at suppressing 
the growth and survival of cancer cells than GSK805 and 
XY018, which was confirmed using SCLC PDX‑derived 
organoid models. The study by Chen et al (79) provides a 
new approach for the screening of targeted antitumor drugs. 
Redin et al (80) described another method for the generation 
of SCLC PDX‑derived organoids, which they used to verify 
the curative effect of the YES1‑specific inhibitor CH6953755 
on SCLC. All three methods involve the use of newly estab‑
lished, not passaged, PDX‑derived organoids to explore the 
mechanism of lung cancer development and screen antitumor 
drugs. The study findings indicate that short‑term culture 
PDX‑derived LCOs are reliable in the preclinical research of 
lung cancer.

The aforementioned four methods can be divided into two 
categories, those using relative optimal culture medium and 
those using a hydrogel scaffold. The methods developed by 
Shi et al (55), Chen et al (79) and Redin et al (80) are in the 
former category, while that developed by Gmeiner et al (78) 
is in the latter category. The details of these methods are 
presented in Table Ⅱ. 

These studies used four different digestion methods to 
dissociate tissues into single cells. Digestive strategies using 
the combination of Liberase TM, which comprises a combi‑
nation of collagenase I, II and thermolysin, with TrypLE 
involve lower concentrations of enzymes with higher digestive 
efficiency compared with those that use a combination of colla‑
genase II and TrypLE. Digestive methods using collagenase 
IV alone also have a higher digestive efficiency compared with 
those that using a combination of collagenase II and TrypLE. 
This may be due to collagenases I and IV having higher 
activity than collagenase II. Notably, treatment with TrypLE, a 
recombinant trypsin‑like protease (107) used in two different 
digestive enzyme combinations, has been shown to result in a 
significantly higher cell viability compared with trypsin (108). 
Any pure collagenase is not able to effectively dissociate 
tissues into single cells (109). The combination of any collage‑
nase and TrypLE may have a greater ability to generate single 
cells from tissues than either enzyme used alone. 

Cell‑Titer Glo reagents manufactured by Promega 
Corporation were used to measure the viability of organoids in 
the method reported by Chen et al (79). To avoid interference 
with the detection of fluorescence, phenol red‑free Dulbecco's 

modified Eagle's medium/Ham's F 12 nutrient medium 
(DMEM/F12) was used. 

Chen et al (79) added glutamine to the culture medium. 
Glutamine serves as a nitrogen source for the biosynthesis 
of a number of important substances, including nucleotides, 
nicotinamide adenine dinucleotide, the protein glycosylation 
precursor glucosamine‑6‑phosphate, and asparagine (110‑112). 
Although mammalian cells have the ability to synthesize 
glutamine de novo, numerous types of cancers cannot grow 
and proliferate in an environment lacking exogenous gluta‑
mine (113). As DMEM/F12 contains glutamine, most methods 
that use DMEM/F12 to culture cells do not involve the addi‑
tion of extra glutamine to the culture medium (52,71,80). 
More importantly, glutamine naturally breaks down to 
form ammonia (114), which is toxic for mammalian cell 
cultures (115). Therefore, excessive glutamine may be disad‑
vantageous for cells. In one study, the authors replaced the 
glutamine in DMEM/F12 with L‑alanyl‑L‑glutamine, known 
as Glutamax, and found it to be a suitable substitute because of 
its improved solubility and stability during cell culture (116). 

CHIR99021 was added to the culture medium in the proce‑
dure described by Shi et al (55); this LCO culture method is 
the only approach discussed in the present review to include 
CHIR99021 in the culture medium. CHIR99021 activates the 
wingless and int‑1 (Wnt) signaling pathway via the inhibition 
of glycogen synthase kinase 3β (117,118). Activation of the 
Wnt signaling pathway maintains the stemness of stem cells 
and organoid formation (119,120). CHIR99021 has been used 
to generate organoids from other types of cancer tissue, such 
as bladder cancer tissue (121). Shi et al (55) reported that 
their method of establishing LCOs has a higher success rate 
(88%) than other methods, which may be due to the addition of 
CHIR99021. However, this hypothesis requires verification by 
additional experiments. 

Gmeiner et al (78) used HyStem‑HP Hydrogel as a 3D 
scaffold for organoid culture. The type of 3D scaffold has 
numerous desirable features, including high transparency and 
cellular affinity, and being easy to standardize. These suggest 
it has application prospects in the field of organoid culture. 

Redin et al (80) added 10% HyClone serum to the LCO 
culture medium. This is the only method covered in the 
present review that involves supplementation of the LCO 
culture medium with serum. Although some studies have 
demonstrated that the proper addition of fetal bovine serum 
(FBS) enhances organoid formation (122‑124), FBS contains 
unknown components that might cause the organoid culture to 
fail (125). Therefore, most methods of organoid culture do not 
include FBS. Nonetheless, the role of FBS in organoid culture 
is worthy of exploration. 

Redin et al (80) added gastrin I to their culture medium. 
Gastrin is an important growth factor for digestive system 
tumors (126), which can prolong the survival time of digestive 
system tumoroids (127‑134), and is often added to the medium 
used to culture them. However, it is not clear whether gastrin 
addition is beneficial to lung tumoroid culture.

PDX‑derived LCOs have certain advantages compared with 
cancer cell line‑based or patient‑derived LCOs: i) The pheno‑
type, genetic profiles and heterogeneity of parental tumors 
are more effectively preserved in PDX‑derived LCOs than in 
lung cancer cell line‑based LCOs; ii) compared with patient 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  28:  383,  2024 9

samples, PDXs are easier to obtain and can undergo long‑term 
expansion by passaging, which ensures the repeatability 
and sustainability of experiments; iii) the establishment of 
PDX‑derived LCOs has lower requirements for ethical approval 
compared with patient‑derived LCOs; and iv) PDX‑derived 
LCOs are easier to develop than patient‑derived LCOs (55). 
However, there is a clear disadvantage of PDX‑derived LCOs, 
in addition to the defects common to all LCOs: PDX‑derived 
LCOs may be contaminated by mouse cells during short‑term 
culture, which is likely to affect the phenotypic identification 
of tumors, genotype analysis or antitumor drug screening. 
These factors may restrict their application.

4. Patient‑derived LCOs

Patient‑derived LCOs are ideal for researching the mechanism 
of initiation, development and drug resistance of lung cancer, 
and for exploring new biomarkers, antitumor drugs and treat‑
ment protocols. The samples used to create patient‑derived 
LCOs mainly originate from cancer tissue, including that 
obtained during surgery or biopsy, or from the exfoliative 
tumor cells present in pleural effusion (PE) (Fig. 1). In the 
current review, 13 methods used to generate LCOs from patient 
samples are presented (Tables Ⅰ, II, SI and SII) (49‑53,55,57,66
,68‑71,76). These involve all six categories of methods used 
to establish organoids. The success rates of organoid and pure 
LCO establishment using these methods are variable (57,60), 
which might influence subsequent mechanistic research and 
drug screening. Therefore, it is necessary to compare and 
analyze the details of the methods investigated in these studies 
to select the ideal method for the culture of LCOs.

The relative optimal culture medium method is the most 
popular, and the most representative method among all those 
reported is that described by Sachs et al (57). Although 
different laboratories generated LCOs via similar methods, 
the success rate of organoid establishment ranged from 
41 to 88%. The success rate range of pure LCO establish‑
ment was also diverse, ranging from 7 to 92.7% (60,63). 
Dijkstra et al (60) reported lower success rates of organoid 
establishment (41%) and LCO establishment (17%) compared 
with other studies (57,63). Patients with stage IV adenocar‑
cinoma accounted for 78% of all patients in the study by 
Dijkstra et al suggesting that the low success rates might 
be due to the degree of tumor malignancy. Kim et al (63) 
used 77 malignant effusion samples, three brain metastasis 
samples, a single bone metastasis sample and two primary 
lung tumor samples from patients with advanced LUAD to 
successfully generate LCOs, and the success rates of organoid 
and pure LCO establishment were 83 and 92.7%, respec‑
tively. According to these results, it can be concluded that 
samples from malignant effusions or metastatic foci easily 
form pure cancer organoids. This may be due to the airway 
organoid (AO) culture medium being more suitable for normal 
airway epithelial cell growth and samples from malignant 
effusions or metastasis foci being less easily contaminated 
by normal epithelial cells than those from primary lung 
tissues. If normal epithelial cells are not removed during the 
pretreatment process, cancer cells are rapidly overtaken by 
normal epithelial cells during organoid culture, leading to 
failure of the cancer organoid culture (135,136). However, 

surgically resected tumor tissues are a prominent source of 
material for LCO culture. To make full use of these tissues, a 
number of researchers have sought to devise improved culture 
methods. Kim et al (71) developed a new method using LCO 
suboptimal medium free of Wnt3a, Noggin and A83‑01 to 
culture lung tumoroids, which improved the growth of cancer 
organoids and inhibited that of normal epithelial organ‑
oids. When surgically resected tumor tissues were used to 
establish organoids, the success rates were 58‑87% (71,73), 
which were comparable with the 41‑88% success rates of the 
method described by Sachs et al (57). Moreover, a success 
rate of pure LCO establishment of 71% was observed (73), 
which is higher than the 17% reported by Dijkstra et al (60). 
Therefore, it is speculated that LCO suboptimal medium 
may be superior to AO medium in cancer organoid culture. 
It is noteworthy that that the pretreatment method used by 
Kim et al (71) differed from that used by Sachs et al (57). 
Sachs et al (57) used only collagenase to digest tissue. By 
contrast, Kim et al (71) used DNase and collagenase/dispase to 
isolate single lung cancer cells. Gohi et al (137) reported that 
digestion using a combination of collagenase and DNase is 
conducive to the maintenance of cell surface antigen integrity 
and cell activity. These findings are meaningful for subse‑
quent cancer organoid culture. Therefore, the pretreatment 
method reported by Kim et al (71) may partially contribute 
to the high success rates of organoid establishment and pure 
LCO establishment that were obtained. The importance of 
pretreatment methods was supported by Hu et al (70), who 
found mechanical processing to be more beneficial for tumor 
organoid formation than enzymatic digestion, with the latter 
being beneficial for normal organoid formation. Moreover, 
their study revealed that a medium without R‑spondin and 
Noggin is conducive to the establishment of pure LCOs. 
Overall, it may be easier to generate higher purity LCOs with 
an acceptable success rate by the use of mechanical digestion 
and the suboptimal culture medium method (Tables Ⅰ; SI).

In addition to the success rates of organoid establishment 
and pure LCO establishment, researchers have evaluated the 
sustainability of LCOs, which includes the expansion and 
efficient reconstitution of cryopreserved LCOs. Short‑term 
organoid culture is sufficient to perform drug screening for 
patients whose cancer tissue has been used to generate LCOs. 
However, the long‑term expansion of tumor organoids and effi‑
cient reconstitution of cryopreserved organoids are necessary 
to provide sufficient tumor organoids for the establishment of 
LCO biobanks for use in long‑term studies, such as those for 
antitumor drug discovery, the elucidation of drug resistance 
mechanisms and improvement of treatment protocols. Four 
methods of LCO long‑term culture are covered in the present 
review (55,57,71,76). In terms of time, different definitions of 
tumoroid long‑term culture have been proposed. However, as 
regards passage number, the definitions of tumoroid long‑term 
culture are similar (>10 passages). The results of the study 
by Yokota et al (65) showed that the AO medium is a more 
robust tumor organoid culture medium than the media used 
by Kim et al (71) and Shi et al (55). While AO medium is 
suitable for the growth of all lung epithelial cells, some LCOs 
with particular mutations may also be long‑term expanded in 
AO medium (65). The study of Yokota et al (65) revealed that 
activation of the Wnt/β‑catenin pathway is a prerequisite for 
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the maintenance of certain LCOs (TPM3‑ROS1; TP53K120Sfs*3) 
in long‑term culture. This was verified by Choi et al (76), who 
found that Wnt3A and R‑spondin1 do not promote SCLC 
tumoroid formation but play important roles in the long‑term 
culture of SCLC tumoroids. Therefore, if the specific muta‑
tions of lung cancer tissues are unknown, AO medium appears 
to be a suitable choice for lung tumoroid long‑term culture. 
Nevertheless, the removal of activators of the Wnt/β‑catenin 
pathway did not influence other lung tumoroids in long‑term 
culture, for example LCOs (BRAFG469A; TP53T155P) (65). 
These results are consistent with those of Kim et al (71), who 
found that most LCOs could be long‑term expanded in LCO 
suboptimal medium. In general, the efficient reconstitution 
of cryopreserved LCOs is essential for the establishment of 
LCO biobanks. The cell viability of LCOs before cryopreser‑
vation and the methods of cryopreservation used determine 
the success or failure of recovery. Although LCO suboptimal 
medium contains fewer reagents than relative optimal culture 
medium, Kim et al (71) reported that tumoroids cultured in 
the former medium had a high recovery success rate (70%) 
after freezing. This indicates that LCO suboptimal medium 
can effectively sustain cell viability and provide high recovery 
success rates. In a study by Shi et al (55), long‑term culture 
was achieved for 15% of NSCLC organoids, and these organ‑
oids had good cell viability, with all of them being recoverable 
after >1 year of cryopreservation and continued passaging. 
Hu et al (70) chose tumoroids with fast growth rates and short 
generation intervals for cryopreservation. Of the five lung 
tumoroids used, four were successfully cryopreserved and 
thawed. These results showed that cell viability is a critical 
factor in the efficient reconstitution of cryopreserved LCOs. 
Therefore, it is necessary to screen for high‑viability LCOs 
before cryopreservation.

Jung et al (72) developed a one‑stop microfluidic device 
for use in tumoroid culture and drug screening. The micro‑
physiological system allows the quantity of lung tumoroids 
and concentration of drugs to be controlled, which facilitates 
the standardization of drug screening. Tamura et al (66) 
reported a suspension culture method which they used to 
generate patient‑derived tumor organoids for the Fukushima 
Translational Research Project (Fukushima‑PDOs). 
However, a long culture time of 3‑6 months was required to 
successfully establish Fukushima‑PDOs, which is unsuit‑
able for the rapid screening of drugs for patients who have 
provided cancer tissues. The Fukushima‑PDOs were found 
to be able to expand long term, which may contribute to the 
establishment of LCO biobanks for use in long‑term studies. 
As uniform cell sizes are important for high‑throughput 
screening, the authors used CellPet FT to mince the tumor‑
oids and obtain organoids of similar sizes. The study by 
Dijkstra et al (58) described how tumor‑reactive T cells 
can be produced through the coculture of peripheral blood 
lymphocytes and tumor organoids. These T cells specifically 
kill tumoroids, and the method enables T‑cell‑based thera‑
pies and interactions between T cells and tumor cells to be 
researched in vitro.

In general, patient‑derived LCOs are improved preclin‑
ical models is comparison with other traditional models 
for the following reasons: i) Patient‑derived LCOs have 
excellent fidelity because they are directly structured with 

patient tumor tissue or PE; ii) patient‑derived LCOs can be 
generated in weeks or even days, and short‑term cultured 
organoids are able to predict the responses of patients 
to antitumor drugs. The integrated superhydrophobic 
microwell array chip (InSMAR‑chip) shortens the time for 
drug screening to 1 week, thereby saving precious time for 
patients requiring treatment (70); and iii) the combination 
of patient‑derived LCOs and microf luidic devices can 
standardize drug screening to help clinicians in the formu‑
lation of appropriate medication plans. Patient‑derived 
LCOs also have certain limitations: i) As samples origi‑
nate from patients with lung cancer, they are of high value 
and if the establishment of patient‑derived LCO fails, it 
is challenging to compensate for the loss; ii) although 
patient‑derived LCOs can be long‑term expanded, immor‑
tality of patient‑derived LCOs in vitro has not yet been 
achieved.

A number of issues remain to be resolved including: i) How 
the optimization of patient‑derived LCO culture methods can 
be achieved to eliminate normal organic contamination and 
maintain long‑term lung tumoroid culture and even achieve 
immortality; ii) how the standardization of patient‑derived 
LCO culture methods can be accomplished; iii) how the 
creation of a co‑culture system of patient‑derived LCOs and 
the microenvironment can be realized; and iv) how the success 
rate of LCO establishment from patient biopsy samples can be 
enhanced.

5. Conclusions

LCOs derived from three major resources greatly promote 
preclinical research, with applications including the explo‑
ration of cancer mechanisms, searching for novel tumor 
biomarkers, screening of antitumor drugs and improving 
treatment plans. The three major types of lung tumoroids, 
which are cancer cell line‑based LCOs, PDX‑derived LCOs 
and patient‑derived LCOs, are complementary, and the results 
of studies on the three major types of lung tumoroids have 
provided a more comprehensive understanding of the patho‑
genesis of lung cancer (48,50,52). Furthermore, there are six 
different categories of methods that can be used to establish 
LCOs. Appropriate models or methods can be selected based 
on the requirements of researchers. However, the present 
review puts forth several suggestions: i) AO medium is a 
more robust tumor organoid culture medium than other media 
used for the long‑term culture of LCOs; ii) the mechanical 
digestion and suboptimal culture medium method is more 
conducive to the establishment of pure LCOs, while the 
mechanical dissociation method is beneficial for the passage 
of organoids; iii) malignant PE samples appear to have a high 
tendency to establish pure LCOs; and iv) the use of CellPet 
FT to process organoids is beneficial for standardization in 
high‑throughput screening. The achievement of standardiza‑
tion is important in lung tumoroid culture. The combination 
of bioengineering technology, including microfluidic devices 
and the InSMAR‑chip, and lung tumoroid culture has accel‑
erated the standardization of lung tumoroid applications to 
some degree. It is hypothesized that with technical progress, 
lung tumoroids will have broader application prospects in the 
future.
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