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SUMMARY

Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progres-
sive dysfunction of neurons and glial cells, leading to their structural and functional degradation in the
central and/or peripheral nervous system. Historically, research on NDs has primarily focused on
the brain, brain stem, or spinal cord associated with disease-related symptoms, often overlooking the
role of the cerebellum. However, an increasing body of clinical and biological evidence suggests a sig-
nificant connection between the cerebellum and NDs. In several NDs, cerebellar pathology and
biochemical changes may start in the early disease stages. This article provides a comprehensive update
on the involvement of the cerebellum in the clinical features and pathogenesis of multiple NDs, suggest-
ing that the cerebellum is involved in the onset and progression of NDs through various mechanisms,
including specific neurodegeneration, neuroinflammation, abnormal mitochondrial function, and altered
metabolism. Additionally, this review highlights the significant therapeutic potential of cerebellum-
related treatments for NDs.

INTRODUCTION

Neurodegenerative diseases (NDs) are characterized by the progressive dysfunction of neuronal structure and function in the nervous sys-

tem, with the highest incidence among the elderly. Patients with NDs exhibit high mortality and morbidity rates, and they are currently

incurable.1

The cerebellum, situated beneath the cerebral hemispheres, consists of two hemispheres and a central vermis. At the cellular level, the

cerebellum is rich in granule cells (GCs), Purkinje cells (PCs), and various types of glial cells. Traditionally, the cerebellum has been considered

a structure controlling movement, such as motion, gait, posture, and balance. However, increasing research in recent years has highlighted

the cerebellum’s significant non-motor functions, including cognitive, behavioral, and emotional processing.2 Cerebellar lobules VI, VII, Crus

I, andCrus II have been shown to be associatedwith cognition and emotion.3,4 The cerebellumand cerebrumare connected via the cerebello-

thalamo-cortical (CTC) circuit, with the functional connectivity (FC) networks of the cerebral cortex mapped to distinct cerebellar regions.5 In

NDs, the misfolding and abnormal aggregation of pathogenic proteins, along with their formation and propagation, inevitably impact the

cerebellum as well.6

In this review, we summarize the relationship between various NDs and the cerebellum, including Alzheimer’s disease (AD), Parkinson’s

disease (PD), amyotrophic lateral sclerosis (ALS), Niemann-Pick C (NPC) disease, Huntington’s disease (HD), and frontotemporal dementia

(FTD), with a focus on the pathological and biochemical changes in the cerebellum associated with these diseases. The cerebellum is impli-

cated in ND (Table 1), so treatments targeting the cerebellum would be valuable in treating these diseases.
CEREBELLUM AND NDs
AD and cerebellum

AD is predominantly recognized for its debilitating impact on memory and cognitive functions.38 While past research has mainly focused on

the cerebrumand the hippocampus, emerging studies reveal the cerebellum’s role in AD. The changes in cerebellar graymatter volume in AD

patients are related to disease progression.7 Our team’s previous research reveals electrophysiological alterations in the cerebellum of AD-

related APP/PS1 mice before any pathological changes.39 In the early stages of AD, the cerebellum may have already been affected by am-

yloid b-protein (Ab) toxicity, subsequently impacting motor functions.40 Changes in cerebellar structure and function may be related to dis-

ease progression and could aid in the early diagnosis of AD.
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Table 1. Clinical evidence linking cerebellum to neurodegenerative diseases

Disease Changes and functions of cerebellum Reference

Alzheimer’s disease Cerebellar atrophy Toniolo et al.7; Chen et al.8

Impairment of cortico-cerebellar functional connections Tang et al.9

Ab and phosphorylated Tau deposits Sepulveda-Falla et al.10

Purkinje cell loss Sepulveda-Falla et al.11

Activation of microglia and astrocytes Singh-Bains et al.12

Parkinson’s disease Cerebellar atrophy Ma et al.13; Kerestes et al.14

Early cerebellar functional connectivity changes,

associated with cognitive impairment

Dan et al.15

Associated with rest tremor and gait disorders Piccinin et al.16; Maiti et al.17

a-synuclein Seidel et al.18

Purkinje cell injury Hartstone et al.19

Dopaminergic transmission markers’

expression levels decrease

Hurley et al.20

Amyotrophic Lateral Sclerosis Cerebellar atrophy Gellersen et al.21

Associated with motor and cognitive impairment Consonni et al.22

Insoluble and ubiquitinated p62 positive aggregates Al-Sarraj et al.23

FUS RNA-binding protein expression Tateishi et al.24

Purkinje cell loss Tan et al.25

Activation of microglia and astrocytes Sala et al.26

Niemann-Pick C disease Cerebellar atrophy Bowman et al.27

Lysosome damage Chung et al.28

Purkinje cell loss Sarna et al.29

Huntington’s disease Cerebellar atrophy Ruocco et al.30

The progression of HD is positively correlated

with the degree of cerebellar atrophy.

Ruocco et al.31

Associated with motor dysfunction and psychiatric symptoms Rees et al.32

Purkinje cell loss Singh-Bains et al.33

A significant loss of the presynaptic marker

synaptic vesicle protein 2A

Delva et al.34

Frontotemporal Dementia Cerebellar atrophy Guo et al.5

The highest DPR load Quaegebeur et al.35

Associated with behavioral and cognitive disorders. Chen et al.36

Associated with disease progression van Blitterswijk et al.37
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Clinical symptoms and cerebellum

Cognitive and psychiatric disorders in AD patients are linked to the cerebellum.41 Cerebellar degeneration correlates with memory impair-

ments in patients with mild cognitive impairment (MCI).42 The cerebellum has a higher predictive value for MCI than changes in the cerebral

cortex.43,44 Significant morphological changes in PCs of the anterior lobe in AD patients may affect cognitive functions.45 Recent research has

found that genes related to intelligence and cognitive functions are expressed in the cerebellum.46,47 The cerebellummay regulate cognitive

functions in the early stages of AD.48

AD patients carrying the APOE4 variant exhibit a local reduction in cerebellar volume and thinner cortex.49 The cerebellummay influence

motor dysfunction symptoms of AD.Most patients with the PS1 E280A variant present symptoms of cerebellar ataxia.10 AD-related TgCRND8

mice exhibit significant deficits in motor coordination and balance.50 Five-month-old APP/PS1mice begin to show rotarod and balance beam

performance impairments.51 Twelve-month-old APP/PS1mice display evidentmotor dysfunctions.52 PS1-FADmice exhibit mild ataxia before

Ab deposition in the cerebellum.11

In asymptomatic preclinical AD andMCI patients, increased cerebellar FCmay represent functional compensation.53 Increased cerebellar

activation in MCI patients may compensate for defects in the brain-cerebellar circuit.54 The cerebellum’s reserve and compensatory mech-

anisms could have neuroprotective value.55 As the disease progresses to later stages, cortico-cerebellar FC is significantly disrupted in AD

patients, accompanied by a marked decline in cognitive function.9,56 The disruption of cerebellar FC may be associated with pathological
2 iScience 27, 111194, November 15, 2024
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changes in AD. Cerebrospinal fluid phosphorylated Tau (p-Tau) and Ab42 disrupt synapses and cortical networks, leading to cognitive impair-

ment.57 Additionally, Ab influences brain-cerebellar FC.58 In AD, the cerebellum is associated with cognitive and motor disorders, and sig-

nificant changes may occur early in the cerebellum. The cerebellum’s compensatory mechanisms could help alleviate clinical symptoms in

the early stages.

Ab and Tau changes in AD cerebellum

AD patients have Ab and p-Tau deposits in the cerebellum.10,11 Ab plaques begin to appear in the cerebellum ten years before the onset of

autosomal dominant AD.59 The cerebellar Ab42 correlates with disease progression in AD patients.60 In APP/PS1mice, soluble Ab42 levels at

two months of age are about half that of the cerebral cortex, and at eight months, soluble Ab42 levels are 40% higher than in the cerebral

cortex.61 Numerous studies demonstrated that APP expression level in the cerebellum of AD mice is 1.1 times that of the cerebral cortex

and 1.6 times that of the hippocampus, withmolecular layer Ab plaques appearing and increasing with age.52,62 In patients with AD, fragmen-

tation of the Golgi apparatus in cerebellar PCs is associated with abnormal protein aggregation and synaptic dysfunction.63 Typical AD path-

ological changes can be found in the cerebellum of patients and animal models, correlating with the disease progression.

Neurodegeneration in AD cerebellum

The cerebellum contains various cell types and exhibits distinct atrophy in AD patients.8 The correlation between Ab42 deposition and PC

damage has been observed in AD patients.60 AD patients have shown a loss of PCs and a significant decrease in dendritic branching den-

sity.11,64 Additionally, AD patients exhibit defects in cerebellar calcium-binding proteins and neurotrophic receptors.65 However, one study

showed that the total volume of the cerebellum decreased by 12.7% in AD without changes in the number of PCs.66 The cause of this phe-

nomenon may be related to patients at different stages of the disease. The proliferation of astrocytes and activation of microglia have been

observed in the cerebellum of AD patients.12 The PC loss in APP/PS1 mice cerebellum occurred as early as five months of age.51 In the AD

cerebellum, loss of PCs and GCs, activation of microglia, and proliferation of astrocytes often occur.

Mitochondrial and oxidative stress in AD cerebellum

Redox imbalance is shown in the cerebellum during the preclinical andMCI stages of AD patients.67 Mitochondrial function in the cerebellum

of AD patients is abnormal.11 Concurrently, an abnormal accumulation of reactive oxygen species (ROS) in the cerebellum of AD patients

impairs cognitive function.67 Our previous research has revealed that mitochondrial dysfunction and oxidative stress canmutually exacerbate

each other in the brains of AD, a process that may also occur in the cerebellum.68 Mitochondrial abnormalities appear in the cerebellum of

18-month-old APP/PS1 mice.52 Genes related to mitochondrial dysfunction significantly change in the cerebellum of 7-week-old 5xFAD

mice.69 Additionally, NADPH oxidase and oxidative stress are activated in the cerebellum of TgCRND8 mice.50 The early AD cerebellum ex-

hibits mitochondrial dysfunction and increased oxidative stress.

Metabolic disturbance and neurotransmitter changes

Brainmetabolic dysregulation is related to AD.Metabolic increase in the cerebellum is observed during the transition fromMCI to AD.70 High

metabolism is found in AD cerebellar regions.71 In the cerebellumof APP/PS1mice, extensivemetabolic changes have been observed,mainly

the dysregulation of energy and amino acid metabolism.72 Furthermore, in the 3xTg-AD mice cerebellum, proteins related to energy meta-

bolism are altered.73 In AD mice, there is dysregulation of cholesterol metabolism in the cerebellum, characterized by elevated levels of the

cholesterol precursor desmosterol and cholesterol metabolites, whichmay be associated with the Seladin-1/Dhcr24 gene.74 Dysregulation of

noradrenergicmodulation in the cerebellumof 2-month-old TgCRND8mice suggests early neurotransmitter changes.50 Cholinergic dysfunc-

tion is one of the hallmark features of AD. The cerebellum may directly impact the cholinergic function of AD patients.75 In APP/PS1 mice,

abnormal expression of Ly6/uPAR proteins in the cerebellum leads to dysfunction of the cholinergic system.76 In AD, the cerebellum exhibits

various metabolic dysregulations and neurotransmitter imbalances.

AD cerebellum displays a number of pathological and biochemical changes (Figure 1). In the early stages, the cerebellum may play a

compensatory role, slowing the progression of clinical symptoms.54,55 The AD cerebellum exhibits typical Ab and Tau pathology, relating

to cognitive and behavioral changes. Changes in mitochondria, oxidative stress, and metabolism in the AD cerebellum are significant and

may occur early in the disease.11,67,70 Furthermore, loss of PCs, reduction in GCs, activation of microglia, and proliferation of astrocytes

are observed in theAD cerebellum. The expression levels of APP in the cerebellumand the cerebrumare comparable during the sameperiod,

but Ab plaques are sparser in the cerebellum.77 Cerebellum’s unique cell types and cytokines may provide the intrinsic mechanisms of de-

layed AD pathological changes. It seems that structural and functional changes occur in the AD cerebellum, and its FC with other brain re-

gions also changes.
PD and cerebellum

PD Patients exhibit clinical symptoms, including bradykinesia, rigidity, tremors, gait disturbances, cognitive impairments, and psychiatric

symptoms. Pathophysiological changes in PD involve abnormalities in multiple brain regions. The cerebellum contains dopamine receptors

and receives dopaminergic projections, with the pathway between the cerebellum and the ventral tegmental area of the midbrain transmit-

ting dopamine to the prefrontal cortex.78 There are anatomical connections between the cerebellum and the basal ganglia.79 In PD,
iScience 27, 111194, November 15, 2024 3



Figure 1. Major pathological and biochemical changes in the cerebellum in NDs

This figure summarizes the reported cerebellum-related pathological and biochemical changes in NDs. Neurodegeneration, metabolic disorders,

neuroinflammation, oxidative stress and abnormal protein aggregation, are related to the occurrence and development of NDs.
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a-synuclein and dopaminergic dysfunction are present in the cerebellum.80 PD patients exhibit notable cerebellar graymatter atrophy, aiding

in disease diagnosis.13 Cerebellar changes in PDpatientsmay relate to clinical symptoms anddisease staging, gradually decreasing in volume

as the disease progresses.14 Different cerebellar subregions in PD patient subtypes exhibit varied change patterns, facilitating subtype dif-

ferentiation.81 Increased activation of the cerebellum in PD patients may reflect a compensatory mechanism.82 In the early stages of PD, the

basal ganglia-cerebellar connection compensates for deficits in the nigrostriatal-basal ganglia-cortical circuit, but the cerebellar circuit func-

tion weakens as the disease progresses to later stages.83 Overall, cerebellar abnormalities may broadly impact the progression of PD.

Psychiatric symptoms and cerebellum

The cerebellum of PD patients affects cognitive function.84 PD patients show early cerebellar FC changes, potentially related to cognitive

deficits.15 In patients with PD, cerebellar vermis FC is related to cognitive function.85 Moreover, cerebellar changes can be used to distinguish

PD patients with or without MCI.86 Increased FC between the caudate and cerebellum helps alleviate cognitive impairments in PD patients.87

The cerebellum may be involved in depression and anxiety. The cerebellum is crucial to the mechanism of depression in PD.88 Changes in

cerebellar FC are significantly related to anxiety in PD patients.89 Depression is inversely associated with right cerebellar IX volume, and anx-

iety is inversely associated with right lobule VIII volume.13 Cerebellar FC aids in diagnosing PD patients with hallucinations.90 Collectively, the

cerebellum is related to the emergence of psychiatric symptoms in PD, including cognition, anxiety, depression, and hallucinations.

Motor impairment and cerebellum

Cerebellar dysfunctionmay be associatedwithmotor dysfunctions, including rest tremors and gait instability. In PDpatients, the cerebellum is

implicated in the mechanism of rest tremors.16 Moreover, cerebellar lobule IV correlates with the severity of tremors in PD patients.91 Dopa-

mine-resistant tremors may be related to the cerebellum.92 Increased FC between the left cerebellar dentate nucleus and other brain areas is

observed in PD patients with motor dysfunctions.93 Increased FC among cerebellar structures in PD may have compensatory effects for

restoring motor functions.94 Cerebellar vermis dysfunction is related to gait disturbances.17 FC in the cerebellar motor areas correlates

with the severity of freezing of gait in PD.95 Clearly, the cerebellum’s involvement is linked to the occurrence and severity of motor dysfunc-

tions in PD.

Neurotransmitter changes in PD cerebellum

The cerebellum contains high levels of dopamine andwidely distributed dopamine receptors.96 Aldose reductase, associated with dopamine

synthesis, shows a significantly reduced level in the PD cerebellum.97 Dopaminergic transmission expression levels are decreased in the PD

cerebellum.20 Early compensatory cholinergic upregulation occurs in the cerebellumof PD patients.98 Additionally, the cerebellar neurotrans-

mitter systems in PD are related to cognitive functions.78 The cerebellar noradrenergic system may relate to cognitive, emotional, essential

tremor, andmotor in PD.99 Gamma-Aminobutyric Acid (GABA) level in the cerebellum are related to cognitive decline in PD patients.100 In PD

rats, an imbalance between excitatory and inhibitory amino acids in the cerebellum is associated with redox imbalance and a significant in-

crease in TNF-a.101 Various neurotransmitter disturbances occur in the PD cerebellum, correlating with clinical symptoms.
4 iScience 27, 111194, November 15, 2024
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Neurodegeneration in PD cerebellum

Intracellular aggregation of a-synuclein is a hallmark pathological change in PD. Patients with a-synucleinopathy exhibit cerebellar connec-

tivity disorders.102 Neurons and oligodendrocytes in the PD cerebellum are affected by a-synuclein.18 A significant loss of PCs is observed in

essential tremor.19 Changes in the cerebellar climbing fiber-PC synaptic connections correlate positively with the severity of essential

tremor.103 GABA neurons and oligodendrocytes in the PDmouse cerebellum are enriched with PD-related genes.104 It looks like various cells

in the PD cerebellum undergo morphological and functional changes.

Metabolic changes and PD cerebellum

The cerebellum exhibits hypermetabolism in PD monkey models.105 Similarly, PD patients with dysphagia also show increased cerebellar

metabolism.106 Cerebellar metabolism increases before the first fall in PD patients.107 Disease progression in PD patients is associated

with increased metabolism of the cerebellum.108 PD patients exhibit changes in oxygen metabolism in the cerebellum.109 During the cogni-

tive impairment stage of PD, regional cerebral glucosemetabolism in the cerebellum increases.110 Cerebellar inosine increases, while tyrosine

and pantothenate decrease in PD dementia patients.111 Metabolic changes in the cerebellum contribute to the early diagnosis and disease

course evaluation of PD.

The cerebellum in PD undergoes significant atrophic changes. The compensatory function of the cerebellum can delay clinical symptoms

in the early stages, but this compensatory ability may be lost in the later stages. Cerebellar abnormalities are related tomotor and psychiatric

symptoms. The PD cerebellum is also affected by a-synuclein. Neurotransmitter changes and metabolic alterations occur in the PD cere-

bellum, correlating with disease progression. In summary, studies on PD patients and animal models indicate that the cerebellum is affected

in PD and has a broad impact on disease progression (Figure 1). Exploring cerebellar changes in PD can deepen our understanding of the

disease and aid in its treatment and symptom improvement.

ALS and cerebellum

The characteristic pathological changes in ALS includeglutamate excitotoxicity, proteinmisfolding and abnormal aggregation, inflammation,

apoptosis, mitochondrial dysfunction, and oxidative stress.112 Over the past decades, pathogenic mutations in several genes, including

C9orf72 on chromosome 9, superoxide dismutase 1 (SOD1), TARDNA-binding protein (TDP-43), FUS RNA-binding protein (FUS), and several

others, have been identified in ALS.113 Autopsy results of patients with FUS mutations show FUS expression and neurodegenerative changes

in the cerebellum.24 SOD1 mutations are the second most common mutation in ALS, with some patients exhibiting cerebellar ataxia symp-

toms.114 GFP-PR28 transgenic mice partially mimic the pathological features of ALS, showing a reduction in PCs and cerebellar

inflammation.115

Cerebellar atrophy and compensation

The cerebellar volume reduction and significant atrophy are observed in ALS patients.21 AGWASmeta-analysis also identifies the cerebellum

as a functionally implicated organ in ALS.116 Symptoms in ALS patients may be related to changes in different cerebellar subregions. The

involvement of various cerebellar areasmay be associatedwithmotor or cognitive impairments in ALS.22 Themotor symptoms in ALS patients

are related to atrophy in the lower lobules.117 The anterior lobules I-V of the cerebellum are implicated in sporadic ALS patients, while the

posterior lobe and vermis are affected in carriers of the C9orf72 mutation.118 The cerebellum may play compensatory roles in ALS patients.

The cerebellum in ALS patients may mitigate clinical symptoms in the early stages, but this compensation may be depleted as the disease

progresses.119 The cerebellum is affected in ALS and the alterations of the cerebellum correlate with the changes of clinical symptoms.

Protein aggregates in ALS cerebellum

The repeated amplification of hexanucleotide in C9orf72 transforms into dipeptide repeat proteins (DPRs), forming insoluble and ubiquiti-

nated p62 positive aggregates that are highly expressed in the cerebellum of ALS patients.23 The cerebellum of C9-ALS may initially be

affected by DPRs.120 The ALS cerebellum expresses p62 positive and ubiquitinated aggregates, but there are no TDP-43 positive inclu-

sions.121 RAN translation produces five types of repeat dipeptide proteins (GP, GA, GR, PR, PA), constituting the main components of

TDP-43-negative and p62-positive inclusions.122 And inclusions of GP and GA are abundant in the cerebellum.123

Neurodegeneration in ALS cerebellum

Significant loss of PCs in the vermis of ALS patients, along with ATXN2 repeat expansions, has been observed.25 Overexpression of SOD1

leads to PC degeneration.124 GFP-PR28 transgenic mice, MATR3 S85C knock-in mice, and Tbk1-NKO mice partially mimic ALS neuropath-

ological features, with significant reductions andmorphological abnormalities in PCs.115,121 ALS patients exhibit increased reactive astrocytes

and activated microglia.26 Moreover, microglia activation in the cerebellum of SOD1 mutation patients has been reported.125 Loss of PCs,

along with increased microglia and astrocytes, occurs in the ALS cerebellum.

Neuroinflammation and oxidative stress in ALS cerebellum

Activation of microglia and neuroinflammation have been detected in the cerebellum of SOD1 mutation patients.125 In ALS Wobbler mice,

abnormal protein aggregation in the cerebellum leads to elevated expression of IL-1b and TNF-a, an increase in microglial and astrocytic
iScience 27, 111194, November 15, 2024 5
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cells, ultimately resulting in motor deficits.126 Moreover, inflammatory changes are also found in the cerebellum of GFP-PR28 mice.115 ALS

patients exhibit oxidative stress significant inflammation and increased oxidative stress in the cerebellum.127

The ALS cerebellum is affected by the typical pathology of ALS, exhibiting structural and functional abnormalities (Figure 1). Changes in

the ALS cerebellum relate to clinical symptoms, and the cerebellum may have compensatory functions, which could be depleted in the later

stages. Inflammation is evident in the ALS cerebellum. The contribution of the cerebellum to ALS requires careful consideration, and further

study of this largely overlooked neuroanatomical area is warranted.
NPC disease and cerebellum

The cerebellum is severely affected in the early stages of NPC disease.128 Loss of cerebellar volume is related to the severity of clinical symp-

toms in NPC patients.27 In Npc1 mice, increased oxidative stress in the cerebellum causes lysosomal membrane damage and alterations in

permeability, leading to leakage of lysosomal contents and ultimately resulting in cerebellar degeneration.28 In Npc1 mice, defects in Sonic

hedgehog signaling in the cerebellum lead to proliferative deficits in GCs and abnormalities in cerebellar morphology.129

Neurodegeneration in NPC cerebellum

PC deaths occur in the cerebellum of NPC patients, increasing in number as the disease progresses.29 PCs are particularly sensitive to

NPC1 deficiency and undergo degeneration early in the disease, while early activation of microglia may precede PC degeneration.130

In the cerebellum of Npc1 mice, the activation and interactions of microglial cells promote the degeneration of PCs.131 The death of cere-

bellar PCs is associated with increased levels of caspase 1, caspase 3, NPC2, LipA, apoE, apoD, GFAP, and TNF-a.132 Microglial activation

precedes neuronal dysfunction in presymptomatic 3-week-old Npc1 mice.133 There is a significant early increase in astrocytes in the cer-

ebellum of Npc1 mice.134 Additionally, proliferative defects in cerebellar GCs and impaired differentiation of cerebellar glomeruli are re-

ported in Npc1 mice.129 In the cerebellum of Npc1 mice, elevated levels of cathepsins, cytochrome c, and Bax2 play a role in neuronal

degeneration.135

Lipid metabolism disorders and NPC cerebellum

NPC1 disease is characterized by neuronal lipid storage in the cerebellum. Elevated levels of the gangliosides GM2 andGM3 in the cerebellar

posterior lobules of NPC1 disease are associated with lipid alterations and cell death.136 In Npc1 mice, a significant increase in GM2 in deep

cerebellar nuclei (DCN) neurons and the absence of the lipid raft marker Flot2 expression lead to cellular dysfunction.137 In the cerebellum of

Npc1 mice, cholesterol imbalance affects the endocannabinoid (eCB) system, and defects in eCB signaling can promote disease progres-

sion.138 Obviously, significant lipid metabolism disorders occur in the cerebellum in NPC disease.

Inflammation and oxidative stress in NPC cerebellum

Microglia and astrocytes are activated in the cerebellum in NPC disease. Abnormal interferon expression is detected in the cerebellum of

presymptomatic Npc1 mice.139 Presymptomatic Npc2 mice cerebellum also exhibited neuroinflammation.140 Presymptomatic Npc1 mice

showed abnormal oxidative stress in the cerebellum.139 In Npc1 mice, oxidative stress in the cerebellum is a major stimulus activating

apoptosis.141 ROS in the cerebellum of Npc1 mice damage the lysosomal membrane, ultimately leading to apoptosis.28 Oxidative stress

and inflammation in the cerebellum of NPC disease can aggravate disease progression.

The primary symptom of NPC disease is progressive cerebellar ataxia. Loss of PCs and GCs and early activation of microglia occur in the

NPC cerebellum. NPC cerebellum exhibits lipid metabolism disorders, oxidative stress, and neuroinflammation (Figure 1).
HD and cerebellum

Mutant huntingtin protein is significantly overexpressed in the HD cerebellum.142 A study suggests that the pathological process of HD may

be characterized by multifocal onset, with cerebellar damage potentially being an early event.143 Both gray and white matter volumes are

reduced in the cerebellum of HD patients, showing significant atrophy.30 Cerebellar involvement is an early event in HD.144 Furthermore,

the progression of HD is positively correlated with the degree of cerebellar atrophy.31 HD patients exhibit widespread motor and cognitive

impairments. Cerebellar changes are associatedwithmotor dysfunction andpsychiatric symptoms.32Moreover, the posterior superior lobe of

the cerebellum in HD is related to emotional symptoms.145 HD patients exhibit cerebellar atrophy, and cerebellar changes correlate with clin-

ical symptoms.

Cellular and synaptic changes in HD cerebellum

In the HD cerebellum, continuous loss of PCs and neurons is observed.146 A significant loss of PCs in HD patients with motor symptoms is

noted, whereas this change is not observed in patients primarily exhibiting emotional changes.33 Cerebellar PC dysfunction and death in

HD mice are associated with ataxia symptoms.147 Furthermore, expression of cyclin D1 in the granular layer of HD mice cerebellum is

increased, along with upregulation of cell cycle regulatory factors Cbx2, Cbx4, and Cbx8.148 A significant loss of the presynaptic marker

synaptic vesicle protein 2A is observed in HD patients’ cerebellum.34 There are significant cellular and synaptic alterations in the HD

cerebellum.
6 iScience 27, 111194, November 15, 2024
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Metabolic changes in HD cerebellum

Hypermetabolism in the cerebellum of HD patients may compensate for motor disorders.149 In the cerebellum of HD mice, about 11% of

metabolites show significant changes.150 Significant differences in metabolites, mainly affecting amino acid metabolism, are observed in

the cerebellum of the HD transgenic sheep model (OVT73).151 Dysregulation of the urea cycle in the cerebellum of the HD OVT73 sheep

model and HD patients results in elevated urea and ammonia levels, causing neurological damage.152 The demand for fatty acids is reduced

in the cerebellum of HD model mice.153 The cerebellum of HD mice exhibits changes in substance metabolism, including amino acids, fatty

acids, and urea.

Cerebellar atrophy inHDoccurs early in the disease and is related to disease progression and clinical symptoms.Multiple pathological and

biochemical changes are also present in the cerebellum of HD (Figure 1). Extensive metabolic and cellular changes are also evident in the HD

cerebellum. It seems that the HD cerebellum undergoes multifaceted changes.

FTD and cerebellum

FTD exists in familial and sporadic forms, with C9orf72 mutation being the most common cause. Loss of C9orf72 expression, formation of

DPRs, and RNA foci all contribute to FTD. The cerebellum in C9orf72 shows the highest DPR load.35 The size of hexanucleotide repeat ex-

pansions in the cerebellum of C9orf72-repeat-associated FTD (C9-FTD) correlates with disease duration and severity.37 Presymptomatic C9-

FTD patients also display evident gray matter atrophy in the cerebellum.154 FTD features focal cerebellar atrophy strongly connected intrin-

sically to atrophy regions within the cerebral cortex.5 Different subtypes of FTD involve specific cerebellar lobule alterations rather than global

cerebellar atrophy.155

In FTD, cerebellar changes are related to behavioral disruptions and cognitive impairments.36 Cerebellar integrity in C9-FTD patients is

associated with attention, language, and executive functions.156 Abnormalities in cerebello-cortical circuits in C9-FTD play a crucial role in

cognitive and behavioral changes.157 The psychiatric symptoms in C9-FTD patients are associated with cerebellar atrophy.158 The degree

of psychiatric disorders in C9-FTD correlates with cerebellar degeneration.159 Cortico-cerebellar networks are related to cognitive and psy-

chiatric dysfunctions in behavioral variant FTD (bvFTD).160 In bvFTD, cerebellar output pathways are related to episodic memory, while input

pathways are associated with memory, visuospatial skills, and emotion.161 Psychiatric symptoms in carriers of C9orf72 and GRNmutations are

related to cerebellar atrophy.162 FTD cerebellum exhibits significant atrophy related to clinical manifestations and disease progression.

CEREBELLUM IS THE TARGET FOR ND TREATMENT

The cerebellum is interconnected with the cortex, frontal lobes, temporal lobes, and parietal cortex regions through multiple closed-loop

circuits, participating in the regulation of movement, cognition, and emotion. Transcranial Magnetic Stimulation (TMS) and Transcranial

Direct Current Stimulation (tDCS) both contribute to alleviating symptoms of cerebral dysregulation.163 There are two main hypotheses

regarding the effects of TMS on the cerebellum. First, TMS ameliorates abnormal activation in the cerebellar cortex, alters the activity of

PCs, and diminishes their inhibitory impact on the CTC pathway. Second, TMS can enhance cerebellar plasticity, increase long-term poten-

tiation effects in the cerebellar cortex, and promote FC between brain regions.164 Cerebellum-related therapeutic approaches can facilitate

the treatment of NDs and improve clinical symptoms (Figure 2).

AD treatment

Cholinergic dysfunction is a hallmark of AD. The cholinergic system in the cerebellum plays a vital role in the normal functioning of the cer-

ebellum.165 Cerebellar magnetic stimulation may effectively modulate central cholinergic activity in AD patients by activating the CTC

pathway.75 A study showed that 5 Hz repetitive TMS of the cerebellum is a promising treatment method for AD patients.166 Currently, there

is limited research on cerebellum-related treatments for AD patients. Cerebellar therapeutic approaches exhibit significant potential in treat-

ing AD, which could help in delaying cognitive and motor dysfunctions in AD patients.

PD treatment

Neurostimulation therapies hold potential value for improving gait dysfunction in patients with PD. Transcranial Electrical Stimulation on the

cerebellum can improve gait disturbances in PD patients.167 Transcranial Alternating Current Stimulation of the cerebellum can reduce

resting tremors in PD patients.168 The tDCS of the cerebellum is a potential intervention for enhancing motor learning in PD.169 Cerebellar

tDCS treatment in PD patients significantly improves gait speed.170 A single higher-intensity cerebellar tDCS treatment in PD patients can

significantly improve balance disorders, but not enhance motor abilities, suggesting that multiple treatments may be necessary to improve

motor dysfunction.171 Five consecutive days of cerebellar tDCS application can improve Levodopa-inducedmotor disorders in PDpatients.172

In conclusion, the long-term application of cerebellar tDCS therapy can enhance motor function in PD. Furthermore, cerebellar Theta-Burst

Stimulation can improve Levodopa-induced Dyskinesias in PD patients, accompanied by a reduction in serum BDNF levels.173 Cerebellar

rTMS treatment has improved tremors in PD patients, with no serious adverse events reported.164

Exercise in PD patients can enhance cerebellar activation, thereby improving motor symptoms.174 Skilled aerobic exercise can increase

cerebellar regional cerebral blood flow, thereby improving motor dysfunction.175 Magnetic and electrical stimulation of the cerebellum in

PD can serve as reliable treatment methods to slow disease progression and improve patient symptoms. Physical training can also play a

therapeutic role in PD through improvements to the cerebellum.
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Figure 2. Potential cerebellum-related therapeutic modalities in NDs

Pharmacological treatment, stem cell transplantation, physical therapy, and gene therapy provide effective treatments for cerebellum-related NDs and help

improve clinical symptoms.
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ALS treatment

Injecting IGF-1 into the DCNof ALSmice reduces ALS neuropathology, and significantly extends the lifespan of ALSmice.176 Sodium selenite

mitigates motor deficits in ALS by inducing mitochondrial autophagy in the cerebellum.177 Cerebellum-related therapeutic approaches may

hold significant potential value for ALS. Cerebellar magnetic and electrical stimulation could be valuable in improving ALS symptoms. How-

ever, current studies on cerebellum-related treatments are limited, and future research should be expanded into cerebellar involvement

in ALS.
NPC treatment

Cerebellar transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) alleviates inflammatory responses in the cerebellum

of NPCmice.178 Injection of BM-MSCs into the cerebellumof ASM-KOmice significantly slows down the loss of PCs.179 Additionally, BM-MSC

transplantation into the cerebellum of NPC mice upregulates neurotransmitter receptors, potentially aiding in synapse formation.180 Human

umbilical cord blood-derivedmesenchymal stem cells can inhibit inflammation and apoptotic signaling in the cerebellum, reducing the loss of

PCs.181 Transplantation of adipose tissue-derived stem cells into the cerebellum of NPCmice alleviates inflammatory responses, rescues PCs,

and promotes synapse formation, thereby restoring motor coordination.182

It is reported Miglustat, the only drug used to treat NPC disease,183 shows neuroprotective effects on the cerebellum.27 Intraperitoneal

treatment with GSH ethyl ester improves oxidative stress and mitochondrial function in the cerebellum of Npc1 mice, thereby restoring

PC activity and alleviatingmotor dysfunction.184 The cerebellum is a primary affected area in NPC, warranting further therapeutic approaches

targeting on cerebellum.
CONCLUSIONS

NDs pose a significant threat to human health, causing considerable social and economic burdens, and currently remain incurable. In the

context of NDs, apart from the primary lesion site, the cerebellum often receives insufficient attention. It is believed that the cerebellum

plays a critical role in NDs. First, the cerebellum is affected in NDs and is not an unaffected region. Cerebellar atrophy occurs in these

diseases and correlates with disease severity. In some conditions, cerebellar atrophy is evident early on, aiding in early diagnosis. Different

subtypes of NDs may exhibit distinct cerebellar changes, facilitating differential diagnosis. The involvement of specific cerebellar regions

may lead to particular symptoms. Second, the cerebellum may serve a reserve and compensatory role. It might compensate for clinical

symptoms of NDs, slowing disease progression. However, this compensatory ability may be lost in the later stages. Lastly, the cerebellum

in NDs undergoes various pathological and biochemical changes, primarily on cerebellar neuron degeneration, neuroinflammation, mito-

chondrial dysfunction, metabolic disorders, and neurotransmitter changes. These pathological and biochemical changes contribute to the

onset and progression of NDs. We have also summarized therapeutic approaches related to the cerebellum in NDs. Cerebellar magnetic

and electrical stimulation, physical therapy, stem cell therapy, and pharmacological treatments may contribute to the management of

these diseases. In summary, the cerebellum holds significant value for the early diagnosis, treatment, and prevention of disease progres-

sion in NDs.
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FUTURE DIRECTIONS

In previous research related to NDs, the cerebellum has largely been overlooked. The functional contributions and molecular mechanisms of

the cerebellum in NDs remain largely unknown. The neural circuits and functions associated with the cerebellum are still unclear. Further

research is needed to understand the pathological changes in the cerebellum during NDs, explore the specific mechanisms of interaction

between the cerebellum and other regions of the nervous system, and determine the extent to which cerebellar changes affect clinical pre-

sentations. The specificity of cerebellar cells and structures may have unique roles. For example, the cerebellum shows a later appearance of

Ab compared to the cerebral cortex, which may relate to endogenous and exogenous factors. Endogenous factors might include differences

in cerebellar cell types, structures, and gene expression, while exogenous factors could involve lymphatic and vascular structures. Further

research is required to elucidate the role of cerebellar tissue and structure in the onset and progression of NDs. There is less research on

cerebellum-related treatments for AD, ALS, and HD, although several studies have been reported on PD and NPC diseases. Magnetic

and electrical stimulation of the cerebellum and stem cell therapy hold great potential for NDs. It is necessary to investigate the value of cer-

ebellum-related therapeutic approaches for NDs further. Cerebellum-related therapeutic approaches may offer a promising and safe option

for treating these diseases.

ACKNOWLEDGMENTS

This work was supported by funding from the National Natural Science Foundation of China (32220103006 and 82271524), the Science and Technology project of
Sichuan Province (2022ZDZX0023), the Key Research and Development Program of Sichuan (2021YFS0382), and the Intramural Research Programs of National
Institute on Aging, NIH (ZIA AG000944, AG000928).

AUTHOR CONTRIBUTIONS

G.L. conceived the review and drafted themanuscript. C.Y., X.W., X.C., andH.C. helped revise this manuscript; W.L. designed this review concept and helped edit
and revise the manuscript. All the authors read and approved the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES

1. Erkkinen, M.G., Kim, M.O., and Geschwind,

M.D. (2018). Clinical Neurology and
Epidemiology of the Major
Neurodegenerative Diseases. Cold Spring
Harb. Perspect. Biol. 10, a033118. https://
doi.org/10.1101/cshperspect.a033118.

2. Rudolph, S., Badura, A., Lutzu, S., Pathak,
S.S., Thieme, A., Verpeut, J.L., Wagner,
M.J., Yang, Y.M., and Fioravante, D. (2023).
Cognitive-Affective Functions of the
Cerebellum. J. Neurosci. 43, 7554–7564.
https://doi.org/10.1523/jneurosci.1451-
23.2023.

3. Argyropoulos, G.P.D., van Dun, K.,
Adamaszek, M., Leggio, M., Manto, M.,
Masciullo, M., Molinari, M., Stoodley, C.J.,
Van Overwalle, F., Ivry, R.B., and
Schmahmann, J.D. (2020). The Cerebellar
Cognitive Affective/Schmahmann
Syndrome: a Task Force Paper. Cerebellum
19, 102–125. https://doi.org/10.1007/
s12311-019-01068-8.

4. O’Reilly, J.X., Beckmann, C.F., Tomassini, V.,
Ramnani, N., and Johansen-Berg, H. (2010).
Distinct and overlapping functional zones in
the cerebellum defined by resting state
functional connectivity. Cereb. Cortex 20,
953–965. https://doi.org/10.1093/cercor/
bhp157.

5. Guo, C.C., Tan, R., Hodges, J.R., Hu, X.,
Sami, S., and Hornberger, M. (2016).
Network-selective vulnerability of the
human cerebellum to Alzheimer’s disease
and frontotemporal dementia. Brain 139,
1527–1538. https://doi.org/10.1093/brain/
aww003.

6. Jucker, M., and Walker, L.C. (2013). Self-
propagation of pathogenic protein
aggregates in neurodegenerative diseases.
Nature 501, 45–51. https://doi.org/10.1038/
nature12481.

7. Toniolo, S., Serra, L., Olivito, G., Marra, C.,
Bozzali, M., and Cercignani, M. (2018).
Patterns of Cerebellar Gray Matter Atrophy
Across Alzheimer’s Disease Progression.
Front. Cell. Neurosci. 12, 430. https://doi.
org/10.3389/fncel.2018.00430.

8. Chen, Y., Spina, S., Callahan, P., Grinberg,
L.T., Seeley,W.W., Rosen, H.J., Kramer, J.H.,
Miller, B.L., and Rankin, K.P. (2024).
Pathology-specific patterns of cerebellar
atrophy in neurodegenerative disorders.
Alzheimers Dement. 20, 1771–1783. https://
doi.org/10.1002/alz.13551.

9. Tang, F., Zhu, D., Ma,W., Yao, Q., Li, Q., and
Shi, J. (2021). Differences Changes in
Cerebellar Functional Connectivity Between
Mild Cognitive Impairment and Alzheimer’s
Disease: A Seed-Based Approach. Front.
Neurol. 12, 645171. https://doi.org/10.
3389/fneur.2021.645171.

10. Sepulveda-Falla, D., Matschke, J.,
Bernreuther, C., Hagel, C., Puig, B., Villegas,
A., Garcia, G., Zea, J., Gomez-Mancilla, B.,
Ferrer, I., et al. (2011). Deposition of
hyperphosphorylated tau in cerebellum of
PS1 E280A Alzheimer’s disease. Brain
Pathol. 21, 452–463. https://doi.org/10.
1111/j.1750-3639.2010.00469.x.

11. Sepulveda-Falla, D., Barrera-Ocampo, A.,
Hagel, C., Korwitz, A., Vinueza-Veloz, M.F.,
Zhou, K., Schonewille, M., Zhou, H.,
Velazquez-Perez, L., Rodriguez-Labrada, R.,
et al. (2014). Familial Alzheimer’s disease-
associated presenilin-1 alters cerebellar
activity and calcium homeostasis. J. Clin.
Invest. 124, 1552–1567. https://doi.org/10.
1172/jci66407.
12. Singh-Bains, M.K., Linke, V., Austria, M.D.,
Tan, A.Y., Scotter, E.L., Mehrabi, N.F., Faull,
R.L., and Dragunow, M. (2019). Altered
microglia and neurovasculature in the
Alzheimer’s disease cerebellum. Neurobiol.
Dis. 132, 104589. https://doi.org/10.1016/j.
nbd.2019.104589.

13. Ma, X., Su, W., Li, S., Li, C., Wang, R., Chen,
M., and Chen, H. (2018). Cerebellar atrophy
in different subtypes of Parkinson’s disease.
J. Neurol. Sci. 392, 105–112. https://doi.org/
10.1016/j.jns.2018.06.027.

14. Kerestes, R., Laansma, M.A., Owens-
Walton, C., Perry, A., van Heese, E.M., Al-
Bachari, S., Anderson, T.J., Assogna, F.,
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Carmona, M., Torrejón-Escribano, B.,
Scherini, E., and Ferrer, I. (2012). Cerebellar
amyloid-b plaques: disturbed cortical
circuitry in AbPP/PS1 transgenic mice as a
model of familial Alzheimer’s disease. J
Alzheimers Dis 31, 285–300. https://doi.org/
10.3233/jad-2012-112198.

53. Skouras, S., Falcon, C., Tucholka, A., Rami,
L., Sanchez-Valle, R., Lladó, A., Gispert, J.D.,
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