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Abstract

Objective: This study aimed to describe the spatial and temporal trends of Shigella incidence rates in Jiangsu Province,
People’s Republic of China. It also intended to explore complex risk modes facilitating Shigella transmission.

Methods: County-level incidence rates were obtained for analysis using geographic information system (GIS) tools. Trend
surface and incidence maps were established to describe geographic distributions. Spatio-temporal cluster analysis and
autocorrelation analysis were used for detecting clusters. Based on the number of monthly Shigella cases, an autoregressive
integrated moving average (ARIMA) model successfully established a time series model. A spatial correlation analysis and a
case-control study were conducted to identify risk factors contributing to Shigella transmissions.

Results: The far southwestern and northwestern areas of Jiangsu were the most infected. A cluster was detected in
southwestern Jiangsu (LLR = 11674.74, P,0.001). The time series model was established as ARIMA (1, 12, 0), which predicted
well for cases from August to December, 2011. Highways and water sources potentially caused spatial variation in Shigella
development in Jiangsu. The case-control study confirmed not washing hands before dinner (OR = 3.64) and not having
access to a safe water source (OR = 2.04) as the main causes of Shigella in Jiangsu Province.

Conclusion: Improvement of sanitation and hygiene should be strengthened in economically developed counties, while
access to a safe water supply in impoverished areas should be increased at the same time.
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Introduction

Shigella is a significant global public health concern, especially in

developing countries like the People’s Republic of China. Shigella

deaths have been steadily decreasing over time, but this has come

about through markedly reduced fatality rates rather than lower

incidence [1]. Currently, a considerable burden of Shigella still

exists among the younger generations in China [2]. A recent study

showed that in Jiangsu Province, China, children under five years

old and adults over 60 years old accounted for the greatest

proportion of Shigella infections [3]. Furthermore, caring for sick

children and the elderly can result in the loss of work-days among

family members, potentially leading to socioeconomic problems.

Due to vaccine innovations that have not yet proven effective, a

successful prophylaxis against Shigella is currently unavailable [4].

The alarming speed of antibiotic resistance is also complicating

treatment with traditional and inexpensive medications [5]. In

considering the health consequences of the prevalence of Shigella,

the inefficacious vaccine and the inadequate therapy options,

public awareness of Shigella (based on a convincing estimation of

Shigella disease burden and risk factors) is crucial in controlling

transmission.

Spatial and temporal trends are classic methods of estimating

disease burden. Statistical models are irreplaceable in forecasting

short-term trends and have previously been performed successfully

on Shigella cases in China [6]. Compared with traditional models

such as linear regression or correlation coefficients, autoregressive

integrated moving average (ARIMA) models take changing trends,

periodic changes and random disturbances in time series into

consideration. Earnest et al found that an ARIMA model was

easier to fit in terms of the parameters and ran more quickly in

forecasting notifiable infectious diseases through time-series

models [7]. ARIMA models can eliminate seasonal patterns and
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are widely applied in predictions for epidemics like hemorrhagic

fever with renal syndrome (HFRS), influenza, malaria, etc [8,9].

At the same time, disease maps produced by geographic

information system (GIS) tools can display patchy maps of

epidemics [10]. The development of spatial models, which

describe spatial autocorrelation as well as geographical trends of

epidemics, has also become increasingly popular [11,12]. Spatial

and temporal models alone, however, are insufficient for exploring

transmission modes. Risk factors can also be used to determine

how interventional work should be conducted. Enteric diseases

such as Shigella appear as complex epidemics related to changes in

biology, socioeconomic status, culture/behavior and environment

over space and time [13]. As a result, Shigella transmission modes

that combine climatic, socioeconomic and human behavioral

factors remain worthy of study. In recent years, the issue of

climatic impact on health has drawn increasing public attention;

Zhang et. al. recently announced that under the current trends of

climate change, Years Lost due to Disabilities (YLDs) caused by

bacillary Shigella would double by 2020 in some parts of China

[14]. The climate both directly and indirectly determines the

features that lead to transmission by influencing the speed of

pathogen variation, the accumulation of susceptible hosts, and

other environmental indices. A GIS application can illustrate

climatic impact on epidemics through spatial correlation. In

addition, a case-control study can help serve to explain the

socioeconomic statuses or behaviors associated with Shigella

transmission. Identification of the geographical risk factors and

case-control studies are hoped to concomitantly provide informa-

tion on the complex transmission modes of Shigella.

This is the first research study targeted at the spatial and

temporal characteristics of Shigella in Jiangsu Province over the last

decade (2001 to 2011). The authors aimed to illustrate the spatial

variation and temporal trends of Shigella through use of GIS and

the ARIMA model. Furthermore, the use of GIS coupled with a

case-control study design facilitated risk factors analysis. The

results and conclusions of this study aim to explore appropriate

models for Shigella surveillance, identify hotspots and risk factors

for infection, and provided evidence-based policy advice for

interventions.

Materials and Methods

Study Area
Jiangsu Province is located in southeast China between

longitudes 116u219–121u549E and latitudes 30u469–35u089N.

Affected by the East Asian monsoon climate, the province has

an annual mean temperature between 13.6 and 16.1 degrees

Celsius and an annual mean precipitation ranging from 704 to

1250 mm. Jiangsu Province is customarily separated into three

geographic regions by the 13 cities of Jiangsu: south (Suzhou,

Wuxi, Changzhou and Zhenjiang), middle (Nanjing, Yangzhou,

Taizhou and Nantong) and north (Xuzhou, Lianyungang, Suqian,

Huai’an and Yancheng). Areas belonging to the same region share

similar geographic parameters and economic statuses. These three

geographic regions are also collectively composed of 103 counties.

In this study, the county is defined as the primary sampling unit.

Data Resources
In China, a reporting system was established based on the Law

on Prevention and Control of Infectious Disease that includes all

health-care facilities at village, town, county and city levels [15]. In

this study, county-level incidence rates and monthly cases of

Shigella from 2000 to 2011 were obtained from the reporting

system by the Jiangsu Province Center for Disease Control and

Prevention (CDC). Climatic and environmental data were

collected from the Jiangsu Province Meteorological Bureau and

consisted of the annual mean temperature, moisture content,

distribution of rivers and lakes, distribution of railways and

highways, and Normalized Difference Vegetation Index (NDVI) of

Jiangsu Province.

Data Analysis
Spatial variation analysis. Spatial analysis was aimed at

detecting geographic variation through use of Geographic

Information System (GIS, ArcGIS software, version 9.3 ESRI,

Redlands, CA, USA) and SaTscan software (version 9.1.1, Boston,

MA, USA).

With the help of GIS, a trend surface analysis was applied to

detect scattered observations and geographical anomalies [16].

Estimation of incidence rates of unknown nodes was based on the

Ordinary Least Square (OLS) method. This ensured minimized

squared deviations by all incidence rates (the dependent variable

was denoted as Z). Independent variables were longitudes (denoted

as X) and latitudes (denoted as Y).

A spatio-temporal cluster analysis (conducted through SaTScan

software) and autocorrelation analysis (conducted through GIS)

were both applied to detect clusters of Shigella within Jiangsu

Province. The spatio-temporal statistical method used cylindrical

moving windows to scan inside Jiangsu Province in order to detect

clustering areas and years. The base diameter and height of the

moving window represented the underlying clustering areas and

years, respectively. A Log Likelihood Ratio (LLR) method

inspected the results by comparing real incidence rates with

expected ones [17]. The area confirmed as statistically significant

in a Monte Carlo test was defined as the most likely cluster.

At the same time, a local autocorrelation analysis was carried

out to identify spatial autocorrelations inside the province. Under

autocorrelation theory, the closer two locations approach each

other, the more likely they are to impact each other’s incidence

rates [18]. In this study, the Local Moran’s Index (LMi) and the

Local Getis-Ord G index (LGi) were both applied. The Local

Moran’s Index helped to classify the autocorrelations into positive

and negative ones. If incidence rates had similar high values or low

values, they were defined as having positive autocorrelation

(represented as High-High or Low-Low autocorrelation). If the

attributes held opposing high and low values, they were considered

to have negative autocorrelation (represent as High-Low or Low-

High autocorrelation). The local Getis-Ord G index, moreover,

denoted hotspots among positively autocorrelated areas (P,0.05).

If the G index identified a county as statistically significant, that

county might have higher risks of Shigella infection than any other

county that was positively autocorrelated.

Time-series analysis. Autoregressive integrated moving

average (ARIMA) models are known to have better veracity and

practicability in describing and forecasting epidemic prevalence

[19]. Peng et al previously applied an ARIMA model successfully

in confirming Shigella transmission with seasonal patterns in China

[20]. An ARIMA model is defined as ARIMA (p, d, q), which is

decided by components p, the order of autoregression; d, the

degree of difference; and q, the order of moving average. Because

the monthly data on Shigella infections showed seasonal fluctua-

tions, a 12-step finite difference method was initially applied to

smooth the temporal sequence. These parameters (p, d, q) were

decided by an autocorrelation function (ACF) and a partial

autocorrelation function (PACF) [21]. The Ljung-Box test was

used to verify the goodness-of-fit of the models and compare them

with the Akaike information criterion (AIC) to determine the final

Trends and Risk Factors on Shigella

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e83487



time series model [22,23]. It measured the ACF of the residuals at

the significance level of P = 0.05.

Geographic factors detection. The goal for this analysis

was to describe Shigella development under the influence from each

risk factor. In this study, data on the annual mean temperature,

moisture content, railway or highway distributions, river or lake

distributions and NDVI were obtained from the database of the

Jiangsu Province Weather Bureau. Each of the risk factors was

overlaid with Shigella incidence rates on incidence maps through

GIS application. ANOVA analysis was conducted to confirm the

correlation with each risk factor. The coefficient of determination

(R2) was used to measure the goodness-of-fit by each risk factor.

Furthermore, the risk factors were applied using stepwise

regression to establish a multivariate regression model on

incidence rates. Risk factors were not included unless P#0.05 in

the results of the model. After eliminating collinearity from the

factors, the best-fitted model was established as the one with the

highest R2 of all models.

Case-control study. The researchers also conducted a

matched case-control study to investigate associated health or

lifestyle behaviors among those exposed to the infection. The case-

control study was performed in 29 clinics representing every city of

Jiangsu. Cases were diagnosed according to the diagnostic criteria

under the Law on Prevention and Control of Infectious Disease of

China (patients diagnosed with a microscopic stool examination).

Controls were healthy or non-enteric infected patients who were

closest in age to the cases (6three years) and lived in the same

household with them. In cases for which no control was available

in the same household, a person in the neighborhood who met the

criteria of a control (closest in age and healthy or non-enteric

infected) was selected instead. The study ensured that cases had

the same geographical distribution as controls. Each case and

control pairing was compared for sex and age. In total, 1200 cases

and 1270 controls were included, including 1296 males (53.5%)

and 1174 females (47.5%). Statistics ensured no significant

difference between cases and controls in sex, age or education.

Data were collected through pre-coded questionnaires. Ques-

tions addressed the socioeconomic status of the family, household

environment and health-related behaviors. Socioeconomic status

of the family was determined by ‘‘number of family members’’ and

‘‘family income’’. Household environment was determined by

‘‘household sanitation’’, ‘‘drinking water hygiene’’, ‘‘presence of a

separate kitchen or toilet from the rest of the house’’, and

‘‘frequency of garbage collection’’. Health-related behaviors were

composed of ‘‘frequency of dining out’’ and ‘‘habit of washing

hands before dinner or after defecation’’.

The case-control study was approved by the ethical committee

and IRB (Institutional Review Board) of Nanjing Medical

University. x2 analysis was carried out by SAS 9.0 software on

the case-control study. The Odds Ratio (OR) of each risk factor

estimated the power of association between the risk factor and

Shigella infection. Point estimation provided a 95% confidence

interval (CI), which was considered statistically significant at

P = 0.05 if 1 was not included.

Results

Spatial variation analysis
Incidence maps shown in Figure 1 were made through a GIS

application of the Inverse Distance Weighted (IDW) method for

interpolation (Figure 1). A deeper color in the maps represented

higher incidence rates. Compared with the northern part of

Jiangsu, the incidence rates of the southern region have remained

at a relatively high level since 2001. The southern region’s

incidence rate continually increased after that point. Areas with

high levels of incidence rates increased (the dark areas expanded)

in the southern region. In 2004 and 2005, Shigella infection in the

south became the most serious. After 2007, the counties with high

incidence rates in the southern part gradually shrank to comprise

only the southwestern region. According to these maps, the

western counties were the most infected areas over the most years

within the southern region. Despite this, the incidence rates of the

far southeastern region were even higher in 2005. The middle and

northern areas of Jiangsu each had relatively low incidence rate

levels each year. However, the far northeastern and northwestern

counties shared similar incidence rate levels with the most infected

southwestern counties in every year except 2005. Comparing the

accumulated incidence rates over the 11 years of the study (2001 to

2011) in each county, Xuzhou (in the northwest), Nanjing (in the

southwest), Wuxi and Suzhou (in the southeast) had the greatest

accumulated incidence rates among all counties, with Nanjing

having the highest of the four (346.04 infections per 100,000

residents in 11 years).

Trend surface analysis. The geographic incidence trends of

Shigella around Jiangsu Province fluctuated from 2004 to 2006,

consistent with the incidence maps (Table 1). The authors chose

two locations expressing trends in four directions (Figure 2): the

west to east direction (x axis), the south to north direction (y axis)

(Figure 2a), the southwest to northeast direction, and the southeast

to northwest direction (Figure 2b).

Incidence rates increased from west to east in years before 2004,

but this trend was less visible after 2004. In 2002, 2003, 2007,

2008 and 2010, Shigella incidence rates decreased from the south to

the north, but formed a U-shaped trend in another four years

(2001, 2004, 2006 and 2011); that is, they decreased from the

south to the middle and increased from the middle to the north.

Incidence rates decreased when the direction moved from the

southwest to the northeast before 2007. For trends in the

southeast-northwest direction, in five years (2002, 2003, 2008,

2009 and 2010) the incidence rates rose from northwest to

southeast, but in another five (2001, 2004, 2006, 2007 and 2011)

they manifested a U-shaped trend. In 2005, trends of all directions

were more distinctive than in any other year: they formed an

inverted U shape, indicating that southern and northern incidence

rates were even lower than those in the middle region.

Spatio-temporal cluster analysis and local

autocorrelation analysis. Spatio-temporal cluster analysis

was applied to observe the incidence rates of Shigella from 2001

to 2011 in Jiangsu Province. Incidence rates were aggregated

through space and time. A most likely cluster was observed in the

southwestern region of the province from 2001 to 2004. This

cluster was made up of 30 counties in the southwestern region,

including Liyang county, Lishui County, Gaochun County, Jintan

County, Yixing County, Jurong County, Danyang County,

Changzhou County, Zhenjiang County, Yangzhong County,

Wuxi County, Nanjing County, Jiangyin County, Suzhou County,

Jingjiang County, Taixing County, Yizheng County, Yanzhou

County, Taizhou County, Wujiang County, Jiangdu County,

Zhangjiagang County, Changshu County, Jiangyan County,

Rugao County, Nantong County, Kunshan County, Gaoyou

County, Hai’an County and Taicang County. The cluster window

was centered at 31.4205 N, 119.3564 E, in a county named

Liyang. The base diameter of the window was 169.96 km, with a

Relative Risk (RR) of 2.61. The Log Likelihood Ratio for the

analysis was 1674.74, P,0.001.

Results of the local autocorrelation analysis are shown in Table 2

(Table 2). In 2001, the only detected hotspot was in Suzhou

County, but it disappeared in 2002. In 2003, two negatively

Trends and Risk Factors on Shigella

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e83487



autocorrelated counties were detected, between which Xuzhou

had the higher incidence rate and was surrounded by low incident

counties. In 2005, hotspots lying at the southeast region were

replaced by hotspots in the southwestern region. In this year, most

of the total hotspots were located in the southwestern counties. In

2007, the southeastern hotspots Wuxi and Suzhou were again

detected as hotspots, along with other southwestern hotspots.

Among all 15 hotspots during the 11 years, Wuxi county and

Suzhou County remained hotspots the greatest number of times

(six times each). Danyang County, Zhenjiang County and Jurong

County were detected as hotspots five, four and two times,

respectively. Each of the other 10 counties appeared only once.

Time series analysis
Generally speaking, the number of Shigella cases decreased over

the years studied. An obvious periodicity by season was observed.

The epidemic incidence rates peaked every summer and autumn

of the years studied (July to August). Incidence rates decreased

from 2001 (25.80 cases per 100,000 residents) to 2003 (19.07 cases

per 100,000 residents) and peaked in 2004 (30.60 cases per

100,000 residents). A notable decrease occurred in 2005. In 2006,

however, incidence rates rose to a level equal to those in 2001,

then kept decreasing after 2006. In 2010, the incidence rate

reached its lowest point: 11.46 cases per 100,000 residents. In

2011, the incidence rate was 12.23 cases per 100,000 residents, less

than half of what it was in 2001.

Figure 1. Incidence maps of Shigella in Jiangsu Province from 2001 to 2011.
doi:10.1371/journal.pone.0083487.g001

Figure 2. Trend surface graphs of Shigella incidence rates in 2001.
doi:10.1371/journal.pone.0083487.g002
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Analysis was performed by SAS with significance level P = 0.05,

based on the monthly data of Jiangsu Province from January 2001

to July 2011. After the 12-step difference operation, the trend

sequence was flat. Results of the autocorrelation function (ACF)

and partial autocorrelation function (PACF) suggest that it was

proper to establish an AR(1) model with no constant included

(Figure 3). The AIC turned out to be 1787.77. The autocorrelation

check for the residuals ensured P.0.05 for each lag, which

indicated the model fitted well for the data (Table 3). The final

model was established as ARIMA (1, 12, 0).

Based on the ARIMA model, the study attempted to predict

cases from August to December, 2011 (Table 4). When compared

with the observed data, the predicted data agreed very closely with

the observed data (Figure 4). Predicted monthly numbers of cases

from August to December 2011 were 1172.97, 1039.40, 717.16,

382.24 and 292.06, respectively.

Risk factor detection
Geographic factors detection. Layout charts of the univar-

iate analysis were displayed (Figure 5a–5g). The climatic factors

considered were annual mean temperature and moisture content.

Distances to railways, highways, lakes, and rivers, as well as NDVI,

comprised the environmental factors. A redder color indicates a

lower mean temperature (Figure 5a). The moisture content was

between 2.10 to 2.99 g/cm2 (Figure 5b). Incidence rates tended to

rise in exponential trends with both annual mean temperatures

and moisture content. However, the trends were not obvious with

R2 equal to 0.16, P = 0.001 (annual mean temperature) and R2

equal to 0.14, P = 0.002 (moisture content), respectively.

Buffer zones were established for each railway, highway, river or

lake to estimate distances from them (Figure 5c–5f). Incidence

rates increased with decreasing distances to railways (R2 = 0.99,

F = 576.61, P,0.001), rivers (R2 = 0.98, F = 143.68, P,0.001) and

lakes (R2 = 0.99, F = 11411.51, P,0.001) and they peaked at an

average of 3 km from the rivers. However, they also peaked at an

average 15 km from the highways (R2 = 0.99, F = 2582.18,

P,0.001). No convincing evidence of an association between the

NDVI and the incidence rate was observed, with R2 = 0.08,

P = 0.128 in spring, R2 = 0.04, P = 0.118 in summer, R2 = 0.05,

P = 0.367 in autumn and R2 = 0.17, P,0.001 in winter (Figure 5g).

Based on the above results, risk factors of distances from

railways, highways, rivers and lakes were chosen for stepwise

regression. However, railway distance was excluded because

P = 0.26 in the first step of regression. A collinearity diagnosis

ensured no collinearity existed. The final model was comprised of

all three factors, with the highest coefficient of determination R2

being 0.53, R = 0.73. It was established as:

y~{2:74E{005x3
1{0:021x2

1z0:0763x1{3:52E{006x3
2

z6:73E{006x2
2z0:00209x2{0:00133x2

3

z0:005312x3{3:3467

where y represents the Shigella incidence rate, and x1, x2 and x3

stand for distances to the river, the lake and the highway,

respectively. ANOVA analysis confirmed F = 140.56, P,0.001.

Case-control study. Results of the univariate analysis in the

case-control study are listed (table 5). According to the results,

controls tended to have a higher family income (x2 = 35.71,

P,,0.011) and fewer family members (x2 = 33.77, P,,0.011)

than cases. Also, controls were more likely to have good household

hygiene (x2 = 59.12, P,,0.011), use a separate kitchen

(x2 = 25.47, P,,0.011) and toilet (x2 = 65.52, P,,0.011) from

the rest of the house, and have access to safe drinking water

(x2 = 74.54, P,,0.011). Health-related behaviors such as washing

hands before dinner (x2 = 240.62, P,,0.011) and after defecation

(x2 = 131.41, P,,0.011), and the frequency of treating household

garbage (x2 = 14.44, P,,0.011) also differed between cases and

controls.

Univariate analysis illustrated that socioeconomic status (num-

ber of family members and family income) was negatively

associated with Shigella infection. In the study, 379 cases and 502

controls reported having fewer than four members in their

households (OR, 1.75 [CI, 1.44–2.13]). A total of 434 cases and 327

controls reported having more than six family members (OR, 1.51

[CI, 1.24–1.84]). With regard to family income, 454 cases and 371

controls belonged to the lowest group level of ‘less than 2000

Yuan/Month’ (OR, 1.21 [CI, 1.01–1.47]). Household environment

also turned out to impact Shigella infection. This was observed in

people not having a separate kitchen or toilet from the rest of the

house, with OR’s being 1.50 and 1.93, respectively. ‘‘Poor

household hygiene’’ or ‘‘lack of a safe drinking water supply’’

were additional risk factors for Shigella infection (in Table 5).

Washing hands before dinner was strongly associated with Shigella

infection, with OR = 3.64, CI [3.08–4.03]. Furthermore, the

authors also detected that disposing of household garbage every

Table 1. Trends for Shigella incidence rates.

Year West-East South-North Southwest-Northeast Southeast-Northwest

2001 Increase U shape Decrease U shape

2002 Increase Decrease Decrease Decrease

2003 Increase Decrease Decrease Decrease

2004 No trend U shape Decrease U shape

2005 Inverted U shape Inverted U shape Inverted U shape Inverted U shape

2006 No trend U shape Decrease U shape

2007 No trend Decrease Inverted U shape U shape

2008 No trend Decrease Inverted U shape Decrease

2009 No trend No trend Inverted U shape Decrease

2010 No trend Decrease Inverted U shape Decrease

2011 No trend U shape Inverted U shape U shape

doi:10.1371/journal.pone.0083487.t001

Trends and Risk Factors on Shigella
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day or every other day potentially protected against the chance of

Shigella infection (OR, 0.73 [CI, 0.63–0.86]).

Discussion

The primary aim of this research was to illustrate spatial and

temporal trends of Shigella in Jiangsu Province. Incidence maps

indicated the far western areas of the southern and northern

regions were most vulnerable to Shigella infections. Although

infections in the southern region continually accounted for the

greatest proportion, the high incident area of the northern region

expanded its range in the latter years of the decade (after 2004).

The total incidence rate was observed decreasing in Jiangsu

Province, which was confirmed by the time-series analysis, but this

decrease in total incidence rates may obscure the fact that some

parts of the northern region may have had increases in Shigella

incidence rates. Trend surface analysis confirmed the conclusions

of the incidence maps. In contrast with the continuously

decreasing trend in the south-to-north direction, the trend curves

changed to a U shape in some years (2001, 2004, 2006 and 2011).

This indicated that northern incidence rates might have

approached parity with those of the southern region.

Suzhou and Wuxi were the two most prominent counties for

Shigella transmissions in the southeastern region; they were

identified as hotspots the greatest number of times among all

counties (in 2001, 2007, 2008, 2009, 2010, 2011). However, a

cluster was also detected at the southwestern part of Jiangsu from

2001 to 2004. The hotspots detected in the autocorrelation

Table 2. Local autocorrelation analysis for Shigella in Jiangsu Province.

Year County LGi Z Score LGi P Value LMi Index LMi Z Score LMi P Value Correlation Type

2001 Suzhou County 2.80 0.01 ,0.01 3.91 ,0.01 HIGH-HIGH

2003 Tongshan County 1.39 0.16 ,0.01 22.62 0.01 LOW-HIGH

2003 Xuzhou County 0.74 0.46 ,0.01 23.12 ,0.01 HIGH-LOW

2004 Suzhou County 2.45 0.01 ,0.01 2.67 0.01 HIGH-HIGH

2004 Wuxi County 2.21 0.03 ,0.01 2.76 0.01 HIGH-HIGH

2005 Siyang County 2.21 0.03 ,0.01 2.19 0.03 HIGH-HIGH

2005 Danyang County 3.24 ,0.01 ,0.01 3.49 ,0.01 HIGH-HIGH

2005 Zhenjiang County 4.86 ,0.01 ,0.01 4.25 ,0.01 HIGH-HIGH

2005 Yangzhou County 4.50 ,0.01 ,0.01 2.66 0.01 HIGH-HIGH

2005 Taizhou County 4.20 ,0.01 ,0.01 6.33 ,0.01 HIGH-HIGH

2005 Jiangyan County 3.71 ,0.01 ,0.01 4.68 ,0.01 HIGH-HIGH

2005 Taixing County 3.63 ,0.01 ,0.01 3.44 ,0.01 HIGH-HIGH

2005 Yizheng County 2.11 0.04 ,0.01 2.18 0.03 HIGH-HIGH

2005 Jiangdu County 4.47 ,0.01 ,0.01 3.78 ,0.01 HIGH-HIGH

2005 Jingjiang County 2.39 0.02 ,0.01 2.30 0.02 HIGH-HIGH

2005 Yangzhong County 4.93 ,0.01 ,0.01 16.03 ,0.01 HIGH-HIGH

2006 Danyang County 2.83 ,0.01 ,0.01 2.73 0.01 HIGH-HIGH

2006 Zhenjiang County 2.64 0.01 ,0.01 3.98 ,0.01 HIGH-HIGH

2006 Jurong County 3.25 ,0.01 ,0.01 4.38 ,0.01 HIGH-HIGH

2007 Wuxi County 1.98 0.05 ,0.01 2.18 0.03 HIGH-HIGH

2007 Danyang County 2.50 0.01 ,0.01 3.24 ,0.01 HIGH-HIGH

2007 Zhenjiang County 1.83 0.07 ,0.01 2.34 0.02 HIGH-HIGH

2008 Suzhou County 2.54 0.01 ,0.01 3.17 ,0.01 HIGH-HIGH

2008 Wuxi County 2.84 ,0.01 ,0.01 4.32 ,0.01 HIGH-HIGH

2008 Danyang County 2.35 0.02 ,0.01 2.59 0.01 HIGH-HIGH

2008 Jurong County 3.05 ,0.01 ,0.01 2.77 0.01 HIGH-HIGH

2009 Suzhou County 2.29 0.02 ,0.01 2.50 0.01 HIGH-HIGH

2009 Wuxi County 2.97 ,0.01 ,0.01 4.93 ,0.01 HIGH-HIGH

2009 Changzhou County 2.38 0.02 ,0.01 2.18 0.03 HIGH-HIGH

2009 Danyang County 2.74 0.01 ,0.01 3.22 ,0.01 HIGH-HIGH

2009 Zhenjiang County 2.28 0.02 ,0.01 2.64 0.01 HIGH-HIGH

2010 Suzhou County 2.16 0.03 ,0.01 2.27 0.02 HIGH-HIGH

2010 Wuxi County 2.63 0.01 ,0.01 3.71 ,0.01 HIGH-HIGH

2011 Suzhou County 2.06 0.04 ,0.01 1.98 0.05 HIGH-HIGH

2011 Wuxi County 2.81 ,0.01 ,0.01 4.26 ,0.01 HIGH-HIGH

2011 Nanjing County 2.14 0.03 ,0.01 2.29 0.02 HIGH-HIGH

doi:10.1371/journal.pone.0083487.t002
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Figure 3. Results of ACF and PACF for time series analysis.
doi:10.1371/journal.pone.0083487.g003

Table 3. Autocorrelation check of residuals in time series analysis.

To lag x2 DF p Autocorrelations

6 2.65 5 0.75 0.05 20.02 0.07 20.08 20.07 20.04

12 15.11 11 0.18 20.03 0.15 20.14 0.08 20.04 20.19

18 18.23 17 0.37 0.09 20.03 20.03 0.06 20.07 0.05

24 21.71 28 0.54 20.03 20.08 0.02 0.02 0.12 20.03

doi:10.1371/journal.pone.0083487.t003
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analysis indicated that hotspots were aggregated in the southwest-

ern region after 2005. This indicates that the southwestern region

may be becoming a new target for Shigella. Notable fluctuations

also appeared from the years 2004 to 2006. The ARIMA model

confirmed these fluctuations and successfully established a

predictive model concerning the time series. Researchers have

previously found that the ARIMA model was very effective and

reliable in providing decision makers with clear indications of

variability among future observations [24]. Establishment of the

ARIMA model could help to forecast Shigella developments, as well

as warn epidemiological monitors of potential abnormalities in the

future.

Spatial and temporal trends functioned as a first step to

determine pathways for epidemic development and discover

potential target areas. Another important aim of this study was

to identify potential risk factors. Many researchers have confirmed

that geographical factors such as ambient temperatures and

relative humidity are driving Shigella transmissions [25,26].

However, these conclusions were mostly based on temporal

analyses using monthly data. In this article, geographical risk

factors were obtained to explore the geographical reasons causing

spatial variability among counties. According to the results,

temperature and moisture content were not the primary reasons

for spatial variations in incidence rates in Jiangsu Province; the

distances to railways, highways, rivers and lakes contributed

substantially more. Transportation may have led to more frequent

interactions among cities or provinces, which concurrently

increased the chances of Shigella transmission. Since railways and

highways are the two main methods of long distance travel in

Jiangsu, this indicates that sanitation policies around railways or

highways should be well enforced.

The stepwise regression model helped to correlate results with

environmental conditions. Study results confirmed that distances

to highways, rivers and lakes facilitated Shigella transmission, and

also indicated the importance of reducing Shigella infections

transmitted through water systems. Since water sources were the

leading reason for spatial variation, improving the imbalanced

quality of water supplies in the northern and southern regions

should be the next target for Shigella prevention. The case-control

study confirmed a safe water supply as an important protective

factor against Shigella transmission. Inadequate water and sanita-

tion not only increased the chances of diarrheal infection, but were

also associated with poorer child health status in the long term

[27]. In the less developed northwestern areas of Jiangsu Province,

the sanitation and hygiene issues drew the authors’ greatest

concern. The penetration of access to a safe water supply was

much lower here than in the southern and middle regions; in 2009,

Zhu et. al. announced that in Xuzhou and Lianyungang (two cities

of northern Jiangsu), the penetration levels of access to a safe water

supply were only 37.3% and 63.2%, respectively (compared to

over 92% in other regions) [28]. Furthermore, the rates of

treatment of domestic garbage in the northern region were only

Figure 4. Prediction for Shigella cases from August to December in 2011.
doi:10.1371/journal.pone.0083487.g004

Table 4. Forecasts for variable cases of 2011.

Observations Forecast Standard Error 95% Confidence Limits

August 1172.97 275.24 633.51 1712.43

September 1039.40 346.61 360.16 1718.84

October 717.16 382.28 232.10 1466.41

November 382.24 401.71 2404.99 1169.68

December 292.06 412.66 2516.75 1100.86

doi:10.1371/journal.pone.0083487.t004
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about one-sixth those in the southern region. Lack of sanitation

protection in the northern counties may have increased the

transmission of enteric diseases like Shigella. Garbage disposal and

hand washing have previously been identified as two protective

behavioral factors preventing Shigella transmission; Rego et. al.

declared that children exposed to garbage in their environment

were nearly four times more likely to contract diarrhea [29]. Given

the presence of organic waste in family garbage, the surrounding

Figure 5. Layout charts concerning risk factors and incidence rates.
doi:10.1371/journal.pone.0083487.g005

Table 5. Univariate case-control analysis between Shigella infection and risk factors.

Variable Groups Cases N Controls N x2 P OR 95%CI

Family members More than six 434 327 33.77 ,,0.011 1

Between four and six 387 441 1.51 1.24 1.84

Less than four 379 502 1.75 1.44 2.13

Family income per capita ,2000 Yuan/Month 454 371 35.71 ,,0.011 1

2000,4000 Yuan/Month 425 421 1.21 1.01 1.47

.4000Yuan/Month 321 478 1.82 1.49 2.22

Household sanitation Not good 671 531 59.12 ,,0.011 1

Good 529 739 1.76 1.51 2.07

Safety of drinking water supply Not Good 803 632 74.54 ,,0.011 1

Good 397 638 2.04 1.73 2.40

Separate kitchen No 669 579 25.47 ,,0.011 1

Yes 531 691 1.50 1.28 1.76

Separate toilet No 718 553 65.52 ,,0.011 1

Yes 482 717 1.93 1.64 2.26

Disposing of household garbage Daily/every other day 563 693 14.44 ,,0.011 1

More 637 577 0.73 0.63 0.86

Washing hands after defecation No 677 991 131.41 ,,0.011 1

Yes 523 279 0.36 0.30 0.42

Washing hands before dinner No 799 449 240.62 ,,0.011 1

Yes 401 821 3.64 3.08 4.30

doi:10.1371/journal.pone.0083487.t005
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environment is prone to attracting disease vectors. This increases

the chance of young children being exposed to pathogens through

playing with garbage, which presents a challenge to maintaining

good family hygiene.

In the case-control study, a higher family income and fewer

family members both indicated better socioeconomic status. This

group also had a lower incidence rate. In 2008 Ferrer et al.

confirmed economic factors as one of the factors influencing

enteric burden [30]. Low family income may have predisposed

families to a lower nutritional status and a lower awareness of

hygiene, thus leading to a higher probability of disease. Also, a

crowded environment, in which household hygiene is always hard

to enforce, would facilitate person-to-person transmission. How-

ever, when compared with the conclusions from the case-control

study, socioeconomic factors worked differently on Shigella

transmissions when pointing to regional variations. The highly

developed southern region of Jiangsu apparently had more

infections than the middle and northern regions. The southern

region of Jiangsu, including Suzhou and Wuxi, currently attracts

large amounts of migrants due to its prosperous economic

development. Living in a transitory environment and having a

precarious lifestyle, the migrant population might not have

prioritized food safety and sanitation issues, which made enteric

infection the largest threat to their health status. At the same time,

the rapid economic development brought a large expansion in

business activity and increased the frequency of dining outside of

the home. It also increased the possibility of exposure to Shigella

dysenteriae from polluted food and drinking water. These

phenomena brought on by economic development may have led

to the high incidence level of the southern areas.

As is well-known, macroscopic descriptions or analyses can

easily lead to ecological fallacy problems. Discussions about

geographic risk factors in this study were carried out province-wide

and conclusions were made based on county-level groups of

infections. However, individuals might behave differently than the

groups did. As mentioned above, economic problems affect

individuals and groups in different ways. In order to avoid a

possible ecological fallacy, the case-control study, with its more

microscopic focus on individuals, provided supplementary expla-

nations for geographical risk factors, especially regarding access to

a safe water supply and other socioeconomic factors. Both the

macroscopic and microscopic discussions were combined in this

research to analyze geographical risk factors and behavior-related

risk factors. In this way, the authors hope that conclusions based

on the results might be more scientifically robust than a simple

one-way analysis.

Based on these results, future interventions should focus on

different points addressing the transmission patterns and under-

lying risk factors of different regions. Improvements in sanitation

and hygiene should be strengthened at the county level, while

access to safe water supplies in impoverished areas should be

increased at the same time. Furthermore, strengthening public

education towards prevention of Shigella should be incorporated

with interventional policies to eliminate or reduce Shigella infection,

such as advocating washing hands correctly and regularly, or using

hygiene facilities in the household. Srtina et al. concluded that

hygienic behaviors were associated with a family’s individual

predisposition rather than the neighborhood’s [31]. In this way,

emphasizing efforts at the domestic level to the application of

hygiene facilities is of great importance.

Although this study was aimed at detecting spatial variations

and causal risk factors, as well as establishing an ARIMA model

for surveillance, the limitations of this research must also be

acknowledged. Among all 11 years, the incidence rate was found

to increase from 2001 to 2004 but hotspots continued to exist even

after 2005, and some of them appeared only once. There is a

possibility that some hotspots might have been detected by chance,

in which case more surveillance work should be carried out around

the province to monitor these hotspots or potential risk clusters.

GIS is powerful in predicting and visualizing models combining

risk factors, and is gradually being applied more and more to

explore epidemic risk factors in recent years [32,33]. However, in

spite of the statistic estimations, visualized incidence maps may

easily lead to specious conclusions. In addition, limited data

resources make it hard to widely explore environmental risk

factors. Therefore the results in this study should be supported by

continuous health surveillance programs to see how they function

under real-world conditions.
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