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Autophagy degrades phagocytosed damaged organelles, misfolded proteins,

and various pathogens through lysosomes as an essential way to

maintain cellular homeostasis. Autophagy is a tightly regulated cellular

self-degradation process that plays a crucial role in maintaining normal

cellular function and homeostasis in the body. The NLRP3 inflammasome

in neuroinflammation is a vital recognition receptor in innate cellular

immunity, sensing external invading pathogens and endogenous stimuli

and further triggering inflammatory responses. The NLRP3 inflammasome

forms an inflammatory complex by recognizing DAMPS or PAMPS, and its

activation triggers caspase-1-mediated cleavage of pro-IL-1β and pro-IL-

18 to promote the inflammatory response. In recent years, it has been

reported that there is a complex interaction between autophagy and

neuroinflammation. Strengthening autophagy can regulate the expression of

NLRP3 inflammasome to reduce neuroinflammation in neurodegenerative

disease and protect neurons. However, the related mechanism is not entirely

clear. The formation of protein aggregates is one of the standard features

of Neurodegenerative diseases. A large number of toxic protein aggregates

can induce inflammation. In theory, activation of the autophagy pathway can

remove the potential toxicity of protein aggregates and delay the progression

of the disease. This article aims to review recent research on the interaction

of autophagy, NLRP3 inflammasome, and protein aggregates in Alzheimer’s

disease (AD) and Parkinson’s disease (PD), analyze the mechanism and provide

theoretical references for further research in the future.
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Introduction

Autophagy is a standard and tightly regulated cellular
self-degradation process responsible for engulfing damaged
organelles, misfolded proteins, and invading pathogens in a
bilayer membrane called the autophagosome and guiding them
for lysosomal degradation (Mizushima et al., 2008; Glick et al.,
2010). Under normal conditions, excess proteins can be recycled
through the autophagy-lysosomal system in the body to prevent
excessive accumulation or secretion of proteins, so autophagy
plays a crucial role in the metabolism and energy balance in the
body (Kim and Lee, 2014; Parzych and Klionsky, 2014). Unlike
other cells, neurons are non-regenerating and irreplaceable
and must regulate autophagy to maintain cell survival (Muller
et al., 2017; Stavoe and Holzbaur, 2019). Therefore, normal
autophagy is of great significance for maintaining the survival
of nervous system cells. In addition, abnormal autophagy is
involved in the occurrence and progression of other diseases,
such as cancer, cardiovascular disease, obesity, non-alcoholic
fatty liver disease, and infection (Martinez-Lopez and Singh,
2015; Abdellatif et al., 2018; Namkoong et al., 2018; Li et al.,
2020; Zhu and Liu, 2022). The inflammasome is a multi-protein
signaling complex typically produced in response to stimulatory
conditions by microorganisms or pathogens (Medzhitov, 2008).
The NLRP3 receptor belongs to a protein family of nucleotide-
binding oligomerization domain-like receptors, also known
as NOD-like receptors (NLRs), which are extensively studied
in the inflammasome (Swanson et al., 2019). The NLRP3
inflammasome is generally composed of three parts: the
NLRP3 sensor protein [a pattern recognition receptor (PRR)
that acts as a sensor molecule], the adaptor protein ASC
(an apoptosis-related SPECK-like protein containing caspase
activation and recruitment domains), and pro-caspase 1
(function as an effector molecule) (Jo et al., 2016; Kelley
et al., 2019). Immunoreceptors of the inflammasome respond to
pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs) in a pattern recognition
receptor (PRR)-dependent manner and subsequently mediate
the activation of the inflammatory mediator caspase-1 and
Induce inflammatory response, regulate the maturation and
secretion of IL-1β and IL-18, and then trigger a series of
inflammatory responses (Yu et al., 2014; Wang and Hauenstein,
2020). The formation of abnormal protein aggregates in neurons
has been a research hotspot in neurodegenerative diseases,
such as Lewy body-containing alpha-synuclein in PD, amyloid
beta (Aβ) plaques in AD, and mutant huntingtin cytoplasmic
inclusions in Huntington’s disease (HD), etc (Wisniewski and
Konietzko, 2008; Arrasate and Finkbeiner, 2012; Rocha et al.,
2018). Recent evidence suggests that microglial autophagy in
the central nervous system plays an essential role in clearing
abnormal protein aggregates and delaying disease progression
(Su et al., 2016; Kim et al., 2017). At the same time,
some studies have found that the overexpression of NLRP3

inflammasome is detected in the brains of patients with major
degenerative neurological diseases, which is closely related to
the occurrence and development of neurological diseases (Song
et al., 2017; Milner et al., 2021). Although there is an interaction
between autophagy and the NLRP3 inflammasome in microglia,
and this interaction plays a vital role in many diseases,
including neurodegeneration, the mechanism remains to be
elucidated. This article reviews the interaction between NLRP3
inflammasome and autophagy and its mechanism of action in
AD and PD to provide ideas for future related research. The
current reports on the interactions between misfolded proteins,
inflammatory activation signals, and autophagosome/lysosome
in neurodegenerative diseases are shown in Table 1.

Overview of autophagy

Autophagy is a complex and highly conserved intracellular
self-degradation process that transports aggregated or misfolded
proteins, toxic cellular components, and damaged organelles
to lysosomes for degradation (Glick et al., 2010; Hansen
et al., 2018). As the most crucial natural self-protection
mechanism, autophagy exists in almost all cells, tissues, and
organs, and it mainly maintains the body’s homeostasis,
nutrient metabolism, and energy balance (Mizushima, 2007;
Klionsky et al., 2021). Autophagy is usually divided into
different types according to the selection of different substrates
and the way of transporting cargo to lysosomes, which
can be divided into macroautophagy, microautophagy, and
molecular chaperone-mediated autophagy (CMA) (Levine
and Kroemer, 2008; He and Klionsky, 2009). Macroautophagy
is the most common type of autophagy. It is a dynamic
process characterized by sequestering cytoplasmic contents
in a bilayer membrane structure, forming an intermediate
structure called an autophagosomes or autophagic vacuoles,
and then Fusion with lysosomes for degradation (Griffey and
Yamamoto, 2022). Microautophagy encapsulates the contents
through an invagination in the lysosomal membrane to form
an internal vesicle for subsequent degradation (Schuck, 2020).
The difference between microautophagy and macroautophagy
is that the former degrades cytoplasmic contents through
small invaginations on the lysosomal membrane without
autophagosomes (Galluzzi et al., 2017). Chaperone-mediated
autophagy (CMA), Unlike macroscopic and microscopic
autophagy, chaperone-mediated autophagy (CMA) does not
involve vesicle formation. CMA is a highly selective catabolic
process by mediating proteins containing a specific target motif
of CMA (KFERQ), dissociated by cytoplasmic chaperones,
and composed of lysosome-associated transmembrane protein
(LAMP2A) (Kaushik and Cuervo, 2018). In addition to
autophagy, the ubiquitin-proteasome system (UPS) is also
involved in the degradation and clearance of abnormal protein
aggregates in neurodegenerative diseases (Behl et al., 2022).
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TABLE 1 Misfolded proteins, neuroinflammation, and autophagosome/lysosome interactions in neurodegenerative diseases.

Investigators Diseases Misfolded proteins Inflammatory signals Autophagosome/Lysosome

Ahmed et al., 2017 AD Aβ, p-tau GMF-NLRP3-Caspase-1 SQSTM1/p62

Chen et al., 2021 PD α-syn p38-TFEB-NLRP3 LAMP2A

Halle et al., 2008 AD Aβ Cathepsin B-IL-1β LAMP1

Panicker et al., 2022 PD a-syn ZNF746/Paris-MitoROS Proteasomal

Puntambekar et al., 2022 AD Tau CX3CR1-TGFβ Phagocytic compartments

Ramirez-Jarquin et al., 2022 HD mHTT SUMO1-DARPP-32 p62, LC3B-II

Stancu et al., 2019 AD Tau Cathepsin-NLRP3–ASC LAMP1

Zhou et al., 2021 AD Aβ25–35 NLRP3-TNF-a TFEB

Zhang et al., 2021 PD a-sy mGluR5-NF-κB LAMP1

Xu et al., 2021 AD tau Lipid droplets-NLRP3-ROS ATG7

AD, Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington’s disease; Aβ, amyloid beta; a-syn, alpha-synuclein; NLRP3, NOD-like receptor family pyrin domain containing 3;
GMF, glia maturation factor; SUMO1, small ubiquitin-like modifier-1; TFEB, transcription factor EB; LAMP1, lysosomal-associated membrane protein 1; TNF-α, tumor necrosis factor-α;
mGluR5, metabotropic glutamate receptor 5; ROS, reactive oxygen species.

UPS-dependent degradation may be limited to soluble
misfolded proteins or small oligomers, which are allowed to
enter the P20S catalytic compartment after unfolding (Scotter
et al., 2014). There is a coordinated interaction between
autophagy and the UPS during protein degradation in vivo,
mainly because when the UPS is d amaged, autophagy activation
may rescue cell survival through alpha-synuclein clearance
(Xilouri et al., 2013; Yuan et al., 2022). The classification of
autophagy is shown in Figure 1.

Regulation mechanism of autophagy in
diseases

Autophagy is a crucial biological function for maintaining
cellular homeostasis and metabolism (Klionsky et al., 2021).
The study found that when autophagy changes, the abnormal
accumulation of damaged organelles and abnormally folded
proteins in cells can lead to irreversible damage (Linda et al.,
2022). Therefore, as a critical regulator of various cellular
functions, autophagy can effectively prevent the accumulation
of cytotoxic products. Autophagy at the physiological level is
essential for promoting cellular metabolism and responding
to stress in various situations, including starvation, protein
toxicity, organelle damage, and microbial infection (Levine and
Kroemer, 2019; Nakatogawa, 2020).

Numerous studies have confirmed that autophagy function
and pathological proteins interact in the development of
neurodegenerative diseases (Ohsumi, 2014). In general,
pathological protein aggregates are mainly degraded through
the macroautophagy pathway, and abnormal α-synuclein or
Aβ is phagocytosed by circular double-membrane phagosomes
as autophagy substrates and extends and fuses to form
autophagy corpuscle (Minakaki et al., 2018; Fang et al.,
2019). Autophagosomes retrograde to somatic cells through
the unidirectional movement of axon terminals, bind to

lysosomes and unload pathological proteins to wait for
complete degradation, among which the recruitment of
core autophagy proteins (such as ATG5 or ATG7) plays
a role in the process of autophagy essential (Zheng et al.,
2019; Nishimura and Tooze, 2020). Recently, Hilverling
et al. (2022) found that pH in the intracellular environment
affects the transport of autophagosomes. During the fusion
of autophagosomes and lysosomes, lysosomes preferentially
move to the cell center, while acidic autophagosomes are
transported to the periphery with high frequency. This
indicates that lysosomes are first produced in the periphery,
fuse with autophagosomes through transportation to the
cell center, and finally undergo acidification, fusion, and
transportation to the periphery (Hilverling et al., 2022).
Secondly, abnormal protein aggregates can also be degraded
through the microautophagy pathway, mainly mediated by
cytoplasmic proteins targeted by the chaperone complex HSC70
and directly fuses into the lysosome with the invagination on
the lysosomal membrane for degradation (Kaushik and Cuervo,
2018; Bourdenx et al., 2021). However, a large number of
pathological protein aggregations inhibit autophagy function.
For example, the accumulation of alpha-synuclein leads to
the damage of autophagosome maturation and lysosome
structure by including bodies containing alpha-synuclein,
which ultimately reduces autophagic flux (Winslow and
Rubinsztein, 2011). Recent studies have shown that alterations
in autophagic flux may be related to the dependence of α-
synuclein disruption on Arp2/3 actin cytoskeleton stability
and intramitochondrial protein balance (Sarkar et al., 2021).
However, each step in the autophagy-lysosome degradation
pathway, such as vesicle transport, autophagosome formation,
and fusion with lysosomes, can affect protein degradation,
resulting in the accumulation of many pathological proteins
in cells, thereby aggravating cell damage (Senkevich and
Gan-Or, 2020; Fleming et al., 2022). Therefore, in specific
pathological settings, autophagy may play a cytoprotective,
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FIGURE 1

Types of autophagy. Macroautophagy is a dynamic process characterized by the sequestration of cytoplasmic contents in a bilayer membrane
structure, forming an intermediate structure called an autophagosome or autophagosome and then fusion with lysosomes for degradation.
Microautophagy: It encapsulates contents by invagination on the lysosomal membrane to form an intrinsic vesicle followed by degradation.
Chaperone-mediated autophagy (CMA) is a highly selective catabolic process that mediates specific target motifs containing CMAs. The protein
(KFERQ) is dissociated by cytosolic chaperones and transferred to the lysosome for degradation through a transmembrane complex composed
of lysosome-associated transmembrane protein (LAMP2A).

survival-promoting role at early time points (Fang et al., 2019).
Conversely, prolonged induction of autophagy may lead to
detrimental flux dysregulation in prolonged unresolved injury,
ultimately leading to apoptosis or necrosis (Di Meco et al.,
2020).

In conclusion, in most autophagy lysosomal diseases, the
brain is often the most severely affected organ, and neurons
rely heavily on autophagy to maintain normal function and
homeostasis, which indicates that autophagy plays an essential
role in neuronal health. To date, autophagy dysfunction has
been shown to induce neurodegeneration and exacerbate disease
progression (Lee et al., 2022). However, the specific mechanisms
of autophagy in neurodegenerative disease development remain
unclear, as most studies use autophagy-deficient validation
knockout animals or cellular models. Furthermore, validation of
autophagic function in AD and PD using human tissue samples
is complicated due to the limitations of methods for measuring
autophagic activity. Therefore, it is necessary to explore further
the regulatory role of autophagy in neurodegenerative diseases
in a physiologically relevant range.

Overview of the NLRP3
inflammasome

As a macromolecular complex composed of various
proteins in the cytoplasm, the inflammasome is an essential

part of the innate immune system (Guo et al., 2015). It
plays a crucial role in immune protection against microbial
infection. Neuroinflammation is necessary to eliminate
foreign invading pathogens, clear damaged cells or abnormal
proteins, and promote tissue repair in the central nervous
system (CNS) (Heneka et al., 2018). However, uncontrolled
neuroinflammation has been identified as a causative factor
in various neurological diseases (La Vitola et al., 2021). In
neurodegenerative diseases, microglia are important innate
immune cells in the brain that can activate the inflammasome
(Salter and Stevens, 2017; Badanjak et al., 2021). In addition,
other types of CNS resident cells, including astrocytes and
neurons and infiltrating monocytes from the periphery,
also express and activate inflammasomes. Aβ activates the
NF-κB pathway in astrocytes and leads to increased release
of complement C3, which in turn acts on C3a receptors on
neurons and microglia, leading to neuronal dysfunction and
microglial activation (Lian et al., 2016). However, it is still
controversial whether astrocyte cells can directly activate the
inflammasome. Panicker et al. (2022) found that neurons might
be involved in assembling the NLRP3 inflammasome. They
observed that the activation of the NLRP3 inflammasome
and the loss of neurons in Parkin-depleted mouse DA
neurons was associated with increased Parkin substrate Paris,
mitochondrial dysfunction, and the massive release of mtROS
(Panicker et al., 2022). In addition, peripheral monocytes are
also involved in inflammatory processes in neurodegenerative
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diseases. After Xu et al. (2022) used alpha-synuclein fibers to
stimulate human and mouse macrophages and dendritic cells,
they observed that expression of mutant LRRK2 increased the
recruitment of pro-inflammatory monocytes into the brain. In
addition, intravenous injection of two different recombinant
alpha-synuclein pathogenic strains (fibers or bands) in wild-
type mice induces an increase in the absolute number of
brain-resident microglia and promotes the recruitment of
peripheral blood mononuclear cells to the central nervous
system (Peralta Ramos et al., 2019).

NLRP3 is the most characteristic inflammasome of the
NLR receptor family and is widely expressed in immune cells
(Hanslik and Ulland, 2020). It plays a role in the body’s
defense against pathogen invasion. Also, it senses damaged
proteins, such as misfolded or aggregated Aβ or alpha-
synuclein, which may be involved in AD, PD, and other
neurodegenerative diseases and neurological degeneration (Ou
et al., 2021; Van Zeller et al., 2021). The NLRP3 inflammasome
is generally composed of three parts: the NLRP3 sensor
protein [a pattern recognition receptor (PRR) that acts as
a sensor molecule], the adaptor protein ASC (an apoptosis-
related SPECK-like protein containing caspase activation and
recruitment domains), and procaspase-1 (function as an
effector molecule) (Jo et al., 2016). The immunoreceptors of
the NLRP3 inflammasome respond to PAMPs and DAMPs
in a pattern recognition receptor (PRR)-dependent manner
by the transcription factor nuclear factor-kappa light chain
enhancer activated B cells (NF-κB) trigger the expression of
pro-IL-1β and pro-IL-18 and promote the maturation and
secretion of IL-1β and IL-18 by activating caspase-1 and
inducing inflammation (Bauernfeind et al., 2009; Stutz et al.,
2017).

Inflammasome activation

The study found that so far, the NLRP3 inflammasome
plays an inflammatory role through two steps of initiation
and activation. The initiation step is induced by activating the
transcription factor NF-κB by a family of pattern recognition
receptors PRR proteins, such as toll-like receptor 4 (TLR4)
agonists, tumor necrosis factor receptors, or ligands of
the NLR family, promote NLRP3 and IL-1β and IL-18
expression (Hornung and Latz, 2010; Qiao et al., 2012).
The activation step includes the recognition of the NLRP3
inflammasome agonist and the assembly and activation
of the inflammasome. So far, the NLRP3 inflammasome
as a response sensor can be stimulated by a variety of
substances. In addition to misfolded extracellular proteins,
other DAMPs can induce or aggravate neuroinflammatory
responses in neurodegenerative diseases, mainly including
mitochondrial dysfunction (such as the release of mtDNA,
mtROS, and mtUPR), adenosine triphosphate (ATP),

transcription factor A mitochondria (TFAM), and Cytochrome
C (Tschopp and Schroder, 2010; Sarkar et al., 2017; Roh
and Sohn, 2018; Zhong et al., 2018; de Oliveira et al.,
2021). Research shows high mobility family protein 1
(HMGB1) as a typical DAMP released by necrotic or
excitatory neurons. HMGB1 protein is involved in initiating
and activating neuroinflammation in neurodegenerative
diseases (Frank et al., 2015). It mainly exerts its biological
properties by directly binding with Receptor for Advanced
Glycation End Products (RAGE) and TLR4 and acts as
a chemotactic or pro-inflammatory factor (Tanaka et al.,
2021).

The NLRP3 protein forms an inflammasome by processing
a continuous set of signals when it experiences a specific
stimulus. When extracellular fibrillar Aβ binds to TLR4
on the surface of microglia and astrocytes, it activates
nuclear factor-κB and mitogen-activated protein K signaling
pathways through MyD88-dependent and TRIF-dependent
pathways, triggering pro-release of inflammatory factors, such
as tumor necrosis factor-α, IL-1β, and IL-6 (Liu et al.,
2020; Yang et al., 2020). First, NLRP3 acts as a sensor
where activated and self-oligomerizes through homotypic
Nacht domain interactions; oligomerized NLRP3 recruits
ASCs through homotypic PYD-PYD domain interactions and
induces ASCs to aggregate into a macromolecular focal point
called the ASC speck (Dowds et al., 2004; Lu et al., 2014).
Once NLRP3 inflammasome is activated, it induces the self-
cleavage and activation of the caspase-1 (Abderrazak et al.,
2015). It leads to the maturation and secretion of the pro-
inflammatory cytokines IL-1β and IL-18, which may lead
to a chronic inflammatory response, neuronal death, and
pyroptosis of central nervous system cells (Lindberg et al.,
2005). The activated downstream inflammatory factors IL-
1β and IL-18 play an essential role in the nervous system
(Dempsey, 2020). IL-1β can activate neuroimmune cells,
activate T cells infiltrating the central nervous system, and
then release IL-6 and tumor necrosis factor α, and other toxic
neuromediators (Voet et al., 2019). IL-18-mediated activation
of microglia enhanced caspase-1 expression, metalloproteinase
levels, and pro-inflammatory cytokine production, thereby
enhancing neuronal inflammation in the central nervous
system. In addition, activated caspase-1 cleaves and Gasdermin
D (GSDMD), which translocates to the plasma membrane
and forms pores, facilitating the entry of IL-1β and IL-18
from the cytoplasm into the extracellular space (He et al.,
2015). GSDMD pore formation and release of pro-inflammatory
cytokines lead to a pro-inflammatory form of cell death called
pyroptosis (Wang et al., 2021). Thus, the activation of the
NLRP3 inflammasome is tightly regulated, and its activation
is critical for host defense against pathogen invasion and
maintenance of homeostasis (Shi et al., 2015). The mechanism
of priming and activation of NLRP3 inflammasome is shown in
Figure 2.
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FIGURE 2

Mechanism of priming and activation of NLRP3 inflammasome. Priming signal: (Signal 1, left) Cells are exposed to the stimulation of various
emergency factors, toll-like receptors (TLRs) and Tumor Necrosis Factor Receptor (TNFR) recognize pathogen-associated molecular patterns
(PAMPS) and activate transcription factor NF-κB. NF-κB upregulates the expression of NLRP3, ProIL-1β, and pro-IL18. Activation signals: (Signal
2, right) The NLRP3 inflammasome can be activated by different substances, such as RNA viruses, sterile inflammation, toxic proteins, and
environmental stimuli. The upstream signaling of NLRP3 is subsequently activated, which includes potassium ion (k+) efflux, altered calcium ion
flux (Ca2+), mitochondrial dysfunction, and lysosomal disruption releasing cathepsins, among others. The NLRP3 protein, ASC, and
pro-caspase-1 assemble into a mature complex, then convert the immature forms of IL-1β and IL-18 into mature ones. IL-1β and IL-18 are
involved in subsequent inflammation, and IL-1β/IL-18 can be released into the extracellular space to propagate inflammatory signals to
neighboring cells. In addition, NLRP3 activation can promote the cleavage of GSMDM by caspase-1 to form GSMDM-N and induce cell lysis.

Interaction between autophagy
and NLRP3 inflammasome in
neurodegenerative disease

In recent years, studies have shown that abnormal folding
and accumulation of proteins in neurons is one of the common
denominators of most neurodegenerative diseases (Vaquer-
Alicea and Diamond, 2019; Hulse and Bhaskar, 2022). While
autophagy helps clear damaged organelles, protein aggregates,
or lipid droplets, these are often unprocessed toxic substances,
to a large extent, they may contribute to normal cellular
dysfunction, with reduced autophagic flux further leading to
autophagy deficiency or dysfunction (Alvarez-Arellano et al.,
2018; Bellomo et al., 2020). Recently, a study found that α-
synuclein accumulation in Lewy bodies may be due to a lack
of protein clearance by chaperone-mediated autophagy and
lysosomal dysfunction (Issa et al., 2018). Failure of cellular
regulatory mechanisms can further reduce the rate of aberrantly
aggregated proteins degraded by the proteasome and lead

to massive intracellular accumulation of aberrant neurotoxic
proteins, including tau and α-synuclein (Nilsson et al., 2013;
Xilouri et al., 2016). High levels of IL-1β and IL-18 are present in
the cerebrospinal fluid, brain tissue, and plasma of patients with
central nervous system infection, brain injury, AD, and multiple
sclerosis, and increased NLRP3 protein expression is associated
with high IL-1β It was correlated with the serum level of IL-
18, indicating that NLRP3 inflammasome activation is involved
in the pathological process of neurological diseases (Karpenko
et al., 2018; Irrera et al., 2020; O’Brien et al., 2020). In addition,
studies have further found that IL-1β and IL-18 bind to receptors
expressed on glial cells, neurons, macrophages, and endothelial
cells, respectively, and initiate a series of complex signaling
events that lead to inflammation in the central nervous system
and intensification of the cascade reaction (Das et al., 2008; Latz
et al., 2013). Therefore, the precise regulation of autophagy in
neurons is significant and closely related to neuroinflammation
and many aggregated proteins in brain tissue. The mechanism
of crosstalk between autophagy and NLRP3 inflammasome in
neurodegenerative diseases is shown in Figure 3.
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FIGURE 3

Crosstalk between autophagy and the NLRP3 inflammasome in neurodegenerative diseases. Autophagy can inhibit NLRP3 inflammasome
activation by scavenging reactive oxygen species (ROS). The production of massive ROS by damaged mitochondria can activate the NF-κB
pathway and promote the transcription of NLRP3 and pro-IL-1β, thereby activating the NLRP3 inflammasome. In addition, autophagy can also
inhibit the activation of NLRP3 by increasing the phosphorylation of NLRP3 and degrading inflammatory components such as activated
Caspase-1, IL-1β, and ASC. Therefore, there is an interaction between inflammation and autophagy to prevent excessive inflammatory
responses in the body.

Interaction between autophagy and
NLRP3 inflammasome in Alzheimer’s
disease

Alzheimer’s disease is a common age-related
neurodegenerative disease with an irreversible course
(Knopman et al., 2021). The main clinical manifestations
of AD patients are cognitive dysfunction (memory loss, visual-
spatial, judgment, and decision-making deficits), progressive
decline in self-care ability, and mental disorders (Serrano-Pozo
et al., 2011; Long and Holtzman, 2019). The typical pathological
features of AD which are senile plaques associated with the
deposition of extracellular Aβ polypeptides and intracellular
neurofibrillary tangles composed of hyperphosphorylated
tau protein aggregates (Benilova et al., 2012; Nilsson and
Saido, 2014; Tetreault et al., 2020). Studies have found that
the pathogenesis of AD is related to the disturbance of
Aβ homeostasis (weak clearance) and the accumulation of
lysosome and its hydrolase in neurons, resulting in massive
loss of hippocampal neurons, focal cortical atrophy, neuronal
transsexual (Tarasoff-Conway et al., 2015).

In recent years, evidence has suggested a close link
between autophagy and the deposition of protein aggregates
Aβ in the pathogenesis of AD (Zhang et al., 2021). In
macroautophagy, in particular, a marked accumulation of

autophagosomes, immature autophagic vacuoles, and other
lysosomal pre-autophagic vacuoles containing abundant Aβ

deposits can be observed in the brain neurites of AD patients
(Kerr et al., 2017). Studies have found that Aβ deposition
may lead to impaired trafficking and maturation of autophagic
vacuoles, thereby hindering the neuroprotective function of
autophagy (Reddy and Oliver, 2019). However, autophagy
deficiency also affects the brain’s clearance and metabolism of
Aβ aggregates. Hara et al. (2006) observed significantly reduced
intracellular Aβ secretion and severe neurodegeneration in
autophagy-deficient APP mice. In addition, the offspring
of autophagy-deficient mice exhibited a more pronounced
impairment of extracellular Aβ delivery leading to the
accumulation of intracellular Aβ, accompanied by memory
impairment (Saito et al., 2014). Therefore, the regulatory effect
between autophagy and Aβ metabolism is bidirectional, and
enhancing autophagy can attenuate the excessive deposition of
Aβ. Beclin1 mRNA and protein levels were detected in human
and mouse AD model brain regions as an essential player in AD
autophagy deficiency. However, overexpression of Beclin1 in
AD mice reduced Aβ intracellular accumulation and improved
neurological deficit symptoms (Bieri et al., 2018). Chronic
neuroinflammation mediated by the microglia-specifically
expressed NLRP3 inflammasome has been reported to play
a critical role in the pathogenesis of AD (Heneka et al., 2013;
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Saresella et al., 2016). Saresella et al. (2016) found that the
expression of NLRP3 and its related inflammatory factors
in peripheral blood mononuclear cells of AD patients was
positively correlated with disease severity. Terrill-Usery et al.
(2014) founded the role of the NLRP3 inflammasome in the
pathogenesis of AD. They found that the NLRP3 inflammasome
was widely aggregated in the microglia and activated in the
mouse brain stimulated by fibrillar Aβ. Activation of the NLRP3
inflammasome mediates microglia to exhibit an inflammatory
M1 phenotype with high expression of caspase-1 and IL-
1β (Terrill-Usery et al., 2014). In addition, activation of the
NLRP3 inflammasome leads to lysosomal damage and triggers
cathepsin B release, further accelerating the release of pro-
inflammatory factors and chemokines, resulting in irreversible
neuronal damage (Murphy et al., 2014). Recent studies have
shown that the NLRP3 inflammasome is activated by fibrillar
Aβ aggregates and low molecular weight Aβ oligomers and
fibers. This study suggests that the central nervous system’s
innate immune response triggered by Aβ activation may occur
before the onset of Aβ deposition (Luciunaite et al., 2020).
Heneka et al. (2013) found that deletion of NLRP3 or caspase-1
gene in APP/PS1 mice transformed microglia into the anti-
inflammatory M2 type, accompanied by decreased secretion of
caspase-1 and IL-1β, a significant reduction in the amount and
deposition of intracellular Aβ, and a slight improvement in
memory loss and behavioral abnormalities.

In AD disease progression, autophagy, NLRP3
inflammasome, and protein aggregate Aβ are closely related and
have complex interactions (Hendrickx et al., 2021; Cheng et al.,
2022). Ahmed et al. (2017) found that the autophagy protein
SQSTM1/p62 and LC3-positive vesicles and the lysosomal
marker lysosomal protein LAMP1 were increased in the
temporal lobe cortex of AD patients and were associated with
NLRP3 inflammasome, glial maturation factor (GMF), Aβ, and
hyperphosphorylated p-tau colocalized. This may be related
to the possibility that the neuroinflammation promoted by
the NLRP3 inflammasome may be amplified and regulated by
GMF, thereby impairing the clearance of protein aggregates
mediated by the autophagosome pathway leading to impaired
lysosomal integrity in AD brain temporal cortex. On the one
hand, neuroinflammation can induce immune cell activation to
exert neuroprotective effects. For example, in the AD cell model,
Aβ induces an inflammatory response through stimulation,
increasing the concentration of cellular inflammatory factors,
which promotes microglia activation. Activated microglia
regulate their ability to uptake, degrade and clear intracellular
Aβ through phagocytosis (Cho et al., 2014). At the same
time, the researchers demonstrated that NLRP3 and caspase-1
knockdown in AD mice significantly increased the ability
of microglia to phagocytose amyloid Aβ and promoted the
differentiation of microglia into the anti-inflammatory M2
type compared with APP/PS1 mice (Wang et al., 2017). In
addition, NLRP3 or Caspase-1 inhibitors can also enhance

the ability of microglia to clear Aβ, thereby reducing the
accumulation of Aβ in the hippocampus of APP/PS1 mice
(Dempsey et al., 2017; Alvarez-Arellano et al., 2018; Flores et al.,
2020). This proves that the activation of the NLRP3/Caspase-1
inflammasome significantly reduces the phagocytosis and
clearance of Aβ by microglia, thereby making it easier for
Aβ to accumulate intracellularly. However, phagocytosis of
excess Aβ by microglia leads to lysosomal damage in the
cytoplasm and the release of cathepsin B, an endogenous
danger signal for activating the NLRP3 inflammasome (Wu
et al., 2017). In addition, when cells exhibit impaired or
dysfunctional autophagy, Aβ degradation and clearance can
be severely affected to induce the activation of the NLRP3
inflammasome. For example, after the reduction of BECN1
gene expression and the addition of autophagy blocker 3-MA,
autophagy injury occurred, and the inflammatory factors IL-1β

and IL-18 released by lipopolysaccharide-induced microglia
were significantly higher than those in the standard group. In
contrast, the expression of TNFα and IL-6 was not changed
(Houtman et al., 2019). This may be related to the reduction of
BECN1 affecting the processing pathways of IL-1β and IL-18.
Injecting fibrillar Aβ into Atg7flox/flox/Lyz2-Cre mice increases
neural tissue inflammation. This suggests that microglia degrade
extracellular Aβ through autophagy and regulate the activity
of the NLRP3 inflammasome (Cho et al., 2014). Researchers
in a Aβ25–35 group cells and BV2 co-cultured cells added
with adenovirus vector with high transcription factor EB
(TFEB) expression. It was found that the expression levels
of NLRP3 and other inflammatory factors in cells decreased,
the level of autophagy marker LC3 decreased, and the level of
lysosomal membrane protein LAMP1 increased significantly.
This may be because TFEB enhanced lysosomal activity
and accelerated the autophagy of lysosomes. Degradation,
which ultimately facilitates the opening of autophagic flux.
When the autophagic flux is unblocked, the accumulation
of upstream substrates or downstream autophagic products
is reduced, thereby reducing the activation of inflammatory
cells by toxic substances (Zhou et al., 2021). In conclusion,
enhancing microglial autophagy and inhibiting NLRP3
inflammasome activation may be a new strategy for treating
AD.

Interaction between autophagy and
NLRP3 inflammasome in Parkinson’s
disease

Parkinson’s disease is a common chronic, progressive
degenerative disease of the central nervous system (Dorsey
et al., 2018). The clinical manifestations of PD patients include
movement disorders (resting tremor, bradykinesia, rigidity, and
postural instability) and non-movement disorders (hyposmia,
cognitive impairment, and sleep disturbance) (Jankovic, 2008;
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Bloem et al., 2021). The pathological hallmarks of PD are the
loss of dopaminergic (DA) neurons in the substantia nigra pars
compacta and the formation of pathologically misfolded protein
aggregates (Cacabelos, 2017). Aggregates of misfolded alpha-
synuclein (called Lewy bodies) and dysfunctional cellular debris
have been found in animal models of PD to trigger a cascade
of immune defenses that lead cells to produce large amounts of
cytokines and other inflammatory factors and cause irreparable
neuronal damage (Atik et al., 2016; Rocha et al., 2018).

Studies showing that SNCA is degraded by macrophages
and CMA in neuronal cells again demonstrate the importance
of autophagy processes as degradation mechanisms in the
central nervous system and when that damage to these
systems, especially CMA, leads to the accumulation of
neurotoxic SNCA aggregates (Ho et al., 2020). Autophagy-
activating Beclin-1 gene transfer also ameliorated pathological
changes in limbic system synapses and dendrites and reduced
SNCA accumulation in PD patients (Spencer et al., 2009).
Tu et al. (2021) found that extracellular α-synuclein can
inhibit autophagy initiation in microglial cells. Autophagy
damage in cytoplasmic cells disrupts the autophagic
activity of microglia, thereby synergistically promoting the
development of neuroinflammation and Parkinson’s disease.
In addition, lysozyme 2Cre (Lyz2cre)-mediated deletion
of microglial autophagy-related gene 5 (ATG5) aggravates
neuroinflammation and loss of dopaminergic neurons in
the substantia nigra and aggravates the loss of α-synuclein
overexpressing mice (Tu et al., 2021). In addition, α-Syn leads
to microglial activation by activating TLR4 and its downstream
p38 and Akt-mTOR signaling (Chen et al., 2021). Miki et al.
(2018) found that the autophagy core regulator genes ULK3,
Atg2A, Atg4B, Atg5, Atg16L1, and histone deacetylase six
mRNAs were downregulated when they studied the peripheral
blood mononuclear and cell-based autophagy of Parkinson’s
patients, and the autophagy protein ULK1 was downregulated,
Beclin1 protein levels were significantly increased, and the
mRNA expression of these proteins was negative feedback and
correlated with increased α-synuclein levels. In recent years, it
has been reported that the inflammasome NLRP3 is involved in
the pathological process of Parkinson’s disease. Recent studies
have found that the gene expression of NLRP3, ASC, and
caspase-1 is increased in peripheral blood mononuclear cells of
PD patients, and increased protein levels of NLRP3, caspase-1,
and IL-1β. In contrast, the plasma IL-1β level was significantly
higher than that of the standard control group (Fan et al., 2020).
von Herrmann et al. (2018) found in the histological sections
of the midbrain of PD patients that DA neurons in the tissues
were significantly less than those in the healthy control group,
and CASP1 immunoreactivity was increased. The NLRP3
mRNA and protein levels in the midbrain homogenate of
PD patients increased, confirming that DA neurons were a
potential cellular source of PD inflammasome activity (von
Herrmann et al., 2018). It has been found that in MPTP-treated

PD mouse models, when NLRP3 deficiency can alleviate motor
dysfunction and microglia-mediated activation and release
of inflammatory factors in mice, thereby alleviating neuronal
apoptosis (Lee et al., 2019).

There are complex interactions between autophagy defects
and NLRP3 inflammasome activation in PD. Qin et al. (2021)
found that deletion of Atg5 in microglia exacerbated NLRP3
inflammasome activation, dopaminergic neurodegeneration,
and mouse motor dysfunction in acute and subacute MPTP
mouse models, with concomitant, there is microglia and
astrogliosis. At the same time, it was verified in vitro
experiments that the inflammation intensified after the
autophagy destruction of BV2 cells, and the inhibition of
microglia autophagy was harmful to the cultured neurons
(Qin et al., 2021). Inhibition of the NLRP3 inflammasome
by constructing NLRP3 knockout mice not only prevented
substantia nigra dopaminergic degeneration and striatal
dopamine loss in PD mice but also prevented the formation of
pathological α-synuclein in the substantia nigra (Huang et al.,
2021). Furthermore, it inhibited MPTP-induced midbrain glial
responses in mice while secreting pro-inflammatory cytokines.
Most importantly, it alleviates autophagy dysfunction in the
midbrain of PD mice (Gordon et al., 2018). Improved autophagy
function involves the preventive effect of LRP3 inflammasome
inhibition on α-synuclein pathology in Parkinson’s disease.
Finally, this persistent autophagy dysfunction may release
activated intracellular lysosomal enzymes and lead to cell
death (Gordon, 2018). Thus basal levels of autophagy are
important for the clearance of protein aggregates, and the
reduction of cytoplasmic inclusions may have a protective
effect on neurodegenerative diseases. These results suggest that
α-synuclein can provide the initiation signal for the activation
of the NLRP3 inflammasome. However, numerous studies
in cell experiments and animal models have confirmed that
activation of the NLRP3 inflammasome can also, in turn, lead
to increased α-synuclein deposition and diffusion in glial cells,
thereby inducing α-synuclein into a positive feedback loop and
ultimately promoting PD disease progression.

Conclusion and future
perspectives

In summary, autophagy is an important mechanism
affecting neuronal health, which maintains normal neuronal
function by regulating lysosomal function to clear abnormally
folded proteins in the nervous system. However, when
autophagy is impaired, or autophagic flux is reduced, the
incomplete clearance of protein aggregates can lead to
mitochondrial damage, ROS generation, lysosomal disruption,
and tissue protein release in vivo. On the other hand,
many protein aggregates and intracellular release factors
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can further activate the NLRP3 inflammasome to induce
neuroinflammation. Neuroinflammation is a double-edged
sword that acts as a defense mechanism during acute infection
and has anti-infective effects. However, after entering the
chronic inflammatory phase, excessive release of cytotoxic
factors leads to inflammatory activation that exacerbates cellular
damage and neurodegeneration. Thus, hyperactivated NLRP3
inflammasome, in turn, exacerbates pathology and accelerates
neurogenic disease progression. Therefore, in the early stage of
the disease, we can use autophagy-enhancing drugs combined
with inflammasome inhibitors to clear the aggregation of
abnormal proteins and release cellular inflammatory factors,
thereby improving neurodegeneration caused by cell damage
and delaying disease progression.
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