3922 independent reflections

 $R_{\rm int} = 0.016$

3124 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-(2,6-Dimethylphenoxycarbonyl)-10methylacridinium trifluoromethanesulfonate

Damian Trzybiński, Karol Krzymiński and Jerzy Błażejowski*

Faculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland

Correspondence e-mail: bla@chem.univ.gda.pl

Received 4 October 2010; accepted 14 October 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.125; data-to-parameter ratio = 12.2.

In the crystal structure of the title compound, $C_{23}H_{20}NO_2^+$. CF₃SO₃⁻, adjacent cations are linked through a network of $C-H\cdots\pi$ and $\pi-\pi$ interactions, and neighboring cations and anions via $C-H \cdots O$ interactions. The acridine and benzene ring systems are oriented at a dihedral angle of $31.4 (1)^{\circ}$. The carboxyl group is twisted at an angle of $66.3 (1)^\circ$ relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel in the crystal structure.

Related literature

For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); Natrajan et al. (2010). For related structures, see: Krzymiński et al. (2009); Niziołek et al. (2009). For intermolecular interactions, see: Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Niziołek et al. (2009).

Experimental

Crystal data

$C_{23}H_{20}NO_2^+ \cdot CF_3SO_3^-$	$\gamma = 110.755 \ (4)^{\circ}$
$M_r = 491.48$	V = 1109.66 (8) Å ³
Triclinic, P1	Z = 2
a = 9.5841 (4) Å	Mo $K\alpha$ radiation
b = 11.2491 (6) Å	$\mu = 0.21 \text{ mm}^{-1}$
c = 12.1738 (3) Å	$T = 295 { m K}$
$\alpha = 106.080 \ (3)^{\circ}$	$0.58 \times 0.18 \times 0.05 \text{ mm}$
$\beta = 101.890 \ (3)^{\circ}$	

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer 9670 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of
$wR(F^2) = 0.125$	independent and constrained
S = 1.09	refinement
3922 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
321 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
6 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C18-C23 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O28^{i}$	0.93	2.51	3.224 (3)	134
$C25 - H25B \cdots O30^{ii}$	0.96	2.57	3.525 (3)	176
$C26 - H26A \cdots Cg4^{iii}$	0.96 (3)	2.86 (2)	3.774 (3)	158 (3)
$C26-H26B\cdots O29^{iii}$	0.96 (3)	2.56 (3)	3.369 (4)	142 (2)

Symmetry codes: (i) x - 1, y, z - 1; (ii) x, y, z - 1; (iii) x - 1, y, z.

Table 2

 $\pi - \pi$ interactions (Å,°).

Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11-C14, C1-C4/C11/C12 and C5–C8/C13/C14 rings, respectively. $CgI \cdots CgJ$ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

Ι	J	$CgI \cdots CgJ$	Dihedral angle	CgI_Perp	CgI_Offset
1	3 ^v	3.502 (2)	2.71 (10)	3.473 (1)	0.445(1)
2	3 ^v	3.977 (2)	6.38 (11)	3.286 (1)	2.240 (1)
3	1^{v}	3.502 (2)	2.71 (10)	3.470(1)	0.480(1)
3	2^{v}	3.977 (2)	6.38 (11)	3.503 (1)	1.883 (1)

Symmetry code: (v) -x + 1, -y + 1, -z + 1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143 - contract No. 3143/ H03/2007/32 of the Polish Ministry of Research and Higher Education for the period 2007-2010 - and DS/8820-4-0087-0). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5042).

References

Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394.

Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
- Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, 0789–0790.

- Natrajan, A., Sharpe, D., Costello, J. & Jiang, Q. (2010). Anal. Biochem. 406, 204–213.
- Niziołek, A., Zadykowicz, B., Trzybiński, D., Sikorski, A., Krzymiński, K. & Błazejowski, J. (2009). J. Mol. Struct. 920, 231–237.
- Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.

Acta Cryst. (2010). E66, o2929-o2930 [doi:10.1107/S1600536810041449]

9-(2,6-Dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate

D. Trzybinski, K. Krzyminski and J. Blazejowski

Comment

Chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels based on 9-(phenoxycarbonyl)-10-methylacridinium salts are widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Brown *et al.*, 2009; Natrajan *et al.*, 2010). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the structure of the phenyl fragment. We thus undertook investigations into 9-(phenoxycarbonyl)-10-methylacridinium salts variously substituted at the benzene ring. Here we present the structure of 9-(2,6-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Krzymiński *et al.*, 2009; Niziołek *et al.*, 2009). With respective average deviations from planarity of 0.0629 (3) Å and 0.0046 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of $31.4 (1)^\circ$. The carboxyl group is twisted at an angle of $66.3 (1)^\circ$ relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle $0.0 (1)^\circ$) in the lattice.

In the crystal structure, the inversely oriented cations are linked through a network of C–H… π (Table 1, Fig. 2) and π – π (Table 3, Fig. 2) interactions, the adjacent cations and anions via C–H…O (Table 1, Fig. 2) and C–F… π (Table 2, Fig. 2) interactions. The C–H…O (Novoa *et al.* 2006) interactions are of the hydrogen bond type. The C–H… π (Takahashi *et al.* 2001) interactions should be of an attractive nature, like C–F… π (Dorn *et al.*, 2005) and the π – π (Hunter *et al.*, 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Experimental

2,6-Dimethylphenylacridine-9-carboxylate was synthesized first in the reaction of 9-(chlorocarbonyl)acridine (obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 2,6-dimethylphenol in anhydrous dichloromethane in the presence of *N*,*N*-diethylethanamine and a catalytic amount of *N*,*N*-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The ester thereby obtained, purified chromatographically (SiO₂, cyclohexane/ethyl acetate, 1/1 v/v), was quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(2,6-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 552–555 K).

Refinement

The H26A, H26B and H26C atoms were located on a Fourier-difference map, restrained by DFIX command 0.960 for C–H distance and by DFIX 1.568 for H···H distance, and refined as riding with $U_{iso}(H) = 1.5U_{eq}(C)$. All other H atoms were

positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Figures

Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids.

Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O and C–H··· π interactions are represented by dashed lines, the C–F··· π and π – π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x - 1, y, z - 1; (ii) x, y, z - 1; (iii) x - 1, y, z; (iv) –x + 1, –y, –z + 1; (v) –x + 1, –y + 1, –z + 1.]

9-(2,6-Dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate

Crystal data

$C_{23}H_{20}NO_2^+ \cdot CF_3SO_3^-$	<i>Z</i> = 2
$M_r = 491.48$	F(000) = 508
Triclinic, PT	$D_{\rm x} = 1.471 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.5841 (4) Å	Cell parameters from 66666 reflections
b = 11.2491 (6) Å	$\theta = 3.0-29.1^{\circ}$
c = 12.1738 (3) Å	$\mu = 0.21 \text{ mm}^{-1}$
$\alpha = 106.080 \ (3)^{\circ}$	<i>T</i> = 295 K
$\beta = 101.890 \ (3)^{\circ}$	Prism, light-yellow
$\gamma = 110.755 \ (4)^{\circ}$	$0.58 \times 0.18 \times 0.05 \text{ mm}$
V = 1109.66 (8) Å ³	

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer	3124 reflections with $I > 2\sigma(I)$
Radiation source: Enhanced (Mo) X-ray Source	$R_{\rm int} = 0.016$
graphite	$\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Detector resolution: 10.4002 pixels mm ⁻¹	$h = -11 \rightarrow 11$
ω scans	$k = -13 \rightarrow 10$
9670 measured reflections	$l = -14 \rightarrow 14$
3922 independent reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.125$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.09	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0673P)^{2} + 0.2264P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3922 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
321 parameters	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
6 restraints	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.3818 (3)	0.3638 (2)	0.13066 (19)	0.0649 (6)
H1	0.4654	0.3528	0.1091	0.078*
C2	0.2838 (3)	0.3952 (3)	0.0588 (2)	0.0777 (7)
H2	0.2996	0.4048	-0.0118	0.093*
C3	0.1595 (3)	0.4130 (3)	0.0913 (2)	0.0787 (8)
H3	0.0932	0.4350	0.0419	0.094*
C4	0.1322 (3)	0.3992 (2)	0.1928 (2)	0.0687 (6)
H4	0.0489	0.4130	0.2125	0.082*
C5	0.2865 (2)	0.3196 (2)	0.56175 (19)	0.0545 (5)
Н5	0.1991	0.3261	0.5797	0.065*
C6	0.3931 (3)	0.3026 (2)	0.6409 (2)	0.0592 (5)
H6	0.3771	0.2975	0.7126	0.071*
C7	0.5267 (2)	0.2924 (2)	0.61744 (18)	0.0557 (5)
H7	0.5987	0.2820	0.6737	0.067*
C8	0.5505 (2)	0.29779 (19)	0.51298 (17)	0.0479 (4)
H8	0.6386	0.2898	0.4975	0.057*
C9	0.46128 (19)	0.32004 (18)	0.31651 (16)	0.0424 (4)
N10	0.20515 (16)	0.34795 (16)	0.37176 (15)	0.0499 (4)
C11	0.3594 (2)	0.34746 (19)	0.23794 (16)	0.0474 (4)
C12	0.2299 (2)	0.36386 (19)	0.26929 (17)	0.0505 (5)
C13	0.44292 (19)	0.31544 (17)	0.42602 (15)	0.0411 (4)
C14	0.30806 (19)	0.32732 (18)	0.45257 (17)	0.0448 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C15	0.5963 (2)	0.29831 (19)	0.28346 (16)	0.0436 (4)
O16	0.53926 (14)	0.18238 (13)	0.18486 (11)	0.0503 (3)
O17	0.73309 (15)	0.37184 (15)	0.33881 (13)	0.0625 (4)
C18	0.6473 (2)	0.1321 (2)	0.15004 (17)	0.0514 (5)
C19	0.6730 (3)	0.0416 (2)	0.1981 (2)	0.0641 (6)
C20	0.7664 (3)	-0.0180 (3)	0.1546 (3)	0.0849 (8)
H20	0.7870	-0.0800	0.1844	0.102*
C21	0.8276 (3)	0.0133 (3)	0.0693 (3)	0.0922 (9)
H21	0.8888	-0.0280	0.0412	0.111*
C22	0.8000 (3)	0.1047 (3)	0.0246 (2)	0.0813 (8)
H22	0.8428	0.1245	-0.0338	0.098*
C23	0.7089 (2)	0.1689 (2)	0.06460 (19)	0.0631 (6)
C24	0.6045 (4)	0.0075 (3)	0.2916 (3)	0.0923 (9)
H24A	0.4922	-0.0213	0.2627	0.138*
H24B	0.6527	0.0874	0.3658	0.138*
H24C	0.6248	-0.0654	0.3061	0.138*
C25	0.6814 (3)	0.2718 (3)	0.0184 (2)	0.0835 (8)
H25A	0.5697	0.2402	-0.0195	0.125*
H25B	0.7338	0.2826	-0.0399	0.125*
H25C	0.7232	0.3586	0.0850	0.125*
C26	0.0613 (3)	0.3550 (3)	0.3959 (3)	0.0779 (8)
H26A	-0.027 (3)	0.305 (3)	0.3197 (17)	0.113 (10)*
H26B	0.034 (3)	0.307 (3)	0.448 (2)	0.106 (11)*
H26C	0.069 (5)	0.4454 (19)	0.431 (3)	0.184 (19)*
S27	0.95913 (6)	0.27457 (6)	0.72251 (5)	0.05989 (19)
O28	1.1219 (2)	0.3034 (3)	0.77069 (16)	0.1008 (7)
O29	0.9225 (2)	0.3134 (2)	0.62202 (16)	0.0875 (5)
O30	0.8851 (2)	0.3042 (2)	0.81008 (15)	0.0879 (6)
C31	0.8618 (4)	0.0892 (3)	0.6536 (3)	0.0856 (8)
F32	0.8764 (3)	0.0335 (2)	0.7353 (3)	0.1501 (9)
F33	0.9169 (3)	0.0417 (2)	0.5713 (2)	0.1554 (10)
F34	0.7072 (2)	0.0441 (2)	0.5986 (2)	0.1331 (8)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0770 (14)	0.0765 (15)	0.0556 (12)	0.0464 (13)	0.0212 (10)	0.0297 (11)
C2	0.1007 (19)	0.0832 (18)	0.0582 (13)	0.0549 (16)	0.0142 (13)	0.0298 (12)
C3	0.0827 (17)	0.0773 (17)	0.0680 (15)	0.0458 (14)	-0.0039 (13)	0.0235 (13)
C4	0.0540 (12)	0.0665 (14)	0.0776 (15)	0.0362 (11)	0.0030 (11)	0.0176 (12)
C5	0.0524 (11)	0.0474 (11)	0.0663 (12)	0.0206 (9)	0.0297 (10)	0.0199 (9)
C6	0.0715 (13)	0.0539 (12)	0.0596 (11)	0.0266 (10)	0.0331 (10)	0.0252 (10)
C7	0.0611 (12)	0.0542 (12)	0.0549 (11)	0.0254 (10)	0.0182 (9)	0.0261 (9)
C8	0.0437 (9)	0.0490 (11)	0.0550 (10)	0.0226 (8)	0.0171 (8)	0.0220 (9)
C9	0.0369 (8)	0.0385 (9)	0.0483 (9)	0.0161 (7)	0.0119 (7)	0.0140 (8)
N10	0.0350 (7)	0.0455 (9)	0.0609 (9)	0.0192 (7)	0.0114 (7)	0.0099 (7)
C11	0.0448 (9)	0.0433 (10)	0.0497 (10)	0.0214 (8)	0.0091 (8)	0.0139 (8)
C12	0.0421 (9)	0.0422 (10)	0.0541 (11)	0.0186 (8)	0.0046 (8)	0.0084 (8)

C13	0.0355 (8)	0.0346 (9)	0.0484 (9)	0.0134 (7)	0.0128 (7)	0.0130 (7)
C14	0.0373 (9)	0.0344 (9)	0.0546 (10)	0.0125 (7)	0.0149 (8)	0.0105 (8)
C15	0.0425 (10)	0.0471 (10)	0.0475 (9)	0.0223 (8)	0.0170 (8)	0.0222 (8)
O16	0.0422 (6)	0.0538 (8)	0.0512 (7)	0.0208 (6)	0.0188 (5)	0.0130 (6)
O17	0.0392 (7)	0.0589 (9)	0.0731 (9)	0.0175 (6)	0.0162 (6)	0.0095 (7)
C18	0.0414 (9)	0.0491 (11)	0.0562 (11)	0.0166 (8)	0.0223 (8)	0.0097 (9)
C19	0.0627 (12)	0.0548 (13)	0.0801 (14)	0.0277 (11)	0.0356 (11)	0.0225 (11)
C20	0.0797 (16)	0.0653 (16)	0.122 (2)	0.0416 (14)	0.0483 (16)	0.0305 (15)
C21	0.0762 (16)	0.0717 (17)	0.129 (2)	0.0345 (14)	0.0622 (17)	0.0164 (17)
C22	0.0696 (15)	0.0780 (18)	0.0849 (16)	0.0207 (13)	0.0505 (13)	0.0128 (14)
C23	0.0526 (11)	0.0643 (14)	0.0577 (11)	0.0143 (10)	0.0260 (9)	0.0121 (10)
C24	0.125 (2)	0.0864 (19)	0.118 (2)	0.0658 (18)	0.0734 (19)	0.0631 (17)
C25	0.0869 (17)	0.106 (2)	0.0748 (15)	0.0398 (16)	0.0463 (13)	0.0480 (15)
C26	0.0458 (12)	0.101 (2)	0.0848 (17)	0.0402 (13)	0.0235 (12)	0.0217 (16)
S27	0.0655 (3)	0.0737 (4)	0.0501 (3)	0.0355 (3)	0.0266 (2)	0.0255 (3)
O28	0.0647 (10)	0.1509 (19)	0.0711 (11)	0.0372 (11)	0.0187 (8)	0.0367 (12)
O29	0.1033 (13)	0.1112 (14)	0.0781 (11)	0.0551 (12)	0.0399 (10)	0.0610 (11)
O30	0.1185 (15)	0.1062 (14)	0.0730 (10)	0.0705 (12)	0.0590 (10)	0.0348 (10)
C31	0.101 (2)	0.091 (2)	0.0888 (18)	0.0516 (17)	0.0548 (16)	0.0386 (16)
F32	0.212 (3)	0.1266 (17)	0.191 (2)	0.1025 (18)	0.106 (2)	0.1062 (17)
F33	0.187 (2)	0.1174 (16)	0.164 (2)	0.0741 (16)	0.1115 (18)	0.0081 (14)
F34	0.0897 (13)	0.1208 (16)	0.1312 (15)	0.0049 (11)	0.0360 (11)	0.0222 (12)

Geometric parameters (Å, °)

C1—C2	1.357 (3)	O16-C18	1.426 (2)
C1—C11	1.417 (3)	C18—C19	1.374 (3)
C1—H1	0.9300	C18—C23	1.385 (3)
C2—C3	1.392 (4)	C19—C20	1.398 (3)
С2—Н2	0.9300	C19—C24	1.498 (3)
C3—C4	1.352 (4)	C20—C21	1.361 (4)
С3—Н3	0.9300	С20—Н20	0.9300
C4—C12	1.419 (3)	C21—C22	1.366 (4)
C4—H4	0.9300	C21—H21	0.9300
C5—C6	1.357 (3)	C22—C23	1.396 (3)
C5—C14	1.408 (3)	С22—Н22	0.9300
С5—Н5	0.9300	C23—C25	1.497 (4)
C6—C7	1.404 (3)	C24—H24A	0.9600
С6—Н6	0.9300	C24—H24B	0.9600
C7—C8	1.351 (3)	C24—H24C	0.9600
С7—Н7	0.9300	C25—H25A	0.9600
C8—C13	1.427 (3)	С25—Н25В	0.9600
С8—Н8	0.9300	С25—Н25С	0.9600
C9—C13	1.393 (3)	C26—H26A	0.971 (16)
C9—C11	1.398 (3)	С26—Н26В	0.966 (16)
C9—C15	1.510 (2)	C26—H26C	0.956 (17)
N10-C12	1.364 (3)	S27—O30	1.4262 (17)
N10-C14	1.372 (2)	S27—O29	1.4274 (17)
N10—C26	1.492 (3)	S27—O28	1.4290 (19)

C11—C12	1.428 (3)	S27—C31	1.803 (3)
C13—C14	1.436 (2)	C31—F33	1.301 (3)
C15—O17	1.190 (2)	C31—F32	1.323 (4)
C15—O16	1.341 (2)	C31—F34	1.331 (3)
C2—C1—C11	121.3 (2)	C19—C18—O16	116.51 (17)
C2—C1—H1	119.3	C23—C18—O16	118.52 (19)
C11—C1—H1	119.3	C18—C19—C20	116.4 (2)
C1—C2—C3	119.5 (2)	C18—C19—C24	122.2 (2)
C1—C2—H2	120.3	C20—C19—C24	121.5 (2)
С3—С2—Н2	120.3	C21—C20—C19	121.0 (3)
C4—C3—C2	122.0 (2)	C21—C20—H20	119.5
С4—С3—Н3	119.0	С19—С20—Н20	119.5
С2—С3—Н3	119.0	C20—C21—C22	120.7 (2)
C_{3} — C_{4} — C_{12}	120.4 (2)	C20—C21—H21	119.6
C3—C4—H4	119.8	C22—C21—H21	119.6
C12—C4—H4	119.8	$C_{21} - C_{22} - C_{23}$	121 3 (2)
C6-C5-C14	120 13 (18)	$C_{21} = C_{22} = H_{22}$	119.3
С6—С5—Н5	119.9	$C^{23} - C^{22} - H^{22}$	119.3
C14—C5—H5	119.9	$C_{18} = C_{23} = C_{22}$	115.8 (2)
C_{5}	121.8 (2)	C_{18} C_{23} C_{25} C_{25}	113.6(2) 122.5(2)
C5-C6-H6	119.1	$C_{22}^{22} = C_{23}^{22} = C_{25}^{22}$	122.3(2) 121.7(2)
C7-C6-H6	119.1	$C_{22} = C_{23} = C_{23}$	109.5
C_{8}^{-} C_{7}^{-} C_{6}^{-}	119.1	C19 - C24 - H24R	109.5
C8_C7_H7	120.1	$H_{24} = C_{24} = H_{24}B$	109.5
C6_C7_H7	120.1	C19 - C24 - H24C	109.5
$C_{7} - C_{8} - C_{13}$	120.1	$H_{24} = -224 - H_{24} = -1124 C$	109.5
C7 - C8 - H8	110 /	$H_2^A = C_2^A = H_2^A C_2^A$	109.5
C_{13} C_{8} H_{8}	119.4	$C_{23} = C_{25} = H_{25} \Lambda$	109.5
$C_{13} = C_{9} = C_{11}$	121 32 (16)	C23_C25_H25B	109.5
$C_{13} = C_{9} = C_{15}$	121.32(10) 110.28(15)	H25A C25 H25B	109.5
$C_{13} = C_{9} = C_{13}$	119.28 (13)	123A - 225 - 1125B	109.5
C12 N10 C14	119.39(17) 122.34(15)	H25A C25 H25C	109.5
$C_{12} = N_{10} = C_{14}$	122.34(13)	H25R C25 H25C	109.5
C14 N10 C26	110.65 (10)	N10 C26 H26A	109.5
$C_{14} = N_{10} = C_{20}$	119.03 (19)	N10 C26 U26D	100.1(10)
$C_{9} = C_{11} = C_{12}$	122.95 (18)	N10 - C20 - H20B	109.3(19)
$C_{9} = C_{11} = C_{12}$	110.40 (10)	$\mathbf{H}_{20} \mathbf{A}_{-} \mathbf{C}_{20} \mathbf{H}_{20} \mathbf{B}$	100.0(18)
VI	110.30 (10)	N10 - C20 - H20C	110(3)
N10-C12-C4	122.02 (19)	$H_{20}A - C_{20} - H_{20}C$	109 (2)
	119.78 (17)	$H_{20}B = C_{20} = H_{20}C_{20}$	108(2)
C4 - C12 - C11	118.2 (2)	030 - 527 - 029	115.49 (12)
$C_{9} = C_{13} = C_{8}$	123.28 (16)	030 - 527 - 028	115.69 (11)
$C_{9} = C_{13} = C_{14}$	118.62 (16)	029-527-028	114.61 (12)
U0-U13-U14	118.10(1/)	030 - 527 - 031	102./1(12)
N10	121.85 (17)	029 - 527 - 031	102.86 (13)
N10	119.14 (17)	023 - 621 - 031	102.72(15)
U_{3} U_{14} U_{13} U_{17} U_{15} U_{16}	119.02 (17)	F35-C31-F32	108.6 (3)
01/	125.17 (17)	F35-C31-F34	106.8 (3)
01/	124.77 (17)	F32-C31-F34	106.9 (3)
O16—C15—C9	110.03 (14)	F33—C31—S27	111.8 (2)

C15—O16—C18	118.64 (14)	F32—C31—S27	111.7 (2)
C19—C18—C23	124.78 (19)	F34—C31—S27	110.7 (2)
C11—C1—C2—C3	0.6 (4)	C8—C13—C14—N10	178.32 (15)
C1—C2—C3—C4	-0.4 (4)	C9—C13—C14—C5	178.53 (16)
C2—C3—C4—C12	-0.9 (4)	C8—C13—C14—C5	-0.7 (2)
C14—C5—C6—C7	0.1 (3)	C13—C9—C15—O17	-63.4 (3)
C5—C6—C7—C8	-0.9 (3)	C11—C9—C15—O17	115.1 (2)
C6—C7—C8—C13	0.8 (3)	C13—C9—C15—O16	114.90 (17)
C13—C9—C11—C1	174.81 (18)	C11—C9—C15—O16	-66.6 (2)
C15—C9—C11—C1	-3.7 (3)	O17—C15—O16—C18	7.9 (3)
C13—C9—C11—C12	-3.2 (3)	C9-C15-O16-C18	-170.39 (16)
C15—C9—C11—C12	178.28 (16)	C15-016-C18-C19	90.5 (2)
C2—C1—C11—C9	-177.6 (2)	C15-016-C18-C23	-94.2 (2)
C2-C1-C11-C12	0.4 (3)	C23-C18-C19-C20	-1.1 (3)
C14—N10—C12—C4	-173.36 (18)	O16-C18-C19-C20	173.85 (19)
C26—N10—C12—C4	6.0 (3)	C23-C18-C19-C24	179.2 (2)
C14—N10—C12—C11	5.4 (3)	O16-C18-C19-C24	-5.9 (3)
C26—N10—C12—C11	-175.25 (19)	C18-C19-C20-C21	0.0 (4)
C3—C4—C12—N10	-179.4 (2)	C24—C19—C20—C21	179.8 (3)
C3—C4—C12—C11	1.8 (3)	C19—C20—C21—C22	0.4 (4)
C9—C11—C12—N10	-2.2 (3)	C20-C21-C22-C23	0.1 (4)
C1-C11-C12-N10	179.66 (17)	C19—C18—C23—C22	1.5 (3)
C9—C11—C12—C4	176.56 (17)	O16-C18-C23-C22	-173.29 (17)
C1—C11—C12—C4	-1.5 (3)	C19—C18—C23—C25	-177.9 (2)
C11—C9—C13—C8	-175.30 (17)	O16-C18-C23-C25	7.3 (3)
C15—C9—C13—C8	3.2 (3)	C21—C22—C23—C18	-1.0 (4)
C11-C9-C13-C14	5.5 (3)	C21—C22—C23—C25	178.4 (2)
C15-C9-C13-C14	-175.99 (15)	O30—S27—C31—F33	-178.7 (2)
C7—C8—C13—C9	-179.25 (18)	O29—S27—C31—F33	61.1 (3)
C7—C8—C13—C14	0.0 (3)	O28—S27—C31—F33	-58.3 (3)
C12-N10-C14-C5	175.98 (17)	O30—S27—C31—F32	-56.7 (2)
C26—N10—C14—C5	-3.4 (3)	O29—S27—C31—F32	-177.0 (2)
C12-N10-C14-C13	-3.0 (3)	O28—S27—C31—F32	63.7 (2)
C26—N10—C14—C13	177.62 (19)	O30—S27—C31—F34	62.4 (2)
C6—C5—C14—N10	-178.31 (18)	O29—S27—C31—F34	-57.9 (2)
C6—C5—C14—C13	0.7 (3)	O28—S27—C31—F34	-177.18 (19)
C9-C13-C14-N10	-2.4 (2)		

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C2—H2···O28 ⁱ	0.93	2.51	3.224 (3)	134
C25—H25B···O30 ⁱⁱ	0.96	2.57	3.525 (3)	176
C26—H26A····Cg4 ⁱⁱⁱ	0.96 (3)	2.86 (2)	3.774 (3)	158 (3)
C26—H26B····O29 ⁱⁱⁱ	0.96 (3)	2.56 (3)	3.369 (4)	142 (2)
Symmetry codes: (i) <i>x</i> -1, <i>y</i> , <i>z</i> -1; (ii) <i>x</i> , <i>y</i> , <i>z</i> -1; (iii) <i>x</i> -	-1, <i>y</i> , <i>z</i> .			

sup-7

Table 2

$C - F \cdots \pi$ inter	actions (Å, °).				
Cg1 and Cg3	are the centroids of th	e C9/N10/C11–C14 and	C5-C8/C13/C14 rings,	respectively.	
X	Ι	J	$I \cdots J$	X···J	
C31	F32	$Cg1^{iv}$	3.655 (3)	4.490 (4)	
C31	F32	Cg3 ^{iv}	3.886 (3)	3.974 (4)	
C31	F33	Cg3 ^{iv}	3.746 (3)	3.974 (4)	
C31	F34	Cg3 ^{iv}	3.481 (2)	3.974 (4)	
Symmetry coo	de: (iv) $-x + 1, -y, -z - z$	+ 1.			

Table 3

 π - π interactions (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI...CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings *I* and *J*. CgI_Perp is the perpendicular distance of CgI from ring *J*. CgI_{-} Offset is the distance between CgI and perpendicular projection of CgJ on ring *I*.

 $X - I \cdots J$

121.5 (2) 84.1 (2) 90.4 (2) 101.9 (2)

Ι	J	CgI…CgJ	Dihedral angle	CgI_Perp	CgI_Offset
1	3 ^v	3.502 (2)	2.71 (10)	3.473 (1)	0.445 (1)
2	3 ^v	3.977 (2)	6.38 (11)	3.286(1)	2.240(1)
3	1^{v}	3.502 (2)	2.71 (10)	3.470(1)	0.480(1)
3	2^{v}	3.977 (2)	6.38 (11)	3.503 (1)	1.883 (1)
Symmetry co	de: (v) $-x + 1$, $-y + 1$, -z + 1.			

sup-8

Fig. 1

