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ABSTRACT

Motivation: Ancestral character state reconstruction describes a set

of techniques for estimating phenotypic or genetic features of species

or related individuals that are the predecessors of those present today.

Such reconstructions can reach into the distant past and can provide

insights into the history of a population or a set of species when fossil

data are not available, or they can be used to test evolutionary hypoth-

eses, e.g. on the co-evolution of traits. Typical methods for ancestral

character state reconstruction of continuous characters consider the

phylogeny of the underlying data and estimate the ancestral process

along the branches of the tree. They usually assume a Brownian

motion model of character evolution or extensions thereof, requiring

specific assumptions on the rate of phenotypic evolution.

Results: We suggest using ridge regression to infer rates for each

branch of the tree and the ancestral values at each inner node. We

performed extensive simulations to evaluate the performance of this

method and have shown that the accuracy of its reconstructed

ancestral values is competitive to reconstructions using other state-

of-the-art software. Using a hierarchical clustering of gene mutation

profiles from an ovarian cancer dataset, we demonstrate the use of the

method as a feature selection tool.

Availability and implementation: The algorithm described here is

implemented in C++ as a stand-alone program, and the source

code is freely available at http://algbio.cs.uni-duesseldorf.de/soft

ware/RidgeRace.tar.gz.

Contact: mchardy@hhu.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Many biological studies investigate the ancestral states of one or

several discrete and continuous characters on a phylogenetic tree

(Felsenstein, 2004). Comparative methods correlate the evolution

of alleles at different loci with each other or with a trait and thus

often require the reconstruction of ancestral values. Typical

examples for discrete characters are the reconstruction of the

absence, presence or state of genes or traits for the internal

nodes of the tree (i.e. for the ancestral organisms), while typical

examples for continuous characters are environmental prefer-

ences of different species, measures of morphology or physiology

or behavioral or metabolic properties (Nunn, 2011). Such recon-

structions are also of interest when fossil records cannot be

retrieved, when the phenotype of interest cannot be determined

from the fossil tissue or when studying the evolution of a gene

family across different environmental conditions.

Statistical approaches such as regression or correlation can fail

to estimate correlations between traits correctly when they

assume that closely related species are statistically independent

(Felsenstein, 1985; Grafen, 1989; Harvey and Pagel, 1991).
Comparative methods account for such dependencies by includ-

ing estimates of the phylogeny underlying the data into their

predictions. In the case of continuous characters, most of these

techniques are based on a simple model assuming neutral evolu-

tion of the respective character. The Brownian motion (BM)

model (Felsenstein, 1985) assumes that the trait of a leaf node

in a phylogeny develops as a random walk starting from the

ancestral root. The duration of that walk—and therefore the
change and variance in the trait—is assumed to be proportional

to the change in branch length covered between those two nodes.

At each inner node, the random walk bifurcates, creating two

dependent processes and thus defining a stochastic distribution

for all leaves. Several methods that apply the BM model are

available to reconstruct continuous ancestral characters, and im-

plemented in widely used software packages, such as APE
(Paradis et al., 2004), Geiger (Harmon et al., 2008), Phytools

(Revell, 2012), Mesquite (Maddison and Maddison, 2011),

BayesTrait/Continuous (Pagel, 1999), PAUP* (Swofford, 2003)

and Contml (Felsenstein, 1993).
One of the simplest ways to reconstruct a continuous ancestral

character state was established with Felsenstein’s algorithm for

‘Phylogenetic Independent Contrasts’ (Felsenstein, 1985). In the

Phylogenetic Independent Contrasts algorithm, ancestral values

are computed recursively as the weighted average of their child

values, with the weights set according to the distance (i.e. the

branch length) of these children. In addition, branch lengths
leading to reconstructed internal nodes are rescaled to account

for the uncertainty of the reconstruction. This leads to a

maximum likelihood estimation of the ancestral value for the

root node alone. Other algorithms estimate the values for the

whole tree by re-rooting or by a squared change maximum par-

simony approach (Felsenstein, 2004; Schluter et al., 1997). Linear

regression allows another framework to formulate the recon-
struction of ancestral character states, and generalized least

squares has been suggested as a technique to reconstruct ances-

tral values as a weighted average of the values of all extant spe-

cies, while taking the correlation structure described by the

phylogenetic tree into account (Martins and Hansen, 1997).

This approach is particularly flexible, as it allows detailed

assumptions of the evolutionary process by inclusion of an ap-

propriate covariance matrix. Several possible extensions and
modifications of the BM process have been suggested and can

be considered for ancestral character state reconstruction. For

example, the Ornstein–Uhlenbeck (OU) process models adapta-

tion explicitly by defining a single global optimum (Hansen,

1997) or several local optima (Butler and King, 2004) of*To whom correspondence should be addressed.
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directional selection. A major restriction of the BM and the OU
models, noted in, for example, Harmon et al. (2010), is the
assumption of a constant rate of trait variation throughout the

underlying phylogeny. The early burst model (Blomberg et al.,
2003; Freckleton and Harvey, 2006) offers an alternative that
decreases the rate of evolution exponentially through time, and

describes a process of adaptive radiation [Harmon et al. (2010)
provide a detailed comparison]. The ACDC model (Blomberg
et al., 2003) describes a process of accelerating versus decelerat-

ing rates of character evolution toward an optimum, i.e. a
combination of OU and early burst. Several methods allow us
to estimate BM rates (Garland, 1992; Lynch, 1990; Martins,

1994), to test for variations in that rate or use different rates in
different parts of the tree (McPeek, 1995; O’Meara et al., 2006;

Revell, 2008) or to suggest global branch length transformations
in the phylogeny to account for variable rates (Blomberg et al.,
2003; Pagel, 1999). However, most of the phylogenetic methods

aforementioned do not explicitly aim to reconstruct ancestral
character states. They are originally concerned with correlations
between two or more traits [‘phylogenetic regression’, Grafen

(1989); Felsenstein (2004)] or with tests for deviation from the
assumption of a globally constant rate, and they do not suggest
how to infer ancestral character states for more complex

scenarios. In addition, critical studies note that deciding on the
correct model might be difficult and warn of over-interpreting
the phylogenetic patterns (Blomberg et al., 2003; Boettiger et al.,

2012; Losos, 2011; Price, 1997).

2 APPROACH

We here describe RidgeRace (Ridge Regression for Ancestral
Character Estimation), a new and simple method inspired by

the least-squares optimization technique of Cavalli-Sforza and
Edwards (1967) for the inference of branch weights in a phyl-
ogeny via pairwise distances. RidgeRace does not assume certain

rates at certain regions of the phylogeny or a particular model of
rate change over time. It treats phenotypic measurements at the
terminal nodes of a phylogeny as sample observations and relies

on a linear regression with L2-Norm regularization, allowing
phenotypic rates to vary at each branch. It estimates branch-

wise rates and ancestral characters simultaneously, in a way
that best describes the phenotypes observed at the terminal nodes.
In an extensive simulation study, we evaluated different

variations of BM on randomly created trees and show that our
method performs equally well as or better than established
implementations of state-of-the-art reconstruction algorithms.

We suggest using RidgeRace in studies aiming to reconstruct
ancestral character states of continuous characters when no def-
inite assumptions can be made about the type of evolutionary

process, or when the assumption of a model for phenotypic
evolution is not appropriate at all. The latter might, for example,
be the case in studies that rely only on a hierarchical clustering of

samples instead of phylogenies.
Branch weights inferred by the ridge regression based on

phenotype measurements can be interpreted as rates of

phenotypic change (i.e. phenotypic rates) and provide insights
into particularly interesting areas of the phylogeny. They can
also be used to judge the phenotypic impact of genetic changes

or other types of events associated with branches within the

phylogeny [see, for example, Steinbr €uck and McHardy (2012)].

To demonstrate a possible application of RidgeRace integrating

phenotypic and genotypic data, we studied an ovarian cancer

dataset, created by the Cancer Genome Atlas research network

and recently analyzed with network-based stratification (Hofree

et al., 2013).

3 METHODS

RidgeRace estimates ancestral character states on a phylogenetic tree.

As in the original BM model, we consider the leaf values to be the

result of a weighted sum of intermediate contributions gi created along

the tree, beginning at the root (Fig. 1). The contributions represent the

gain or loss in character value on each branch of the tree so that,

for example, the character value of sample y4 can be described as follows:

y4=g0 + ga +gb + gc;

where a, b and c represent the branches in the tree, and g0 holds a bias

term representing the original contribution of the root node. The

contribution gj of a single branch j can be seen as being analogous to

the formulation of BM: the gain or loss in the phenotype is dependent on

the length lj of branch j and the speed �j of the process, in analogy to the

variance term �2 in the BM model:

gj = lj � �j:

One can then write the solution for the vector of leaf phenotypes y in

matrix form:

ŷ = L�; ð1Þ

where

Li;j=

lj if branch j is on theway from the root to sample i

1 if j=0

0 otherwise

8>><
>>:

Fig. 1. Model of phenotype evolution on a phylogenetic tree. The

observed continuous character values at the nodes yi are the result of a

sum of contributions on ancestral branches. A virtual branch ‘above’ the

root node x1 contributes the global phylogenetic mean, i.e. the ancestral

state of x1
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and � is a vector with a length equal to the number of branches in the

phylogeny, including a single virtual branch above the root to account for

its original contribution g0. This scheme is overparameterized, as it adds a

parameter for each inner branch, and only considers one sample

observation for each terminal node. However, it also allows the inclusion

of measurements at inner nodes (e.g. from fossil records), and it is suitable

for accounting for multiple measurements at single leaf nodes. Such

samples can be added by appending rows to y and L.

Ridge regression is a simple extension of ordinary least squares

regression. As ordinary least squares, ridge regression also aims to

minimize the squared error term, but adds a quadratic regularization

penalty on large values of the weight vector �. A tuning parameter �

controls the relative impact of both terms. The regularization does not

only help to reduce the variance of the model, it also acts as an integrated

parameter selection method for overparameterized models [see Gareth

et al. (2013) for details]. We here use ridge regression to estimate a

vector �̂ that explains the known observations y best:

�̂= argmin
�

X
i

yi � ðL�Þi
� �2

+ �
X
j

�2j : ð2Þ

The textbook solution (Gareth et al., 2013; Hastie et al., 2009) to this

optimization problem is as follows:

�̂= LTL+ �I
� ��1

LTy: ð3Þ

Equation (2) shows how the optimization balances the leaf reconstruc-

tion error versus the quadratic term that penalizes large variance in the

phenotypic rates. A trivial but undesirable solution to the optimization

would set the gain at each terminal branch equal to the according terminal

node value, leaving all other gains empty and making ancestral recon-

struction impossible.

We here use quadratic regularization instead of L1 regularization. The

latter penalizes the absolute value of the weight vector �, driving single

weights toward zero. This would correspond to a phylogeny with many

phenotypic rates at zero and only few branches with rates of high

absolute values, describing a rather implausible model for phenotypic

evolution.

For a given estimate of �̂ as defined in Equation (3), the vector â

containing the phenotypic reconstruction of all inner nodes can then be

computed in analogy to Equation (1):

â =L0�̂; ð4Þ

where

L0i;j=

lj if branch j is on the way from the root to ancestor i

1 if j=0

0 otherwise:

8>><
>>:

This formulation is similar to the generalized least squares method

proposed by Martins and Hansen (1997). Similarly they suggest inferring

ancestral character states as the weighted average of leaf contributions,

with weights assigned according to the covariance between an ancestor

and a leaf [Equation (10) in Cunningham et al. (1998); Martins and

Hansen (1997)]:

â =Wy+ �

W= cov½a; y�var½y��1;

where the covariance between an inner node a and a leaf node y is defined

as �2tða; yÞ, with tða; yÞ being the distance between the root of the tree

and the most recent common ancestor of a and y. RidgeRace differs in

the sense that it allows us to estimate a weight �j for each branch instead

of assuming a constant rate �2 or, more generally, the predefined covari-

ances between nodes. Extensions of the generalized least squares

approach under the BM model use more complex matrices W.

However, the design of W has to be defined in advance based on specific

model assumptions, whereas RidgeRace is able to estimate rates

independently.

An important assumption of linear regression is that the standard

deviations of the error terms are constant and do not depend on the

covariates (here: the branch lengths). This assumption is violated under

the BM model, as leaf nodes with a long distance to the root will have a

high variance in their trait value and phenotypic measurements will pro-

duce larger errors at these nodes compared with the predicted value. The

estimation of � might thus be biased if the depth of single leaf nodes is

large compared with the rest of the tree. We therefore recommend

RidgeRace for approximately balanced trees.

3.1 Estimation of the regularization weight

The regularization weight parameter � in Equation (2) balances the

impact of accuracy at the leaves versus the complexity of the model

and variance of �. To find the optimal value of �, we performed a

leave-one-out iteration over all leaves of the tree. To estimate the good-

ness of fit of a particular �0, we iteratively removed a single leaf x from

the tree, estimated � on the remaining tree and used the rate of the branch

leading to the parent of x as an approximation of the branch rate of the

missing node. The leave-one-out error for x is defined as the squared

difference between the inferred phenotypic value for x and the actual

value according to the input data. The leave-one-out error for a particular

�0 is the sum over all leave-one-out errors for all leaves. Iterating

�0 2 f10
�6; 10�4; . . . ; 10+2g, we selected the final � to be the one that

minimized the leave-one-out error.

3.2 Simulation study

We created random trees with an increasing number N of leaves using the

function rtree in the R-package APE (Paradis et al., 2004; R Core Team,

2012). We simulated BM with variation �2 along the branches of the tree,

resulting in a character assignment for each inner or leaf node. The

process was repeated several times for different trees and different

values for the parameters �2 and N. Supplementary Text S1 provides

details on the simulation algorithm and the parameter settings. The

random tree and the simulated values obtained at the leaf nodes were

provided as input to RidgeRace and to implementations of the maximum

likelihood and generalized least squares algorithms (Felsenstein, 1985;

Hansen, 1997) in the APE package for ancestral character state estima-

tion (Paradis et al., 2004). The reconstructed values thus obtained were

mapped back to the inner nodes of the tree and compared with the

simulated ones (leaf nodes were excluded from the comparison), and

the mean squared error was computed for evaluation.

3.3 Cancer study

A binary matrix describing the absence or presence of non-synonymous

mutations in 9850 genes for 325 patients was taken from the supplemen-

tary data of an ovarian cancer dataset provided by Hofree et al. (2013).

Analogous to the description of the authors in their article and

Supplementary Material, we used their network-based stratification soft-

ware (NBS, version 0.2, available at http://idekerlab.ucsd.edu) with four

clusters, the HM network and default parameters, creating 1000 boot-

strap samples. We then inferred a hierarchical clustering (average linkage)

on the bootstrap similarity matrix using the methods provided in the

scripts of the authors. We used this inferred topology as the input tree

for RidgeRace. We then downloaded information on each patient’s sur-

vival time from the TCGA database (Cancer Genome Atlas Research

Network, 2011). Treating a patient’s survival time as a ‘trait’ of each

patient, phenotypic rates were inferred with RidgeRace as described

above. The binary genetic profile of each patient was then mapped to
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the leaf nodes and reconstructed to inner nodes with the Sankoff

algorithm implemented in RidgeRace, using a simple 0/1 cost matrix

and the ACCTRAN principle in case of ambiguities (Felsenstein,

1985). Changes in the genetic profiles of neighboring nodes were then

reconstructed on the branches of the tree. Finally, the tree was visualized

using FigTree (Rambaut, 2013).

4 RESULTS

4.1 Simulation study

Our evaluation of RidgeRace on data consisting of randomly

drawn phylogenetic trees and continuous ancestral characters

states created by a simulated BM process showed that the

method performs similarly or better than other state-of-the-art

techniques. We compared the performance of RidgeRace with

generalized least squares (Hansen, 1997) and REML

(Felsenstein, 1985), and simulated ancestral character evolution

in a BM setting. Figure 2 shows that all three methods were able

to reconstruct ancestral states well, achieving low mean squared

errors, even for small trees or high variation values. The

variation of the mean squared error of all three methods is

large to observe statistically significant differences in the meth-

ods; however, on average, RidgeRace performed similar or better

in our simulation than the two alternative methods.
To show another practical application of the RidgeRace

method, we mapped the inferred rates � to their associated

branches using an arbitrary random tree from the simulation.

Figure 3 shows such a tree with 25 leaves and BM simulated

in three different regimes that have the internal rate parameters

�i of 5.3, 1.3 and 2.3. Simulated phenotypic values are shown as

node labels. The correlation coefficient between the simulated

ancestral states and those inferred by RidgeRace was

r=0.988. The inferred phenotypic rates vector � was plotted

at the branches, and the branches were colored according to

the relative size of these rates, with blue branches indicating

strongly negative weights, red branches indicating strongly posi-

tive weights and gray branches indicating weights close to zero.

Large changes in the phenotype value mainly occurred in Regime

I, which features the largest � parameter. One can observe that

the inferred phenotypic rate is large when the absolute change in

phenotypic value is large compared with the length of the

associated branch. Therefore, plotting the inferred phenotypic

rates to the phylogeny can be useful when studying the evolution

of a population or a set of species. It will visualize regions in the

tree that are associated with rapid phenotypic evolution.

4.2 Application to ovarian cancer data

According to the World Health Organization, cancer is a leading

cause of disease-related deaths worldwide and was responsible

for 7.6 million deaths in the year 2008 (WHO, 2013). The disease

is the result of a complex interplay of genetic preconditions,

external influences and interactions with the immune system

(Hanahan and Weinberg, 2000, 2011). For a wide variety of

cancer types, recent studies have identified genes that are signifi-

cantly associated with cancer risk, onset and progression (e.g.

Cancer Genome Atlas Research Network, 2008, 2012a, b,

2013; Kandoth et al., 2013).
Hofree et al. (2013) argue that somatic mutations are likely to

contain the causal driver events of tumor progression, and that

this type of data provides a promising source of information to

identify clinically relevant subclusters. Such subclusters are iden-

tified with methods that find groups of samples with significant

differences in their allele frequency profile, a process described as

stratification. Network-based stratification is a new clustering

method that smooths the sparse and diverse genetic profiles

with the help of gene interaction networks (Hofree et al.,

2013), and the authors show that it produces clinically meaning-

ful clusterings. We used a dataset and the software provided by

the authors to reconstruct a hierarchical clustering on somatic

mutation data of ovarian cancer samples. We thus created a tree

structure showing similarities in the genetic profiles of the tumors

of ovarian cancer patients (Fig. 4). The tree structure may be

error-prone because of the high diversity of genetic aberrations in

tumors, but their main branches closest to the root are likely to

represent biologically meaningful subclusters (see also argumen-

tation in Hofree et al., 2013).
It was not possible to determine whether our inferred cluster-

ing was completely identical to that of Hofree et al. (2013), as the
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Fig. 2. Mean squared error between the inferred ancestral characters and the true simulated values, when using maximum likelihood reconstruction

(yellow), generalized least squares (red) and RidgeRace (light blue). The plot shows (a) the dependence of performance on the standard deviation � of the

BM process or (b) performance when increasing the number of leaf nodes in the tree
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exact tree was not provided by the authors. However, we

observed similar cluster sizes and distributions of survival time

in the clusters. We found that patients assigned to the smallest of

the four subtypes showed an increased survival time (Fig. 4,

green cluster). A RidgeRace analysis of patient survival time as

a phenotype consistently showed a strong positive rate increase

in the branch leading to that cluster (Fig. 4, marker m1).

Similarly, RidgeRace inferred a decrease in survival time for

the branch leading to the yellow cluster (branch m2). Branch

m3 was associated with a rather small decrease in survival time

because the red cluster splits in distinct two subtypes with a

successive second increase (branch m5) or a decrease (branch

m4) in survival time, with branch m4 leading to the majority of

the red cluster, which had the lowest survival time of all four

clusters.
RidgeRace reconstruction can be combined with the recon-

struction of discrete genetic events. We mapped the binary

data encoding the absence or presence of non-synonymous mu-

tations in a selection of genes to the tree. The mapping confirmed

the diverse nature of the somatic mutations. Only P53 was found

to be altered in almost all patients and was reconstructed to have

mutated at the root of the tree. Beside P53, only TTN was re-

constructed to change on a higher level node: it was ‘gained’

(mutated) at branch m3 and was present in 83 of 85 patients of

the red cluster. RYR2 was gained on branch m5 and present in 9

of 85 patients in the red cluster. Besides these changes, no change

appeared on a branch higher than five levels below the root.

4.3 System requirements

RidgeRace requires only minimal system resources (5100MB

RAM). The C++ implementation relies on the boost ublas library

(BOOST, 2014) to solve the ridge optimization [Equation(3)]. The

running time of a full RidgeRace inference is larger than the time

required by comparable methods (Table 1, measured using an Intel

XeonX5660with2.8GHz)but stillwithin the rangeof a fewminutes.

The majority of the running time for RidgeRace is consumed by

estimating the � parameter, performing a leave-one-out iteration

over all leaf nodes of the tree and testing

� 2 f10�6; 10�4; . . . ; 10+2g. Decreasing the evaluation range for �
or performing the leave-one-out iteration only on a subset of the leaf

nodes can considerably decrease the running time for larger trees.

5 CONCLUSION

We here describe a new method for the inference of ancestral

character states for continuous characters by performing a ridge

regression between the total branch length reaching from the

Fig. 3. Reconstruction of the phenotypic rates � along the branches of a random tree with 25 leaves, simulated with three regimes and a hypothetical

phenotypic trait that resulted from a BM process with original mean zero and standard deviations �I=5:3, �II=1:3 and �III=2:3 in regimes I, II and III.

The inferred rates visualize the speed of phenotypic evolution from strongly decreasing (red) to strongly increasing (blue). Absolute phenotypic rates are

clearly largest in the regime with the highest � parameter
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root to a leaf node and the phenotypic value of that leaf. The

inference is made by minimizing the prediction error at extant
nodes as well as an additional L2-norm regularization factor.

The regularization forces the phenotypic rate to be distributed

more equally across the whole tree and to branches shared by

several nodes, circumventing the trivial case that explains the

phenotype by a gain at the terminal branches owing to the

overparameterization.
Our evaluation showed that RidgeRace achieved a good

congruence between inferred and simulated ancestral charac-

ter states, and that it performed similarly to or better than two

other state-of-the-art methods in terms of the mean squared

error. RidgeRace does not assume any underlying model of

evolution, and thus, the method allows large flexibility when

no definite assumptions can be made about the type of evo-

lutionary process. The formulation of the optimization problem

[Equation(2)] allows the straightforward inclusion of

measurements at ancestral nodes (e.g. from fossil records). In a

similar fashion, multiple measurements at a node can be easily

included to lend further support to the inference. Such meas-

urements might originate from multiple observations of the

same trait for the same species, or they might represent sev-

eral traits fitted together. Finally, visualization of the

inferred branch weights � along the tree allows a detailed inter-

pretation of the specific phenotypic rates and can indicate

short periods of strong directional selection or of increasingly

Fig. 4. Application of RidgeRace to a hierarchical clustering on somatic mutations inferred for an ovarian cancer dataset. Colors on the side of the tree

indicate the subtypes inferred with network-based stratification (Hofree et al., 2013). Branches are colored according to the phenotypic rate parameter �;

the thickness of branches is proportional to the number of nodes below them. Branches leading directly to leaf nodes were colored gray for improved

visibility. Labels m1 tom5 indicate branches with strong changes in patient survival time. Changes in the absence or presence of mutations in the selected

genes are indicated on all branches with four or more children

Table 1. Comparison of average running times in seconds for RidgeRace

and the APE implementations of GLS and REML, shown for trees of

different size, ranging from 100 to 500 leaf nodes

Method 100 200 300 400 500

RidgeRace 4+0 29+1 135+1 1074+7 3372+24

GLS 1 2 3 7 10

REML 2 6 15 38 123

Note: RidgeRace running time is provided as the running time required for full �

inference plus time required for ACR.
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fast evolution, or regimes of the phylogeny that feature larger
variation overall.
In our application to the genetic profiles of ovarian cancer

data, we demonstrated that RidgeRace was able to reconstruct

the main clusters of the phenotype distribution. We also
reconstructed changes in the genetic profiles on the branches of
the tree. However, no associations between known genetic aber-

rations and change in survival rate were found for these data.
Nevertheless, this study demonstrated the general functionality
of the method and suggests future extensions. Patient survival

time as a phenotype is a biased measurement, as it is based on the
time of diagnosis and the (potential) death of the patient. It may
also be dependent on many other factors, such as the patient’s

age and the type of therapy received. As RidgeRace can perform
a regression on the patient data, such information could easily be
included as additional covariates (features) in the regression, if
available. This would allow us to control for the influence of

such factors and provide insights into their relevance relative to
the genetic factors.
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