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Metabolic preferences of tumor cells vary within a single tumor, contributing to tumor

heterogeneity, drug resistance, and patient relapse. However, the relationship between

tumor treatment response and metabolically distinct tumor cell populations is not

well-understood. Here, a quantitative approach was developed to characterize spatial

patterns of metabolic heterogeneity in tumor cell populations within in vivo xenografts

and 3D in vitro cultures (i.e., organoids) of head and neck cancer. Label-free images of

cell metabolism were acquired using two-photon fluorescence lifetime microscopy of the

metabolic co-enzymes NAD(P)H and FAD. Previous studies have shown that NAD(P)H

mean fluorescence lifetimes can identify metabolically distinct cells with varying drug

response. Thus, density-based clustering of the NAD(P)H mean fluorescence lifetime

was used to identify metabolic sub-populations of cells, then assessed in control,

cetuximab-, cisplatin-, and combination-treated xenografts 13 days post-treatment

and organoids 24 h post-treatment. Proximity analysis of these metabolically distinct

cells was designed to quantify differences in spatial patterns between treatment

groups and between xenografts and organoids. Multivariate spatial autocorrelation and

principal components analyses of all autofluorescence intensity and lifetime variables

were developed to further improve separation between cell sub-populations. Spatial

principal components analysis and Z-score calculations of autofluorescence and spatial

distribution variables also visualized differences between models. This analysis captures

spatial distributions of tumor cell sub-populations influenced by treatment conditions

and model-specific environments. Overall, this novel spatial analysis could provide new

insights into tumor growth, treatment resistance, and more effective drug treatments

across a range of microscopic imaging modalities (e.g., immunofluorescence, imaging

mass spectrometry).

Keywords: cell metabolism, tumor heterogeneity, multi-photon microscopy, spatial statistics, image analysis,

tumor models

INTRODUCTION

Cancer cells within a single tumor have heterogeneous function and phenotype (1), resulting in
unpredictable progression and treatment response (2). However, the relationship between these
diverse cell populations and global tumor activity is not well-understood. Furthermore, treatment
response is altered by interactions between tumor cell populations and their microenvironment.
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Changes in the tumor microenvironment can contribute to
increased tumor cell heterogeneity, directing these cells to
adapt genetic, epigenetic, and metabolic processes for growth
and survival (3). These cell-level adaptations could include
mechanisms of drug resistance, so an understanding of cell-level
tumor heterogeneity could provide insight into more effective
cancer treatments.

Experimental tumor models are crucial for investigating
effects of tumor heterogeneity in cancer progression and drug
development. Mouse models are commonly used because they
are well-characterized and maintain in vivo tumor conditions.
3D organotypic cultures (i.e., organoids) are a popular emerging
model system because organoids offer increased throughput
compared to in vivo models, while maintaining key features of
the original tumor, including drug response (4). Both models
enable microscopic imaging of tumor cell function andmetabolic
activity. These models also provide well-defined systems to
test new methods for quantifying heterogeneity in tumor cell
function. Quantifying spatial functional heterogeneity within in
vivo mouse models and in vitro tumor organoids could establish
a link between global tumor drug response and tumor cell
heterogeneity, while highlighting differences between in vivo and
in vitro 3D model systems. This link between cell-level behavior
and overall tumor response would provide fundamental insight
toward developing new treatments that target multiple cell sub-
populations, and comparisons between 3D cell culture and in vivo
systems could inform on the best use of each model system.

Cell-level spatial relationships influence macroscale tumor
behavior, but quantitative analysis of tumor microscopic spatial
structure has been limited (5). Mathematical modeling has shown
promise in simulating tumor spatial heterogeneity but may not
account for all biological adaptions that occur within the tumor
(6). Alternatively, spatial analysis of experimental models can
account for the physical location of observations to quantify
local distributions and spatial associations within data, including
microscopic images (7). Computational biological image analysis
provides quantitative insight into cellular activity (8, 9), and pre-
existing data sets provide a readily available source of annotated
data to develop and validate these image analysis tools (10–
12). A subset of these methods include population clustering,
which can identify distinct cell populations within images, and
proximity measurements, which define cellular organization
within and between these distinct cell populations (13). Spatial
autocorrelation also provides a measure of similarity within
local cell neighborhoods through comparisons between single
cell measurements and averages across neighboring cells, and
can be adapted for multivariate assessment (13, 14). Previous
studies have used subsets of these techniques to assess qualitative
spatial structure within histology sections or fluorescently-
labeled samples to describe the organization of multiple cellular
compartments and correlate to genetic profiling and prognosis
(15–20). However, these approaches can only provide a snapshot
of the spatial organization at a single point in time, and require
sample destruction, fixation, and labeling. Furthermore, previous
studies have not investigated spatial patterns of metabolic
heterogeneity at the single cell level within living samples, which
may reflect unique sources of microenvironmental stress or drug

resistance. Novel processes governing bulk tumor behavior could
be characterized by integrating analytical approaches to assess
intra-tumor spatial metabolic heterogeneity based on single-cell
analysis of viable tumor models.

Tools to assess functional heterogeneity at the cellular level
are needed to better understand mechanisms that drive tumor
drug response. Optical metabolic imaging (OMI) can non-
invasively monitor spatial and temporal changes in cellular
metabolism across intact, living 3D tumor models. OMI uses
two-photon microscopy to quantify the fluorescence intensities
and lifetimes of NAD(P)H and FAD, which are metabolic
co-enzymes involved in several cellular metabolic processes
(21–23). The fluorescence properties of NADH and NADPH
overlap, and are referred to collectively as NAD(P)H. The
optical redox ratio, defined as the ratio of NAD(P)H intensity
to FAD intensity, measures the oxidation-reduction state of
the cell and correlates with mass spectrometry measurements
of NADH to NAD+ ratios, and inversely correlates to oxygen
consumption measurements (23–28). The fluorescence lifetimes
of free and enzyme-bound NAD(P)H and FAD are distinct, and
thus provide complimentary information to the optical redox
ratio, specifically on enzyme binding activity and quenchers
in the microenvironment (23, 25, 26, 29, 30). Previous studies
have shown that NAD(P)H lifetimes change depending on
the particular enzyme bound to NADH, indicating that that
NAD(P)H lifetime reports on shifts in enzyme activity in cells
(31). Also, lifetimes of NAD(P)H correlate with intracellular
NADPH to NADH concentration ratios (32). OMI has been
previously demonstrated for monitoring heterogeneous changes
in cell metabolism with drug treatment in mouse models of
cancer in vivo and in 3D tumor organoids in vitro (30, 33, 34).
Altogether, OMI generates 3D images at sub-cellular resolution
without requiring exogenous labels, sample fixation, or sample
sectioning, and thus allows for the 3D spatial context of tumors to
be maintained in living samples. Single-cell OMI measurements
can quantify metabolic heterogeneity over time and space
within the same living sample and can thus relate microscopic
heterogeneity to whole-tumor growth.

Here, we developed a suite of spatial statistical analysis tools
to quantify the spatial diversity of tumor cell metabolism based
on OMI measurements. These tools were applied to previously
published in vitro and in vivo OMI data. Based on previous
evidence showing NAD(P)H mean lifetime (τm) identifies
distinct tumor cell populations, density-based clustering of
NAD(P)H τm was used here to identify cell populations with
distinct metabolic activity within xenografts 13 days post-
treatment and organoids 24 h post-treatment (30, 35, 36). Maps
of the clustered NAD(P)H lifetime populations were created
to qualitatively evaluate the organization of sub-populations
and visualize connectivity within and between populations.
Population proximity calculations provided quantitative metrics
to describe the spatial distribution of NAD(P)H lifetime sub-
populations within xenografts and organoids.Multivariate spatial
autocorrelation was then designed for all OMI variables to
improve separation between metabolic sub-populations based
on distinct spatial organization. Finally, z-score calculations
and multivariate spatial principal components analysis across
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all OMI variables were used to assess sample variability and
inter-model comparisons of spatial metabolic trends. This work
provides a novel approach to quantify spatial patterns in cell
function across in vivo and in vitro tumor models with broad
applicability to additional single-cell imaging datasets, such as
microscopy images using fluorescent probes or imaging mass
spectrometry (37–39).

MATERIALS AND METHODS

Recurring abbreviations are listed in Supplementary Table 1.

Head and Neck Cancer Xenograft Model
Mouse xenografts were grown and treated as previously
described (30). Briefly, FaDu human squamous cell carcinoma
cells were injected subcutaneously in both flanks of nude
mice to generate FaDu xenografts for imaging experiments.
Tumor-bearingmice received intraperitoneal injection of vehicle,
cetuximab (33 mg/kg) (40, 41), cisplatin (6 mg/kg) (42), or
their combination three times per week over 13 days. Tumor
growth curves show that cetuximab or cisplatin treatment
alone results in stable disease (no change in tumor volume)
and their combination results in response (reduction in tumor
volume), compared to control over this 13 day treatment time-
course (36). Mice from each treatment group were selected for
imaging 13 days post-treatment. Flank tumors in anesthetized
mice were exposed by cutting away the skin layer covering
the tumor prior to transfer onto the microscope stage for
in vivo imaging. All animal studies were approved by the
Vanderbilt University Animal Care and Use Committee and
were designed according to NIH animal welfare guidelines. Mice
were isoflurane-anesthetized prior to any reported surgical or
imaging procedures.

Organoid Generation
FaDu organoids were generated according to previously reported
methods (36). FaDu tumors from nude mice were excised
and dissociated to generate cell suspensions for 3D cultures.
Macrosuspensions were combined with Matrigel at a 1:2 ratio by
volume and plated in 100 µL droplets on 35mm glass bottomed
imaging dishes (MatTek). Organoids were incubated overnight
to solidify, then maintained in fresh media prior to start of
treatment. At 24 h prior to imaging, media was replaced with
treatment-supplemented media containing 20 nM cetuximab
(43), 33µM cisplatin (44, 45), or their combination. Twenty
four hours of these treatments results in no significant change
in number of cells per organoid or organoid volume. Previous
studies demonstrate early treatment response in organoids
(1–3 days) is consistent with measured tumor growth at
later timepoints (several weeks) (33, 34). Accordingly, 24 h of
treatment in organoids does result in significant decreases in
NAD(P)H τm for cisplatin, cetuximab, and cisplatin+cetuximab
(combination) treatment, which is an early indicator of treatment
response consistent with later changes in tumor volume (36).

OMI Image Acquisition
Measurements of fluorescence lifetime (FLIM) and intensity
were acquired through a two-photon microscope and collected

with a GaAsP photomultiplier tube equipped for time-correlated
single photon counting (Becker and Hickl). NAD(P)H (750 nm)
and FAD (890 nm) fluorescence were excited with a tunable
titanium-sapphire laser (Coherent). Fluorescence emission for
NAD(P)H and FAD were collected at 400–480 and 500–600 nm,
respectively. Intensity and FLIM images were acquired for each
field of view with 256 × 256 pixel resolution. Lifetime decay
curves were integrated over a 60 s total scan time with a pixel
dwell time of 4.8 microseconds. The photon count rate was
maintained at ∼2–3 × 10∧5 photons/second during imaging
for optimal photon counting and minimal photobleaching. Each
xenograft or organoid was imaged as previously described (30,
46). For xenograft experiments, 4–6 representative fields of view
were acquired per tumor ∼20–40µm from the tumor surface,
with 2–6 tumors per treatment group (∼1,000–2,000 cells per
treatment group). For organoid experiments, a single image was
captured several cell layers from the surface for 4–6 individual
organoids within a given treatment group (∼200–400 cells per
treatment group). These imaging planes were chosen for both in
vivo and in vitro imaging to avoid surface artifacts and sample a
viable region away from the necrotic core.

Image Analysis
Fluorescence lifetimes corresponding to free and protein-bound
NAD(P)H and FADwere calculated using SPCImage (Becker and
Hickl). Measured fluorescence decay curves were deconvolved
from the instrument response and fit to the following bi-
exponential model (26): I (t) = α1e

−t/τ1+ α2e
−t/τ2 + C.

Second harmonic generation signal from urea crystals at an
incident wavelength of 900 nm was measured to determine the
instrument response function (full width at half maximum= 244
ps). From this model, the short and long lifetime components
(τ1, τ2) and the fractional contributions of each (α1, α2) were
calculated for individual pixels across NAD(P)H and FAD
images. Photon events over a 3 × 3 pixel area were binned
to improve photon count. NAD(P)H and FAD intensity images
were generated through pixel-by-pixel integration of photon
count over fluorescence decay time for respective lifetime images.
The per-pixel ratio of NAD(P)H fluorescence intensity to FAD
intensity was then calculated to determine the optical redox
ratio. A customized CellProfiler pipeline was used to segment
individual cell cytoplasms (nucleus excluded) (35). This mask
was applied to all cells per image to compute the redox ratio,
mean fluorescence lifetime of NAD(P)H (τm = α1τ1 + α2τ2),
FAD τm, free lifetime (τ1 for NAD(P)H and τ2 for FAD), protein-
bound lifetime (τ2 for NAD(P)H and τ1 for FAD) and fractional
contributions of the lifetimes (α1 and α2) for each cell cytoplasm
per image (33). Note that α1 + α2 = 1 so the fraction can be
determined from α1 only. Therefore, “OMI variables” include 9
total variables: redox ratio, NAD(P)H τm, τ1, τ2, α1, and FAD τm,
τ1, τ2, α1.

Quantitative Spatial Analysis
Analytical tools were developed to quantify spatial distributions
of metabolic sub-populations based on OMI variables within
in vitro and in vivo tumor models. These tools quantified
the effects of treatment on the spatial diversity of tumor
cell metabolism. Through this approach, clustering techniques
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identified functionally distinct cell populations in OMI data.
Additionally, spatial statistical analysis of OMI data revealed
patterns in their spatial organization. Analysis steps are briefly
outlined in Figure 1 and discussed in detail below.

Single Variable Analysis of NAD(P)H τm Images

Cell sub-population assignment and mapping
Previous studies have shown that NAD(P)H τm can predict
drug sensitivity in FaDu tumors and organoids, where low
NAD(P)H τm indicates response to treatment and high
NAD(P)H τm indicates resistance (30, 36). Therefore, the
single variable analysis here focuses on NAD(P)H τm. In the
current study, NAD(P)H τm measurements were aggregated
across all cells per condition prior to clustering. Kernel density
estimation of the data distribution was first used to visualize
the presence of multiple cell populations based on NAD(P)H
τm (Figure 1A, black line; “ksdensity” in MATLAB) (47).
Density-based clustering methods were then used to detect
multiple cell populations within images (“densityClust” in
MATLAB) (48). Cell clusters were determined from single-
cell NAD(P)H τm measurements (36). Similarity matrices were
calculated from pairwise differences between NAD(P)H τm
values (picoseconds) across all cells within an aggregated dataset.
A local density per cell and similarity threshold between
cells was calculated as described in Rodriguez and Laio (48).
Cluster centers were defined as cells with a high local density
and large pairwise difference from the nearest high density
cell. Each cell was then assigned to a cluster matching the
cluster assignment of the nearest high density cell. Color-
coded frequency distribution histograms visualized the bins
containing cluster centers (Figure 1A, green bars) and separation
of populations (Figure 1A, red and blue bars). Clusters with
lowest NAD(P)H τm were designated as a “responsive” cell
population while clusters with highest NAD(P)H τm were
designated as a “resistant” cell population based on previous
studies relating drug response to NAD(P)H τm values (30, 36).
Density-based clustering analysis was validated by comparing
class assignments of two lines of breast carcinoma cells to expert
cell classification based on morphology [expert classification
described in (35)]. Confusionmatrices and classification accuracy
(≥93%, Supplementary Figure 1) confirm the accuracy of
density-based clustering.

Spatial proximity analysis
Proximity measures were quantified to assess the spatial
distribution of cell populations within individual images. Two
cells with an inter-cellular physical distance less than the
average cell diameter (dcell_diameter) were defined as connected
neighbors and given a weight of 1, while two cells with inter-
cellular distances greater than dcell_diameter (non-neighboring
cells) were weighted as 0. Weights were calculated pairwise
across all cells within an image. To incorporate population
assignments from density-based clustering, weights were kept
as 1 if the cell neighbor was defined as responsive or weighted
as 2 if the neighbor was defined as resistant. These weights
were also defined pairwise for each cell-neighbor combination.
Distance matrices were generated to assess the physical distance

between neighbors with identical and dissimilar population
assignments (i.e., responsive or resistant). The minimum intra-
population and inter-population physical distances (i.e., intra-
and inter-population proximity) were then determined for each
cell, representing the distance to the nearest cell of identical
and dissimilar population assignment (Figures 1C,D). Intra-
population and inter-population distances were averaged across
all cells for a given treatment for both model systems. To
account for difference in scale between xenografts and organoids,
xenograft distance measurements were normalized to the width
of the imaging field of view, while organoid measurements were
normalized to the organoid diameter. Additionally, centroids
were calculated for each organoid sample (“regionprops” in
MATLAB) to evaluate physical distance from each cell to the
organoid center. Distance to organoid centers (i.e., organoid
centricity) was independently assessed for responsive and
resistant cell populations (Figure 1E).

Multivariate Spatial Analysis of All OMI Variable

Images
Multivariate analyses were used to determine cellular spatial
organization across all OMI variables (redox ratio, NAD(P)H
τm, τ1, τ2, α1, and FAD τm, τ1, τ2, α1) for improved separation
between responsive and resistant cells.

Multivariate spatial autocorrelation
Spatial autocorrelation of all OMI variables was evaluated at the
global and local scale for all samples (xenografts and organoids).
Moran’s I (Figure 1F) was used to determine macroscale spatial
similarity for each OMI variable per image (ape package in R)
(49). Moran’s I was defined as:

I =
N

W

∑i=m
i

∑j=n
j wij(xi − x)(xj − x)

∑i=m
i (xi − x)2

(1)

Where wij represents the weight (0 or 1) indicating connection
(1) or no connection (0) between a pair of cells, xi, xj represent
the OMI variable value at a given cell location, x represents the
OMI variable average across the image, N represents the number
of cells in the image, andW represents the total sum of the weight
matrix (wm,n) (14).

The range of Moran’s I values extended between −1 and
1. An image containing cells surrounded by cells with similar
OMI variable values is represented by I values approaching 1,
while an image with cells surrounded by cells with dissimilar
OMI variable values is represented by I values approaching −1.
Images with cells that are surrounded by cells with both similar
and dissimilar OMI variable values (i.e., random organization) is
represented by I values near 0. All spatial autocorrelation analysis
was implemented in R (ape, ade4 packages in R) (49, 50).

Local indicators of spatial association (LISA) were used
to visualize the similarity of OMI variables within local cell
neighborhoods as a function of model system (xenograft or
organoid), treatment condition, and drug response (responsive
or resistant) (51). For each OMI variable, individual cell
measurements (Figure 1F, x-axis) were correlated with the
measurement average of its “neighbors” (cells within one cell
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FIGURE 1 | Population density analysis and spatial statistical analysis quantify spatial heterogeneity of cell metabolism. Single variable analyses using NADH τm data

is outlined in (A–E). (A) Frequency histograms of single-cell NAD(P)H τm values (blue, green, red bars) are fit with kernel density fitting (black line) to represent the data

distribution. Density-based clustering analysis of NAD(P)H τm identifies sub-populations based on cluster centers (green bins). Cells are assigned to the nearest cluster

with higher local density (responsive cluster, blue bins; resistant cluster, red bins). (B) Population spatial maps of NAD(P)H τm-defined clusters include markers of

responsive cells (blue dots), resistant cells (red dots), and organoid centroid (green x) on top of the original NAD(P)H intensity image (gray). (C) Intra-population

(Continued)

Frontiers in Oncology | www.frontiersin.org 5 November 2019 | Volume 9 | Article 1144

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Heaster et al. Spatial Analysis of Tumor Metabolism

FIGURE 1 | proximity is defined as the distance between cells within a population (responsive or resistant), represented by the average length of the blue (responsive)

or red (resistant) arrows in the plot. (D) Inter-population proximity is defined as the distances between cells belonging to separate populations (responsive or resistant),

represented by the average length of the purple arrows in the plot for the responsive (blue) cells. (E) Organoid centricity is defined as the distance from the organoid

center to each cell within a class (responsive or resistant), represented by the average length of the blue (responsive) or red (resistant) arrows in the plot. Multivariate

analyses performed across all OMI variables is described in (F,G). (F) Multivariate spatial autocorrelation assesses the similarity of a local cluster by plotting each OMI

variable for each cell (observed variable) against the average of its neighboring cells (lagged variable). The slope of the data represents the Moran’s I, a global measure

of spatial autocorrelation. (G) Multivariate spatial principal components analysis illustrates variation between xenografts and organoids as a function of treatment group

and cell population (responsive or resistant). Loadings vectors represent the contribution of each OMI or spatial variable to each spatial principal component (x- and y-

axes). Scores for each image are calculated from a linear combination of each variable weighted by their loadings. Lagged scores correspond to the combination of

weighted variables for neighbors within an image. Vector lengths represent the average magnitude of difference between cell scores and neighbor (lagged) scores.

diameter) (Figure 1F, y-axis). A cell was defined as “high” or
“low” if the OMI variable value for the cell was above or
below the mean across all cells within an image, respectively
(Figure 1F, vertical line). Similarly, a neighborhood (defined
as all the neighbors of a given cell) was defined as “high” or
“low” if the mean OMI variable for the neighborhood was
above or below the mean across all neighborhoods within an
image, respectively (Figure 1F, horizontal line) (51). Individual
cells and their neighbors with identical definitions (high/low)
for a given OMI variable were designated as homogeneous cell
neighborhoods (Figure 1F, upper right and lower left quadrants).
High prevalence of homogeneous cell neighborhoods indicated
metabolic activity was largely dependent on spatial organization
of cells.

Spatial principal components analysis
Spatial principal components analysis (spatial PCA) was applied
by modifying standard principal components analysis to account
for spatial structure based on Moran’s I statistics (adespatial
package, R) (34, 35, 52). All OMI variables and spatial parameters
collectively were referred to as “variables.” Lag matrices were
created from the product of spatial weights matrices (wm,n,
Equation 1) and corresponding variable matrices. Covariance
between the variable matrix and lagged variable matrix was then
assessed to define the principal component axes. The spatial
principal component loadings were determined, representing
each variable’s contribution to a linear combination maximizing
both the variance and Moran’s I across the data. Loading vectors
were plotted to observe the magnitude and direction of each
variable projected onto the spatial principal component axes
(Figure 1G, red arrows) (53). Principal component scores per
image were determined by averaging linear combinations of
the product of each variable and the corresponding component
loadings across all cells (Figure 1G, black dots). Similarly, lagged
scores were determined by averaged linear combinations of
the lag matrix weighted by the spatial principal component
loadings (Figure 1G, arrowheads). Vectors connecting principal
component scores and lagged scores demonstrated the average
difference in measurements between cells and their neighbors for
a given condition.

Z-score standardization
The magnitude of differences between xenografts and organoids
was assessed by compiling variables (OMI variables and spatial
parameters) across all experimental groups to compare Z-scores
across models. Z-score transformation for all variables per image

was performed by subtracting the variable average and dividing
by the variable standard deviation of the corresponding control
or treated organoid condition (54). Z-score heatmaps were
generated across all treatment conditions and model systems to
demonstrate differences betweenmodels (gplots package, R) (55).

Statistical Analysis
Student’s t-tests and Tukey’s multiple comparison statistical
tests for non-parametric, unpaired comparisons were performed
to assess differences across organoid and xenograft treatment
conditions (54). Error bars indicate the mean ± standard
deviation. Measurements with an alpha value <0.05 were
considered statistically significant. Cohen’s d values were also
computed to determine effect size (54). Local constant non-
parametric regression was used to assess significant relationships
between treatment condition and Moran’s I for each OMI
variable (56, 57). Xenograft or organoid treatment condition
and corresponding standard error of Moran’s I values served
as explanatory variables evaluated for effects on the dependent
variable, Moran’s I.

RESULTS

Spatial Clustering Based on NAD(P)H τm
To distinguish spatial differences in heterogeneous cell
populations with respect to treatment, we first implemented
spatial clustering based on a single OMI variable, specifically
NAD(P)H τm. This was assessed on a previously published
dataset of images from control and cetuximab-, cisplatin-,
and combination-treated FaDu xenografts and organoids
after 13 days and 24 h, respectively. Published studies of this
dataset include standard measurements of organoid and in vivo
treatment response, which are consistent with studies showing
agreement between early treatment response in organoids and
long-term tumor volume measurements (33, 34, 36). NAD(P)H
τm was chosen for this analysis as decreases in NAD(P)H τm with
treatment in vivo and in organoids correlate with later decreases
in FaDu tumor volume (30). Cells with high NAD(P)H τm were
treatment resistant, whereas cells with low NAD(P)H τm were
responsive to treatment in these previous studies. Later analysis
(Figures 4–6) defined multivariate spatial heterogeneity across
all 9 OMI variables.

Population distributions were used to visualize the presence
of multiple cell populations with either high (resistant) or
low (responsive) NAD(P)H τm in response to treatment
(Figure 2). Sub-population analysis also demonstrated the
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FIGURE 2 | Sub-population distributions and population mapping visualize treatment-dependent spatial heterogeneity within FaDu xenografts and organoids.

Population density modeling of single cell measurements of NAD(P)H τm in FaDu (A) xenografts and (B) organoids reveal heterogeneous cell populations within

control, cetuximab-treated, cisplatin-treated, or cetuximab and cisplatin-treated (combination) groups. Representative population maps of control and treated (C)

xenografts and (D) organoids demonstrate spatial organization of cell populations with differing treatment response. Individual cells are color-coded based on the

population assignment determined from density-based clustering analysis. Responsive populations, corresponding to low NAD(P)H τm, are coded red, and resistant

populations, corresponding to high NAD(P)H τm, are coded blue. Cell outlines are in white. Scale bar, 50µm.

extent of heterogeneity across models and treatment groups
(Figures 2A,B). For example, multiple populations are only
present in cetuximab-treated organoids but are present in
both cetuximab- and cisplatin-treated xenografts, suggesting
xenografts may exhibit increased heterogeneity in response to
single agent treatment (Figures 2A,B).

Density-based clustering was performed to classify treatment
response on a single-cell level. Density-based classification
using NAD(P)H τm was validated with high accuracy (≥93%;
Supplementary Figure 1) compared to expert classification in

2D cultures of cell lines. Following validation, this method was
used to classify responsive and resistant cells within xenografts
and organoids. Population assignments for each cell were
mapped back to the images to display the spatial organization of
responsive and resistant populations (Figures 2C,D). Population
maps qualitatively demonstrate low dispersion of cell populations
and their macroscale organization. Overall, visualization of cell
organization revealed spatial clustering patterns of resistant
and responsive cell populations, which are unique to specific
treatment and microenvironmental conditions.
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FIGURE 3 | Spatial clustering and proximity based on NAD(P)H τm for responsive and resistant cell populations. (A) Clustering percentage in xenografts after 13 days

of treatment. Control and combination-treated xenografts have only one population of cells each, indicated by +++. (B) Clustering percentage in organoids after

24 h of treatment. Only cetuximab treatment yields multiple cell populations in organoids. (C) Average distance between cells within a single population

(intra-population proximity) in xenografts. (D) Intra-population proximity in organoids. (E) Average distance between responsive and resistant cells (inter-population

proximity) in xenografts and organoids for treatments that have 2 populations. (F) Average distance to organoid centers (organoid centricity). (*, ***, ****p < 0.05,

0.001, 0.0001; Tukey-HSD test).

Next, quantitative metrics were developed to directly compare
the spatial distributions of responsive and resistant cell
populations that were defined by NAD(P)H τm and evaluated
on control and drug-treated FaDu xenograft and organoid
images (Figure 3). Clustering percentages informed on mixing
between responsive and resistant cells, providing an objective
comparison of cell dispersion across treatment conditions and
model systems (Figures 3A,B). For example, xenografts 13
days post-treatment displayed considerable segregation between
responsive and resistant cells, with >90% of cell neighbors
belonging to the same population in conditions with both
cell classes (cetuximab and cisplatin groups; Figure 3A), while
24 h treated organoids yielded lower clustering (∼80%) of

responsive and resistant cell populations (cetuximab group
only, Figure 3B).

Intra-population proximity measurements demonstrated
density of cell packing within each population (Figures 3C,D).
Highly compact cell organization was represented by low intra-
population distances, demonstrated by the single, responsive
cell population in combination-treated xenografts (Figure 3C,
p < 0.0001). Conversely, high intra-population distances
illustrated sparse cell organization, reflected through increased
distances in cisplatin-treated organoid populations compared to
control, cetuximab, and combination populations (Figure 3D,
p < 0.0001). Responsive populations in cetuximab-treated
xenografts formed denser clusters than resistant populations
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(p < 0.05), while no significant differences were observed
between responsive and resistant cells with cisplatin treatment
(Figure 3C). However, cisplatin-resistant cell populations had
more compact cell organization than resistant cells in control
xenografts (p < 0.001). Additionally, cisplatin treatment resulted
in closer proximity within resistant xenograft populations than
cetuximab treatment (Figure 3C, p < 0.001). Intra-population
proximity measurements also provided comparisons of both
density and uniformity of population clusters, most distinct
between cetuximab and cisplatin organoids (Figure 3D, p <

0.05). Spatial organization of cell sub-populations appeared to be
independent of sample size, as significant differences in organoid
diameter measurements were only observed between control and
cetuximab-treated organoids despite unique spatial organization
across all groups (Supplementary Figure 2).

Inter-population distances quantified localization of
cell populations relative to each other, comparable across
treatment groups with multiple cell populations (Figure 3E).
Inter-population distances were not significantly different
between xenograft and organoid cells treated with cetuximab,
suggesting that cell populations organize similarly in cetuximab-
treated organoids and xenografts (Figure 3E). However,
cisplatin-treated xenografts had decreased inter-population
distances compared to cetuximab-treated xenografts (Figure 3E,
p < 0.001).

Additionally, organoid centricity measurements provided
assessment of cell organization relative to central and peripheral
organoid regions (Figure 3F). This served as a complementary
measure of cell packing in organoids with only one cell
population (control, cisplatin, and combination groups),
indicating similar packing across these conditions (Figure 3F,
p > 0.05). Furthermore, organoid centricity measurements
showed resistant populations within cetuximab-treated
organoids aggregated closer to organoid centers than responsive
cells (Figure 3F, p < 0.0001). Responsive populations in
cetuximab-treated organoids localized further from the organoid
center compared to responsive populations in cisplatin and
combination organoids, demonstrating a change in distribution
of responsive cells when multiple sub-populations are present
(Figure 3F, p< 0.0001). Heatmaps comparing spatial parameters
between resistant and responsive populations across treatment
conditions demonstrate direction of change, significance, and
effect size (Supplementary Figure 3).

Spatial Clustering Based on Multivariate
Analysis of All 9 OMI Variables
Distinct clustering was demonstrated for responsive and resistant
cell populations defined by a single variable, NAD(P)H τm
(Figure 3). However, multivariate analysis was used to determine
spatial patterns of the 8 other OMI variables (redox ratio,
NAD(P)H τ1, τ2, α1, and FAD τm, τ1, τ2, α1) in attempt to
improve separation between responsive and resistant tumor cell
populations. Multivariate measures of spatial autocorrelation
for all OMI variables were quantified to comprehensively
assess metabolic relationships between single cells and their

TABLE 1 | P-values from non-parametric regression between treatment condition

and Moran’s I in xenografts.

OMI Variable P-value OMI Variable P-value

Redox Ratio 0.11 FAD τm 0.383

NAD(P)H τm 0.323 FAD τ1 0.707

NAD(P)H τ1 0.183 FAD τ2 0.015

NAD(P)H τ2 0.043 FAD α1 0.378

NAD(P)H α1 0.246 FAD Intensity 0.155

NAD(P)H Intensity 0.178

Bold values represents p < 0.05.

TABLE 2 | P-values from non-parametric regression between treatment condition

and Moran’s I in organoids.

OMI Variable P-value OMI Variable P-value

Redox Ratio 0.005 FAD τm 0.331

NAD(P)H τm 0.398 FAD τ1 0.248

NAD(P)H τ1 0.301 FAD τ2 0.494

NAD(P)H τ2 0.627 FAD α1 0.005

NAD(P)H α1 0.008 FAD Intensity 0.175

NAD(P)H Intensity 0.266

Bold values represents p < 0.05.

surrounding neighbors. Macroscale clustering for each OMI
variable was determined by calculating global Moran’s I per
OMI variable for control and treated FaDu xenograft and
organoid images.

Moran’s I was first calculated for each OMI variable across
all treatment conditions, then non-parametric regression
was performed to determine which OMI variables yielded
Moran’s I values with significant dependence on treatment
condition (Tables 1, 2). Regression analysis identified NAD(P)H
and FAD τ2 as significant variables for FaDu xenografts and
redox ratio, NAD(P)H and FAD α1 for FaDu organoids.
Similarity in clustering patterns within treatment groups
was represented by low variability in Moran’s I, observed
for all OMI variables across all xenografts per treatment group
(Figures 4A,B, Supplementary Figure 4). Conversely, organoids
demonstrated greater variability of Moran’s I within treatment
groups (Figures 5A–C, Supplementary Figure 7). Positive
spatial autocorrelation indicated increased cluster formation,
displayed in virtually all xenograft treatment groups across
all OMI variables (Figures 4A,B, Supplementary Figure 4).
Overall, combination treatment demonstrated the highest
Moran’s I values for τ2 measurements, while control xenografts
were characterized by low Moran’s I (Figures 4A,B). Random
organization of metabolic activity was illustrated by Moran’s
I values near zero, reflected in redox ratio, NAD(P)H α1

and FAD α1 of cisplatin-treated organoids (Figures 5A–C).
Conversely, cetuximab treatment resulted in the greatest
Moran’s I of these variables, indicating clusters of homogenous
metabolic activity within cetuximab-treated organoids
(Figures 5A–C). Furthermore, cisplatin treatment consistently
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FIGURE 4 | Spatial clustering patterns of OMI variables in FaDu xenografts. Moran’s I based on (A) NAD(P)H τ2 and (B) FAD τ2 measurements is plotted across

control and treated xenografts. (C–F) Ellipses represent the distribution of cell clusters, with cells falling in the upper right (homogeneously high value clusters) and

lower left quadrants (homogeneously low value clusters). Clustering is plotted for each treatment group for (C) NAD(P)H τ2 and (D) FAD τ2. Clustering is similarly

plotted for responsive and resistant cells for (E) NAD(P)H τ2 and (F) FAD τ2.

yielded Moran’s I near zero across all OMI variables, while
other organoid treatment conditions displayed varied response
(Supplementary Figure 7).

LISA provided complementary information to Moran’s I
by describing the relationship between single cells and their
local neighborhood (description in Figure 1F). OMI variables
per cell (observed variable) were directly compared with the
average of surrounding cells (lagged variable). Cell clusters
within xenografts predominantly had τ2 values that were
homogeneously high (control group) or homogeneously low
(combination group), represented by cells within the upper
right and lower left quadrants, respectively (Figures 4C,D).
Additionally, cisplatin- and combination-treated organoids
were both predominantly composed of low redox ratio
and FAD α1 clusters (Figures 5D,F). Higher frequency
of cells in the upper left and lower right LISA quadrants
demonstrated greater heterogeneity in OMI variables within
cell clusters, observed for τ2 measurements in cisplatin-
and cetuximab-treated xenografts and redox and FAD α1

measurements in cetuximab-treated organoids (Figures 4C,D,
5D,F). NAD(P)H α1 clusters similarly exhibit substantial

heterogeneity across control and treated organoids (Figure 5E).
OMI variables not significantly dependent on treatment
yielded variable clustering in xenografts and organoids, with
some treatment groups primarily restricted to one quadrant
(Supplementary Figures 5, 8).

LISA were also used to assess distinct clustering of
OMI variables based on treatment response. In xenografts,
resistant populations form clusters of high NAD(P)H and
FAD τ2 (Figures 4E,F). In contrast, responsive populations
predominantly organize into clusters with low τ2 (Figures 4E,F).
Responsive populations are also characterized by clusters of
lower NAD(P)H and FAD τm and τ2, and higher NAD(P)H and
FAD α1 compared with resistant cells (Supplementary Figure 6).
Responsive and resistant cells in organoids also had distinct
clustering patterns (Figures 5G–I). Responsive cells in
organoids were characterized by low redox ratio clusters
(Figure 5G). Resistant cells conversely had clusters of
higher NAD(P)H and FAD α1 compared to responsive
cells (Figures 5H,I). Responsive and resistant populations
demonstrated variable clustering across other OMI variables
(Supplementary Figure 9).
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FIGURE 5 | Spatial clustering patterns of metabolic parameters in FaDu organoids. Moran’s I based on (A) redox ratio, (B) NAD(P)H α1, and (C) FAD α1

measurements for control and treated organoids. (D–F) Ellipses represent the distribution of cell clusters, with cells falling in the upper right (homogeneously high value

clusters) and lower left quadrants (homogeneously low value clusters). Clustering is plotted for each treatment group for (D) redox ratio, (E) NAD(P)H α1, and (F) FAD

α1. Cluster patterns of responsive and resistant cells are plotted for (G) redox ratio, (H) NAD(P)H α1, and (I) FAD α1.

Metabolic and Spatial Variability in
Xenograft and Organoid Models
Spatial principal components analysis (spatial PCA) was used to
relate multivariate measurements of cell metabolism with spatial
trends across models and treatment conditions (Figure 6A) (58).
Briefly, multivariate metabolic and spatial data was weighted
by a binary matrix indicating neighbors for each cell (i.e.,
cell neighborhood) prior to standard calculation of principal
components. FAD τ1, τ2, τm, and intra-population distances had
the highest positive loadings along spatial principal component 1,
which reflects their dominant contribution to overall variability
within organoids and xenografts (Figure 6A). Both NAD(P)H
and FAD α1 had the largest negative loadings along spatial
principal component 1, which also reflects their dominant, yet
opposing contribution to overall variability within organoids
and xenografts. NAD(P)H τ1, τ2, τm, all intensity-based
measurements, and two spatial metrics (clustering percentage,
inter-population proximity) had stronger projection along the
second principal axis. Variable vectors with similar directionality
and magnitude are correlated. As expected, NAD(P)H τ1, τ2,

τm, and separately, FAD τ1, τ2, τm exhibited strong positive
correlation (τm = α1τ1 + α2τ2). The redox ratio [defined
as NAD(P)H/FAD intensity] was positively correlated with
NAD(P)H intensity, but negatively correlated with FAD intensity.
Inter-population proximity was closely related to redox ratio
and NAD(P)H intensity, while intra-population proximity was
closely related to FAD τ1 but not highly correlated with the
other two spatial metrics (clustering percentage, inter-population
proximity). In contrast, clustering percentage was inversely
correlated with inter-population proximity.

Mean spatial PCA scores were then plotted for both
responsive and resistant cells within each control and treatment
group for both xenografts and organoids to observe similarities

across models (Figure 6B). Each point represents the mean
spatial PCA score for an organoid (filled) or xenograft (hollow),

and points were plotted on the same axes as Figure 6A. The

location of each dot can be correlated with metabolic variables on
the same axes in Figure 6A. Xenografts were generally correlated
with variables in the upper left quadrant of Figure 6A [e.g.,
NAD(P)H α1, clustering percentage] compared to organoids,
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FIGURE 6 | Multivariate analyses of metabolic activity and spatial organization in xenografts and organoids. (A) Loading vectors for all treatment conditions across

both organoids and xenografts. (B) The same spatial PCA plot as (A), with treatment groups and model systems plotted to observe spatial clustering patterns. Points

correspond to the spatial PCA score for a single organoid (filled circle) or xenograft (open circle). Arrows represent differences between average spatial PCA scores of

an organoid or xenograft and the average spatial PCA score of their cell neighborhood.

which correlate with NAD(P)H and FAD τ1, τ2, and τm (blue vs.
red ellipse, Figure 6B).

Vectors extending from points on spatial PCA plots described
the response of cell neighborhoods within the organoid or
xenograft (arrows, Figure 6B). The location of the arrowhead
represents differences between the average cell response and the
average cell neighborhood response. Of note, fewer xenografts
were imaged per treatment group, and thus clustering and
correlation of cell neighborhoods were less defined compared
to the more high-throughput organoid analysis. Mean spatial

PCA scores of both cells and their neighborhoods in responsive
organoid populations are predominantly correlated within the

combination treatment group. Conversely, resistant cells within

cetuximab and control organoids are not correlated. Spatial
PCA maps at the cellular level across treatments and models

(organoids and xenografts) also help to visualize the organization
of cell neighborhoods (Supplementary Figure 10).

Heatmaps of Z-scores for OMI variables and spatial
parameters were generated for further comparison between
treatment groups and model systems (Figure 7). Z-scores were
calculated relative to the mean and standard deviation of the
corresponding organoid condition to visualize differences
between models for each treatment group. Xenografts
consistently exhibited higher FAD α1 and lower FAD τm,

τ1, and τ2 compared with organoids, regardless of treatment
condition. Intensity measurements were generally increased in
control xenografts compared to control organoids. Additionally,
control xenografts exhibited shorter intra-population distances
within resistant populations. Organoids and xenografts showed
substantial differences in response to combination treatment.
Specifically, combination-treated xenografts yielded higher α1

and lower τm, τ1, and τ2 for both NAD(P)H and FAD. This trend
was also observed between models in response to cetuximab
treatment. Spatial measurements displayed contrast between
cisplatin-treated xenografts and organoids due to the presence of
two populations in xenografts, compared to a single population
in organoids. Cisplatin treatment also caused increased redox
ratio and NAD(P)H α1 in xenografts compared to organoids.
Heatmaps of Z-scores within xenograft and organoid conditions
are shown in Supplementary Figure 11.

DISCUSSION

Spatial heterogeneity within tumors contributes to poor
therapeutic response and tumor recurrence. However, tools
to characterize intra-tumor heterogeneity at the cellular level
and its effect on disease progression have been limited to
destructive methods that require tumor dissociation, and
thus removal from the host. Here, we have combined OMI
with spatial statistical methods to quantify organization of
multiple cell sub-populations within intact, heterogeneous
samples (35, 47). Previous studies have established that OMI can
resolve phenotypic differences within 2D and 3D in vitro tumor
models, and in vivo mouse tumors (23, 24, 27, 30, 33, 36, 59).
However, these previous studies did not thoroughly assess
spatial distributions of metabolic cell sub-populations, which
is important for monitoring cell-cell interactions in tumors
(60). We have developed novel analytical methods to quantify
cell-level heterogeneity in tumor models by combined OMI
and density-based clustering (Figure 1A) (29, 30, 43–45).
Density-based clustering methods promote robust identification
of distinct, rare populations by exclusively considering distances
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FIGURE 7 | Z-scores of metabolic and spatial variables in control and treated xenografts and organoids. Heatmap of Z-scores across treatment groups and model

systems (organoid and xenograft). Each Z-score is calculated for each sample of a given treatment group (iRx) and variable (j) as the difference between the mean

variable per sample and the mean variable across all organoids of the corresponding treatment group (organoidRx) divided by the standard deviation of the organoid

treatment group. Z-score differences within a single treatment group represent variability across samples. Gray boxes indicate samples without a value for a given

variable, specific to xenograft and organoid treatment groups with a single population.

between data points, circumventing assumptions about the
data distribution typically necessary for clustering (48, 61).
Spatial statistical analysis of data clustered by a single variable
[NAD(P)H τm, previously shown to separate drug-responsive
and -resistant cells (12, 26)] provides unique metrics for
the organization of heterogeneous cell populations within
samples (Figures 1B–E). Finally, multivariate analyses of spatial
organization across all OMI variables enables greater separation
between responsive and resistant cells to compare spatial
trends within a sample (Figures 1F,G). In the future, OMI and
quantitative metrics of cellular connectivity could guide the
development of novel therapies that target drug-resistant tumor
microenvironments for improved therapeutic outcomes.

This is the first study to combine label-free, live cell imaging,
and spatial statistical techniques to assess treatment-dependent
changes in tumor cell function. Previous studies have used
microscopic spatial analyses to determine the organization of
phenotypically distinct cell populations within fixed, stained
tumor tissue sections (16–20). For example, distributions of
tumor and stromal cells at the time of biopsy or surgery have
been correlated with clinical outcome, but these studies disregard
both heterogeneity within cell types and treatment-specific
cell organization (17, 62). Otherwise, previous microscopic
work has focused on spatial patterns of genetic expression
rather than functional (e.g., metabolic) heterogeneity (63–66).
Macroscopic heterogeneity in metabolite concentration and
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uptake in vivo has been previously investigated by PET and
MRI, but these techniques lack the spatial resolution to detect
cell-level heterogeneity (64, 67). Notably, endogenous metabolic
fluorescence imaging has previously evaluated macroscale spatial
distributions of the redox ratio in vivo and in vitro (65).
These studies observed higher redox ratio and NAD(P)H
intensity tumor regions, but low FAD regions localized at
the periphery of untreated mouse breast carcinoma xenografts.
Interestingly, we observed the same trend in centrally-located
resistant cell populations across organoids (Figures 3F, 5G,
Supplementary Figure 9). Unlike these previous studies, our
current study quantified cell-level spatial distributions of distinct
metabolic sub-populations (Figure 3) and the clustering patterns
of these metabolic sub-populations (Figures 4, 5), which varied
with respect to treatment and drug response in live, intact,
unstained samples.

The spatial distribution of metabolically-distinct cell
populations was quantified for samples with distinct treatment
and drug response because cell metabolism is both a therapeutic
target and a route of tumor evasion (68). Responsive cells
were previously shown to exhibit lower NAD(P)H τm with
cetuximab or cisplatin treatment compared to resistant cells,
which often emerge from the selective pressures of cancer
treatment (30, 36, 69). Clustering percentage (Figures 3A,B),
intra-population distances (Figures 3C,D), and inter-population
distances (Figure 3E) represented the relative organization of
NAD(P)H τm-defined populations in xenografts and organoids.
These results showed that cells with similar treatment response
(i.e., responsive/resistant) pack together closely, and that cells
formed single, uniform clusters of responsive or resistant cells,
as opposed to several small, dispersed clusters. Spatial analysis
of all OMI variables indicated high intercellular dissimilarity
and more random cluster patterns in organoids compared
to xenografts (Figures 4, 5, Supplementary Figures 5–8), in
contrast to clustering based on NAD(P)H τm alone (Figures 2D,
3D–F), which indicates that spatial analysis of all OMI variables
together captures different metabolic features than NAD(P)H τm
individually. However, spatial heterogeneity was low in control
and combination-treated groups compared to single-agent
treatment for both xenografts and organoids (Figures 4C,D,
5D–F, Supplementary Figures 5, 8). Though spatial patterns
were only quantified for single plane images at defined time
points in this study, this analysis can be translated to data
acquired over multiple sample depths and treatment time points
to determine their influence on cellular spatial organization.
Overall, this spatial analysis highlights substantial differences in
the local metabolic landscape of combination and single agent
treatments across tumor models.

Notably, NAD(P)H lifetime can be modulated in response to
alternative metabolic and environmental changes, highlighting
the complexity associated with functional readouts of cell
metabolism (32, 70, 71). Cellular response to treatment
can also modulate several subcellular metabolic processes,
collectively reflected by changes in NAD(P)H lifetime
(72). Consequently, further development of this analysis to
incorporate environmental and functional measurements
would be valuable for resolving biological mechanisms driving

spatial changes in cellular behavior. For example, proximity to
vasculature could be inferred from metabolic autofluorescence
images as blood vessels appear as dark, branch-like regions.
Biomarkers of local environmental conditions (e.g., oxygen/pH
sensors, metabolic enzyme assays) could be correlated with
spatial patterns in OMI data. Future work can also integrate
our spatial metabolic analysis with microfluidic models of
microenvironmental gradients to disentangle relationships
between nutrient availability, environmental stressors, and
treatment response (73). Collectively, integration of this spatial
analysis with complementary biological data could provide
additional insight into mechanisms altering NAD(P)H lifetime
and associated drug sensitivity, leading to more effective
treatment regimens (74).

Previous studies confirm that xenografts and organoids have
consistent treatment response across multiple model systems,
using standard measures of response (e.g., tumor volume, cell
viability) (75–79). Published studies also show that NAD(P)H
τm decreases with cetuximab or cisplatin treatment in both
FaDu xenografts and organoids (30, 36). The current paper
develops spatial analysis to quantify differences in cellular
spatial organization between models and treatment conditions.
In these datasets, xenografts had decreased FAD τm, τ1, τ2
and increased FAD α1 compared to organoids, regardless of
spatial distribution (Figure 7). This difference in FAD lifetimes
averaged across all cells could be due to a number of factors,
including different imaging time-points post-treatment, although
organoids provide an early measure of response (1–3 days post-
treatment) that agrees with later tumor volume (weeks post-
treatment), which motivated the imaging time points used in this
study (33, 34). Differences in FAD lifetimes could also be due
to shifts in metabolic flux, enzyme binding activity, temperature,
oxygenation, and/or pH in vivo compared to in vitro (76–78).

We also demonstrate that spatial analysis can capture
differences in the distribution of cellular drug response between
in vivo and in vitro systems. Specifically, responsive populations
defined by NAD(P)H τm in xenografts were more densely
clustered than resistant populations, while the opposite trend
was observed in organoids (Figures 3C,D). Also, the spherical
geometry of organoids maintain responsive cells on the periphery
and resistant cells clustered in the core (Figure 3F), consistent
with previous reports (80). The observed differences in the
distribution of cell metabolism between models are likely
due to distinct methods of drug delivery between organoids
(diffusion) and xenografts (vascular delivery). Organoids require
drug diffusion from the outer to inner cell layers, which act
as a physical barrier limiting penetration of both small and
large molecule drugs (∼100 Da−1 kDa) and cause gradations
in drug dose and metabolic activity (81). In contrast, poor
vascularity and inefficient tumor microvessels in xenografts
result in a complete lack of drug dosing for some cells in
vivo (82). This poor vascularity could contribute to segregation
of cell populations with distinct metabolic activity in vivo
(Figures 4A–C, Supplementary Figure 5). Spatial patterns of
cellular drug response could be correlated with drug diffusion
to assess the influence of drug accessibility on cellular metabolic
distributions. Overall, these differences in drug delivery between
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models highlight the utility of each model for studies of drug
efficacy and drug delivery. Notably, organoids are useful for high-
throughput and time-course measurements of drug efficacy at
early time-points using numerous drugs, whereas xenografts can
model both drug delivery and treatment effects. Although drug
delivery in xenografts may only partially reflect drug delivery
in vivo human tumors, xenografts still serve as a useful first
approach (83, 84).

The methods developed in this study establish the
combination of OMI and spatial statistical analysis to quantify
the spatial heterogeneity of tumor cell metabolism. We have
shown that cell-level spatial organization of metabolism is
altered by treatment and model system. These methods could
be translated to OMI data acquired over an entire organoid
volume or a superficial tumor volume to characterize 3D
distributions of metabolism and drug response. In addition, this
analytical approach could integrate complementary metrics from
autofluorescence images including cell morphology, intracellular
metabolic changes, and other endogenous fluorophores.
Furthermore, this approach can be extended to or combined
with other single cell imaging approaches probing as gene
(e.g., RNA or DNA-FISH) and protein expression (e.g.,
immunofluorescence) (85, 86). Overall, cell-level functional
imaging and quantitative analysis of spatial heterogeneity could
significantly improve understanding of tumor growth and
treatment resistance.
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