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Abstract
The discovery of small biomolecules has suffered from the lack of a comprehensive framework to express the intrinsic cor-
relation between bioactivity and the contribution from small molecules in complex samples with molecular and bioactivity 
diversity. Here, by mapping a sample’s 2D-HPTLC fingerprint to microplates, paired chromatographic-based microassay 
arrays are created, which can be used as quasi-chips to characterize multiple attributes of chromatographic components; as 
the array differential expression of the bioactivity and molecular attributes of irregular chromatographic spots for dose–effect 
interdependent encoding; and also as the automatic-collimated array mosaics of the multi-attributes of each component itself 
encrypted by its chromatographic fingerprint. Based on this homologous framework, we propose a correlating recognition 
strategy for small biomolecules through their self-consistent chromatographic behavior characteristics. In the approach, the 
small biomolecule recognition in diverse compounds is transformed into a constraint satisfaction problem, which is addressed 
through examining the dose–effect interdependence of the homologous 2D code pairs by an array matching algorithm, instead 
of preparing diverse compound monomers of complex test samples for identification item-by-item. Furthermore, considering 
the dose–effect interdependent 2D code pairs as links and the digital-specific quasimolecular ions as nodes, an extendable 
self-consistent framework that correlates mammalian cell phenotypic and target-based bioassays with small biomolecules is 
established. Therefore, the small molecule contributions and the correlations of bioactivities, as well as their pathways, can be 
comprehensively revealed, so as to improve the reliability and efficiency of screening. This strategy was successfully applied 
to galangal, and demonstrated the high-throughput digital preliminary screening of small biomolecules in a natural product.
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Introduction

The identification of small molecules, including diverse 
compounds with novel chemical structures, diagnostic mark-
ers, and drugs, plays an important role in drug discovery 
and precision medicine [1, 2]. As new coronavirus varie-
ties become more and more rampant, people have great 
hopes for early discovery of small molecule drugs against 
coronaviruses. Although in recent years, advances in omics 
technologies have begun to enable personalized medicine 

at an extraordinarily detailed molecular level [3, 4], while 
research on small biomolecules seems to be much slower. 
Since phenotype-based assay and target-based assay and 
chemical identification were performed respectively, drug 
development is plagued by technical uncertainty and associ-
ated risks of failure [5, 6]. How to “integrate both the pheno-
typic and target-based approaches to estimate a relevant net-
work from compound to phenotype in screening” becomes 
an emerging challenge [7, 8].

An earlier well-known bio-directed assay for small mole-
cules in diverse compounds was bioautography on thin-layer 
chromatography (TLC) [9, 10]. Recently, Morlock et al. 
immersed the HPTLC (high-performance thin-layer chro-
matography) plates with the separated sample extracts in 
the bacterial culture medium and extracted the components 
in the bioactive spots through a special TLC-MS interface 
(Camag) for in situ biotracing [11]. Due to the interference 
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of the chromatographic matrix on many biological assays, 
the application of this method has been limited and has not 
been applied to mammalian cells. Meanwhile, electrophore-
sis, another type of planar chromatography, has become an 
important means of omics, because it can be combined with 
macromolecular immune reactions by transferring gel elec-
trophoresis strips to the electrophilic membranes. Molecu-
lar imprinting derived from chromatography, molecular 
recognition based on binding the template to the functional 
monomer, is widely used in the fields of chromatographic 
separation, but it is limited to unidirectional matching of 
a preset specific target molecule [12]. In recent decades, 
crafted molecular diversity libraries and various cutting-
edge microchips, such as small molecular microarrays and 
microfluidic chips [13, 14], have emerged; they are being 
used for various bioassays or chemical analysis with high-
throughput and easy automation features [15]. However, 
these assays are highly dependent on molecular diversity 
libraries and are seldom used for complex samples, such as 
natural products and clinical samples. Since it is difficult 
to capture the diversity of molecules of real samples, the 
diverse compounds of a complex sample have to be sepa-
rated to monomers regardless of whether they are bioactive 
[16]. On the other hand, mass spectrometry imaging (MSI) 
has emerged as the future frontiers of chemical analysis [17], 
which combines the molecular and structure information 
gained from mass spectrometry with visualization of spatial 
distributions in bio-sample sections. Today, thin-layer chro-
matography coupled with mass spectrometry (TLC–MS) has 
developed into one of the most efficient analytical tools for 
chemical identification and structural elucidation of bioac-
tive analytes on TLC [18, 19]. As such, establishing a com-
prehensive framework to express the “intrinsic correlation” 
between bioactivity and contributing small molecules in 
complex samples with molecular and bioactivity diversity 
remains a prominent issue [7, 8].

With the success of today’s omics research, correlation 
recognition methods for biomacromolecules in complex 
samples play an important part. The most important aspect 
of these methods is the specific correlation between molecu-
lar characteristics and bioactivities, such as the pairing of 
bases encoded on DNA arrays and antigen–antibody pair-
ing based on the “molecular recognition exhibits molecular 
complementarity” practice [20, 21]. However, correlation 
recognition methods in nature are far beyond these. Mac-
roscopically, NASA’s night-light image pair of the Earth 
has been used to map the human socioeconomic activity 
[22, 23]. Inspired by these approaches of correlating spe-
cific behavioral observation, we realize that the homolo-
gous chromatographic behavior characteristics of a small 
molecule can also be used to recognize multiple attributes 
derived from itself, such as molecular characteristics and 
modulating bioactivity, and thus propose a correlating 

recognition strategy for small molecules with bioactivity 
based on homologous 2D-HPTLC fingerprint.

Around this research strategy, this article discusses the 
following issues: characterizing multiple attributes of chro-
matographic components in irregular chromatographic spots 
as microarray distribution gradients, transforming the micro-
assay array results into two-dimensional codes, and self-
recognizing biomolecules with array matching algorithm, 
and the scientific validity, the error control, and the affecting 
factors of this strategy are also discussed.

Material and methods

Materials and reagents

Galangal (Alpinia officinarum Hance) was collected in 
Longtang Town, Guangdong Province, China. Galangin and 
diphenylheptane A were purchased from NICPBP (Lot No. 
111699–2,006,021 and 11,757–200,601). 5-Fluorouracil was 
purchased from Shanghai EKEAR (Lot No. 150729). Gold 
nanoparticles (GNPs) are prepared with reference to the lit-
erature [24]. AlamarBlue™ Cell Viability Reagent was pur-
chased from Invitrogen (Cat#DAL1025). Human A549 cells 
and human HepG2 cells were provided by Clinical Research 
Center of Guangdong Medical University. Oligonucleotides 
(G-DNA): 5′-TTA GGG TTA GGG TTA GGG TTA GGG-3′ 
were synthesized by Sangon Biotech (Shanghai Bioengi-
neering Co., Ltd., order No. 300064096). The reagents used 
in the experiment were all analytical reagents.

Establishment of a 2D‑HPTLC fingerprint developed 
in the microarray format

Dry powder (250 μm) of Alpinia officinarum Hance was 
extracted by conventional ultrasonication with petroleum 
ether, ethanol, tetrahydrofuran, acetone, dichloromethane, 
ethyl acetate, benzene, and water (each representing one of 
the 8 kinds of solvents classified by Snyder). The extracts 
were combined to obtain a representative extract of galangal.

The sampling amounts were chosen by conventional pre-
bioassays of the crude sample extract. Generally, the spotting 
volume of the crude extract on the HPTLC plate is controlled 
to be no more than 10 μL. The selected amount of the extract 
was spotted to achieve a 2.5 mm diameter on an HPTLC 
plate. HPTLC was extended to 7.2 cm × 7.2 cm according 
to the 384-well microplate array format (4.5 mm × 4.5 mm 
matrix; the opening of the well of a 384-square-well micro-
plate is approximately the size of a typical HPTLC spot), 
and the chromatographic two-dimensional mobile phase was 
used to establish a 2D-HPTLC fingerprint. The optimized 
two-dimensional mobile phase [25] used for 2D-HPTLC 
consisted of trichloromethane/MeOH/petroleum ether at 
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a ratio of 7.76/0.24/2 (v/v/v) and ethyl acetate/petroleum 
ether/acetic acid at a ratio of 3/7/0.2 (v/v/v).

Chromatographic‑based microassay array 
preparation

According to the microarray format of the high-throughput 
microplate, the silica gel layer of the 2D-HPTLC fingerprint 
is defined and differentiated by the microarray into a square 
chip array [26], and the components on the square chip array 
are mapped into a microplate as a chromatographic-based 
microassay array with chromatographic matrix removed. 
Specifically, the silica gel layer was split and stripped from 
a thin aluminum sheet with a metal grid interface having 
a 384-well microplate array format (3D printing, original 
equipment manufacturer (OEM) according to the drawing, 
Supporting Information S1) under a parallel pressure of 
8 ×  103 kPa (Specac Atlas® Manual Hydraulic Press-15 T) 
to fabricate a flat square chip array (Fig. 1, Supporting Infor-
mation S2). The chip array was kept in the array arrangement 
as a whole, positioned in the corresponding 384-well filter 
plate, and then the components were positioned and eluted 
into the corresponding well of another 384-well microplate 
with methanol. Note that the G-quadruplex ligand bioas-
say should be pre-washed three times with 15 μL of water 
per well to remove possible salts. The microplate containing 
the eluent was evaporated to dryness in a vacuum centri-
fuge concentrator to prepare a stock chromatographic-based 
microassay array (Supporting Information S3). A schematic 
diagram of the preparation and workflow of the chroma-
tographic-based microassay arrays is presented (Fig. S3). 

The paired chromatographic-based microassay array with 
the consistent chromatographic distribution is prepared by 
transferring a portion of the sample from the stock chro-
matographic-based microassay arrays to the corresponding 
array units of another 384-well microplate.

Cell proliferation assays

The proliferation assay of human A549 and HepG2 tumor 
cell lines is adopted for screening anticancer drugs [27]. The 
A549 and HepG2 cell lines were obtained from the Affiliated 
Hospital of Guangdong Medical University. With reference 
to Invitrogen’s AlamarBlue® Cell Viability Assay Proto-
col and related literature methods [28, 29], three groups of 
experiments were set up as follows: blank group, positive 
control group, and sample group. Then, 0.1% DMSO and 1% 
glycerol were used as the reagent blank group, while 5-fluo-
rouracil at a concentration of 0.077 mmol·L−1 was used as 
a positive control. The amount that adequately reflected the 
bioactivity of the chromatographic-based microassay array 
sample was chosen through the cell viability pre-bioassay as 
the test dose for subsequent bioassays [25].

The cells were cultured in high-glucose DMEM with 8% 
fetal bovine serum at a cell density of 1,000 cells per 40 μL 
in each well of the 384-well microplate. The cells were incu-
bated at 37 °C under 5%  CO2. At 12 h, 20 μL of the cell cul-
ture medium containing the optimal amount of test sample 
was added to the corresponding well of the microplate, and 
the cells were further incubated for 36 h. Then, each group 
was centrifuged (12 × g, 15 s) to remove the drug-containing 
cell culture medium and the cells were washed twice with 

Fig. 1  Array division and strip-
ping effect of a HPTLC finger-
print. a Front and b back sides 
of the aluminum HPTLC sheet 
that had been pressed by the 
metal grid interface, c square 
silicon layer array stripped off 
and adhered to a PVDF film 
(painted black), and d scattered 
square silica gel layer chips

a b

dc
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PBS and discarded after centrifugation. Fifty microliters of 
cell culture medium and 5 μL of AlamarBlue were added 
per well to each group, and the samples were degassed with 
a vacuum centrifugal concentrator (269 × g, room tempera-
ture, − 80 kPa, 1 min). The absorbance of the microplate 
was measured at 570 nm and 600 nm (Bio-Tek Epoch one). 
Then, the cells were further incubated at 37 °C under 5% 
 CO2 for 12 h. The absorbance was measured again using the 
same method. The difference between the absorbance of the 
cells incubated 12 h after the addition of AlamarBlue and 
the absorbance at the time of initial addition was used as the 
absorbance value, and the cell survival rate was calculated 
according to Invitrogen’s protocol for the AlamarBlue® Cell 
Viability Assay.

G‑quadruplex ligand bioassay

G-quadriplex ligand bioassay is adopted for screening 
anticancer drugs [30]. Referring to the literature meth-
ods and with slight changes [31, 32], we used GNPs as a 
colorimetric probe and screened G-quadruplex ligands by 
colorimetry based on the color differences between sin-
gle-stranded DNA-GNPs and G-quadruplex-GNPs. The 
amount that adequately reflected the bioactivity of the chro-
matographic-based microassay array sample was chosen 
through the G-quadruplex ligand pre-bioassay as the test 
dose for subsequent bioassays. The initial total volume is 
35 μL per well, which contains 5 μL methanol. As previ-
ously described in the literature [24], the GNPs were pre-
pared by reducing chloroauric acid with sodium citrate. The 
diameter was calculated to be 12 nm, and the concentra-
tion was 9.45 nM. The GNPs and 1.0 μM GDNA (5′-TTA 
GGG TTA GGG TTA GGG TTA GGG-3′) were mixed at a 
1:150 molar ratio (optimized through an anti-NaCl-induced 
aggregation experiment performed by microplate titration, 
in which the range of the molar ratio of GDNA to GNPs was 
from 50 to 250) and incubated at room temperature (25 °C) 
for 16 h to prepare the GNP-GDNA probe. Then, 60 μL of 
the GNP-GDNA probe per well was added to the chroma-
tographic-based microassay array. After 3 h of incubation 
at room temperature (25 °C), NaCl solution was added to 
each well in the microplate containing the reaction solu-
tion to achieve a concentration of 0.106 M, which was fol-
lowed by further incubation for 30 min at room temperature 
(25 °C). After the solution was added, the microplate was 
treated with a vacuum centrifugal concentrator (269 × g, at 
room temperature, − 80 kPa, 1 min) to remove bubbles. The 
absorbance spectra (400–850 nm) of each well of the micro-
plate were collected (Bio-Tek Epoch one). The color change 
was observed, and the absorbance ratio calculated at 670 nm 
and 520 nm was used to evaluate the ligand activity of the 
components in each array unit of the chromatographic-based 
microassay array.

LC–ESI–MS analysis

According to the bioactivity heat map, a portion of the sam-
ple corresponding to the significant bioactive array units is 
transferred from the stock chromatographic-based micro-
assay array to the corresponding array units of another 
384-well microplate for LC–ESI–MS analysis, which was 
conducted with an Agilent 6430 triple quadrupole mass 
spectrometer coupled with an electrospray ionization (ESI) 
source. The operating conditions were as follows: gas flow 
rate of 12 L·min−1, gas temperature of 350 °C; sheath gas 
flow rate of 12 L·min−1, sheath gas temperature of 350 °C, 
and capillary voltage 3.6 kV. The mass analyses were per-
formed with an ESI source in negative ionization mode; the 
m/z scan range was set from 65 to 750. The chromatographic 
system was composed of an Agilent 1200 series HPLC. The 
eluent was 75% methanol-H2O introduced at a flow rate of 
0.2 mL·min−1. The injection volume was 5 μL in direct 
injection mode. Agilent Mass Hunter software was used for 
data analysis.

Results and discussion

Protocol design for the correlation 
between molecules and bioactivities

The paired chromatographic-based microassay arrays are 
created from an array differential sample’s 2D-HPTLC 
fingerprint with the chromatographic matrix removed and 
the consistent chromatographic distribution (Supporting 
Information). This paired chromatographic-based microas-
say arrays can be used as quasi-chip to characterize mul-
tiple attributes of chromatographic components [33]; and 
as the array differential expression of the bioactivity and 
molecular attributes of irregular chromatographic spots for 
coding interactions [26]; and also as well as the automatic-
collimated array mosaics of the multi-attributes of each 
component itself encrypted by its chromatographic fin-
gerprint. A bioassay, i.e., a cell-based phenotypic assay or 
ligand binding assay, is performed using one of the paired 
chromatographic-based microassay arrays, and biotracing 
is followed correspondingly by direct ESI–MS analysis 
on the other one. Thus, local self-consistency of the array 
distribution of bioactivity strength vs. the quasimolecular 
ion intensity of the modulating compounds on the paired 
chromatographic-based microassay arrays is established. A 
schematic diagram of the workflow used for the strategy is 
shown (Fig. 2).

In general, 2D-HPTLC may not be able to achieve com-
plete separation of all the chromatographic spots of diverse 
compounds, and due to the shape, size, and array distribu-
tion of HPTLC spots are irregular, each chromatographic 
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spot does not always fall into a single microarray unit, and 
several chemical components may coexist in the same micro-
array unit. However, on the paired chromatographic-based 
microassay arrays, the chromatographic spots, even if they 
are partially overlapped, are differentiated by the microarray 
with vector feature. By virtue of the high resolution and high 
sensitivity of LC–ESI–MS, each digital-specific quasimo-
lecular ion of coexisting small molecule compounds is char-
acterized as its intensity array distribution gradient, and the 
trend difference of the array distribution gradients between 
the bioactivity strength vs. the digital-specific quasimolecu-
lar ion intensities of several coexisting components can be 
clearly distinguished in the corresponding regions (Fig. 1). 
The bioactive compound must be present in those array units 
that exhibit bioactivity. When multiple components coexist 
there, it is important how to identify the molecule attributed 
to bioactivity from them. This experimental design provides 
a satisfactory solution.

Dose–effect interdependence is a basic pharmacological 
principle. Under this experimental design, the array distribu-
tion gradient between the bioactivity strength and the spe-
cific quasimolecular ion intensities of the respective modu-
lating compound are local self-consistent, the attributes 
derived from the same compound will be auto-collimated, 
regardless of the irregular shape, size, and array distribu-
tion of its chromatographic spot. Therefore, the experimental 
data obtained from the paired chromatographic-based micro-
assay arrays are correspondingly extracted as homologous 

2D code pairs, and are substituted into the array matching 
algorithm to determine whether there is dose–effect inter-
dependence, and to identify the digital-specific molecular 
characteristics of the compound attributed to the bioactivity 
among the coexisting components in the corresponding array 
region [34, 35].

As a result, the target deconvolution, an important aspect 
of current drug discovery [36], is simplified as an array 
matching algorithm based on the principle of dose–effect 
interdependence, just like addressing constraint satisfaction 
problems (CSPs).

Generation of 2D codes from obtained experiment 
results

This method was applied to galangal (Alpinia officinarum 
Hance, a famous traditional Chinese medicine) as a para-
digm. The anticancer activity of galangal or its mechanism 
of action has been reported one after another [37, 38]. In the 
light of the anticancer effects of galangal, the bioassays of 
this experiment include the A549 and HepG2 cell viability 
assays and G-quadruplex ligand bioassay, and were per-
formed on the chromatographic-based microassay arrays. 
The obtained bioactivity strengths are expressed in the array 
distribution and are then converted into two-dimensional 
codes by Excel (2010 version). The bioassay data and the 
generated two-dimensional codes are shown (a, b, and c in 
Fig. 3).

HPTLC spots [M-H]
-1

IntensitiesBioactivity strength

Dose-effect interdependent 

2D codes matching

[M-H]
-1

=283 [M-H]
-1

=269 [M-H]
-1

=255

Array distribution consistency analysis

[M-H]
-1 

= 269

Galangin

2D-HPTLC fingerprint

Bioassay LC-MS biotracingChromatographic-based microassay array

Mapping

Portioned

Fig. 2  Schematic diagram of the workflow for establishing the array local self-consistency
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Correspondingly, the compositions of the array units 
with significant bioactivity are further analyzed in situ by 
LC–MS and are highly resolved into their digital-specific 
quasimolecular ion intensities in the array distribution, and 
the MS spectra of the central array unit corresponding to 
the significant bioactive regions are obtained (d, e, and f in 
Fig. 3, marked with wireframe). The chromatographic-based 
microassay arrays for the bioassay and LC–MS bioactivity 
tracing should be sampled from the same chromatographic-
based microassay array stock sample as the homologous test 
samples. The main coexisting quasimolecular ions are deter-
mined based on the mass spectrum corresponding to the cen-
tral array unit of the significant bioactive region. The array 
distribution data of the quasimolecular ion intensities of the 
main coexisting quasimolecular ions are extracted from the 
CSV file of the mass spectra of the array units corresponding 
to the significant bioactive region, and the array distribution 
of the quasimolecular ion intensity of each coexisting com-
ponent is obtained. Then, the array distribution of the spe-
cific quasimolecular ion intensities is converted into the cor-
responding two-dimensional code by Excel (2010 version).

In this experiment, 2D-HPTLC has strong chroma-
tographic distinguishing power and can even be used to 
identify isomers; 2D-HPTLC combining with LC–MS is 
a powerful means of directly identifying small molecular 
compounds [17, 18]. In addition, bioactive-directed LC–MS 
tracing on paired chromatographic-based microassay arrays 

is very effective because it is focused on several bioactive 
array units rather than on the entire microarray, the workload 
is greatly reduced.

Dose–effect interdependence assessment

Dose–effect interdependence assessment of the array dis-
tribution gradients between the bioactivity strength and the 
specific quasimolecular ion intensities is performed with 
the CORREL (Array1, Array2) function in Excel (2010 ver-
sion). The bioactive strength data array from the significant 
bioactive region and the adjacent region is selected as the 
variable Array1, while the quasimolecular ion intensity data 
arrays from the coexisting quasimolecular ions in the cor-
responding region are selected as the variable Array2. These 
experimental data are substituted into the CORREL (Array1, 
Array2) function as two-dimensional code pairs to assess the 
dose–effect interdependence. This method can be regarded 
as a prototype of the algorithm for this CSP, which is used to 
evaluate the correlation between molecules and bioactivities 
in diverse compounds.

The data of the quasimolecular ion intensities, bioactiv-
ity strengths, and the correlation analysis results obtained 
for the coexisting components in the four bioactive regions 
(a, b1, b2, and c in Fig. 3, marked with a wireframe) are 
shown (Fig. 4). We can visually observe which coexisting 
compound has an array distribution gradient of specific 
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from the results of the bioassay and the MS spectrum of the central 
array unit corresponding to the significant bioactive regions marked 
with a wireframe. a 2D codes generated from the viability data of the 
A549 cell line; b 2D codes generated from the HepG2 cell line; and c 

2D codes generated from the G-quadruplex ligand bioassay. The MS 
spectra corresponding to the center array units of the significant bio-
active regions marked with a wireframe in a, b2, and c are shown in 
d, e, and f, respectively, and the MS spectra corresponding to b1 is 
similar to d 
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quasimolecular ion intensity that tends to be consistent 
with the array distribution gradient of bioactivity intensity 
in the corresponding array region (Fig. 4). Using array 

correlation algorithm, such as Excel CORREL function, 
to calculate correlation coefficient can make the array dif-
ference objective and quantitatively comparable, so as to 

Intensity array in Figure 3 a bioactive region
Inhibited A549 cell 

proliferation rate 
(%)

[M-H]- intensity Array ×10-5

327 255 283

-3.6 5.3 -0.8 0.34 0.56 0.40 2.30 2.55 2.82 1.51 1.63 1.74

-7.2 53.1 -6.4 0.83 2.76 1.20 2.89 2.80 3.92 1.78 1.80 2.42

14.5 -2.4 -4.6 0.47 0.66 0.33 3.00 3.45 3.50 1.90 2.05 2.38

γ 0.827 -0.256 -0.224

Intensity array in Figure 3 b1 bioactive region
Inhibited HepG2 cell 
proliferation rate (%)

[M-H]- intensity Array ×10-5

327 255 283

3.9 11.0 12.8 5.7 0.18 0.85 1.03 0.08 3.32 2.98 3.40 4.57 1.77 1.60 1.69 2.00

13.7 50.5 31.7 8.5 0.22 1.29 2.69 0.08 2.82 2.75 2.86 4.10 1.45 1.52 1.58 1.88

6.7 9.7 11.5 7.0 0.11 0.19 0.27 0.07 2.57 3.10 3.82 10.1 1.52 1.64 1.89 4.27

γ 0.712 -0.288 -0.268

Intensity array in Figure 3 b2 bioactive region
Inhibited HepG2 cell 
proliferation rate (%)

[M-H]- intensity Array × 10-5

269 283 255

8.5 10.9 24.3 14.6 1.69 2.20 1.52 1.13 2.02 3.08 2.34 1.96 4.55 3.52 5.30 4.35

24.4 32.5 34.5 10.0 1.25 8.19 3.02 1.26 1.67 2.93 2.75 2.50 3.27 3.99 5.88 6.37

3.6 1.4 6.4 9.7 1.31 2.35 1.44 0.64 1.43 2.03 2.29 1.46 2.68 3.75 4.98 3.05

γ 0.560 0.454 0.305

Intensity array in Figure 3 c bioactive region
G-quadruplex 
ligand assay

[M-H]- intensity Array ×10-3

269 255 283

0.88 0.86 0.78 0.34 0.40 0.48 1.69 1.56 1.74 1.12 0.92 1.06

0.74 1.01 0.78 0.62 1.12 0.50 1.09 1.90 2.00 0.76 0.94 1.14

0.68 0.72 0.80 0.20 0.27 0.52 0.99 1.51 2.69 0.62 0.83 1.91

γ 0.758 0.411 0.209

Fig. 4  Dose–effect interdependence assessment of the array distri-
bution gradients between bioactive strength and quasimolecular ion 
peak intensities. γ-Correlation coefficient of the array distribution of 
bioactive strength with the array distribution of quasimolecular ion 

peak intensity obtained from the Excel CORREL function. The back-
ground color of the cells in the table is generated according to the cell 
values. The larger the value is, the darker the blue color; the smaller 
the value is, the darker the red color
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facilitate computer-aided analysis. The absolute value of 
the correlation coefficient is used to rank the compounds 
corresponding to the coexisting quasimolecular ions for 
bioactivity screening. The larger the value, the more sig-
nificant the difference and the higher the credibility. More 
obviously, if the array unit with the maximum quasimo-
lecular intensity deviated significantly from the array unit 
with the maximum bioactive strength in the corresponding 
region, the corresponding compound would not be consid-
ered the bioactive compound.

Bioactive candidates and bioactivity evaluation

Based on the calculated correlation coefficients, compounds 
corresponding to 327 [M-H]− and 269 [M-H]− were identi-
fied as bioactive candidates by the cell viability assay, and 
269 [M-H]− was identified as a bioactive candidate by the 
G-quadruplex ligand bioassay. The bioactivity strength of 
the same quasimolecular ion in the array unit within the 
same bioactive array region was normalized to the contri-
bution of this quasimolecular ion and incorporated into the 
bioactivity screening consideration. Since the small mol-
ecules causing bioactivity are identified from the original 
sample rather than from the reaction products, the abundant 
database of natural products can provide support. A litera-
ture search and a compound database search for bioactive 
candidates were performed. Referring to the literature [39], 
327 [M-H]− and 269 [M-H]− in the galangal extract were 
speculated to belong to diphenylheptane A and galangin 
(CAS No. 68622–73-1 and 548–83-4), respectively.

The cell bioactivities of the two candidate compounds 
were evaluated by cell viability assays with 5-fluoroura-
cil as a positive control. The cell growth inhibition curve 
data were analyzed with SPSS 18.0 to calculate the  IC50 
values. The  IC50 values of diphenylheptane A (NICPBP, 
Lot No. 111757–200,601), galangin (NICPBP, Lot No. 
111699–200,602), and 5-fluorouracil for the A549 cell 
line are 0.247, 0.089, and 0.023 mmol·L−1, respectively, 
and those for the HepG2 cell line are 0.259, 0.085, and 
0.092 mmol·L−1, respectively. There was no significant dif-
ference between the bioactivity of galangin-induced G-quad-
ruplex DNA formation (0.659 ± 0.038, n = 8) and that of aloe 
emodin (NICPBP, Lot No. 0795–9702), which was used as a 
positive control (0.686 ± 0.026, n = 8), at concentrations of 
approximately 0.5 μM.

Resolution analysis and error control

In order to reflect the array distribution gradient of the chro-
matographic spots in the 2D-HPTLC fingerprint by a chro-
matographic-based microassay array with a high degree of 
sharpness, the array unit is preferably designed to resemble 

chromatographic spots in size to avoid more than one sepa-
rated chromatographic spots falling into the same array unit 
as a whole or the same chromatographic spot being split 
into similar array units in terms of chemical composition. 
It is feasible and practicable to characterize 2D-HPTLC 
fingerprint spots (typically approximately 2.5 to 4.5 mm in 
diameter) with commercial 384-square well high-throughput 
microplates (with an array format of 4.5 mm × 4.5 mm/well, 
16 rows × 24 columns), such as human cell-based phenotypic 
assays (typically 40 μL per well, with wells containing 1000 
cells), target-based assays, and LC–ESI–MS biotracing. The 
array distribution of the chromatographic spots (of the com-
pounds developed with the sulfuric acid-vanillin reagent) in 
a 384-well array grid is shown (Fig. 5).

Cell viability assays are the bottleneck of the resolution, 
which needs a certain space for cell growth, and the compo-
nents of chromatographic spots should reach the drug dose 
range. As the RSD of the Alamar Blue cell viability assay 
used in this experiment is about 8%, this requires that the 
cell viability of the detected array units is more than 24% 
(3 times the RSD). Since the content of chromatographic 
components in the array unit may fluctuate between 1 and 
1/4 (in the worst case, one spot may be evenly distributed in 
four array units), so the proportion of non-overlapping parts 
of chromatographic points must be greater than about 25%. 
This means that the resolution ratio of chromatographic 
spots should be greater than 0.5 (as the resolution ratio 
reaches 1.5, the adjacent two spots reach baseline separa-
tion). In terms of planar chromatography technology, such 
resolution requirements are perfectly achievable.

Fig. 5  Schematic diagram of the array distribution of the 2D-HPTLC 
chromatogram of galangal extract
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In fact, the worst case mentioned can be avoided. Since on 
the HPTLC plate (silica gel 60, GF254) used in this experi-
ment, most of the chromatographic spots of biomolecules can 
be detected non-destructively under UV light, and the bioac-
tive regions can be known during pre-bioassays for sample 
loading amount, so the bioactive regions can be pre-located 
in as few array units as possible by adjusting the relative 
position between the array grid and 2D-HPTLC fingerprint.

The scientificity and effectiveness of the strategy

In this strategy, a pair of chromatographic-based microassay arrays 
are created to characterize and assemble the modulating bioac-
tivity and molecular characteristics of the compounds separated 
on 2D-HPTLC into self-consistent array distribution gradient, 
the contribution of small molecules to bioactivity was assessed 
according to the basic pharmacological principle of dose–effect 
interdependence, and all the experiments employed the conven-
tional proven pharmaceutical research methods and specifications. 
Ultimately, the screened candidates were determined by bioactiv-
ity assessment compared with bioactive control. Therefore, the 
results obtained by the strategy are scientific and valid.

Due to the combined multidisciplinary approaches, this 
strategy has achieved a lot of research innovations. For the 
first time, the total compounds separated on the HPTLC fin-
gerprint were subjected to mammalian cell-based phenotypic 
assay without interference from the chromatographic matrix; 
the observation indicators are converted from conventional 
chromatographic spots to array distribution gradients of 
essential substance attributes, e.g., apoptotic cell morphology 
and digital-specific quasimolecular ion, and the resolution 
is greatly improved; the compounds’ attributes are charac-
terized in intensity array distribution gradient and digitized 
into homologous 2D codes, so the small biomolecules can 
be recognized through array matching algorithm with the 
assistance of computer. Therefore, the separation and in situ 
recording of chemical constituents on TLC, the labeling of 
specific bioactivities, and the high resolution of mass spec-
trometry are combined for a parallel and synergistic compre-
hensive screening, which greatly reduces interference and 
significantly improves the resolution. This avoids the situa-
tion that diverse compounds of a complex samples have to be 
separated to monomers regardless of whether they are bioac-
tive, and avoids the loss of potential bioactive compounds in 
tedious fraction cutting and concentration preparation with-
out bioactivity monitoring. In this way, high-throughput digi-
tal preliminary screening of small biomolecular in diverse 
compounds can be realized, and the efficiency is significantly 
improved and the workload is greatly reduced.

Another notable aspect, this experiment shown that galangin in 
Alpinia officinarum Hance has bioactivities for inducing G-quad-
ruplex DNA formation and inhibiting cancer cell proliferation, 
while diphenylheptane A also inhibits cancer bioactivity. These 

results suggest that galangin induces the formation of G-quadru-
plex DNA and is involved in the inhibition of cancer cell prolifera-
tion, which may be one of the pathways of galangin’s anticancer 
activity. Although diphenylheptane A also has anticancer activity, 
its mechanism of action is different from that of galangin.

It is important to “integrate both the phenotypic and target-
based approaches to estimate a relevant network from com-
pound to phenotype in screening” [7, 8]. In this experiment, 
human cell phenotypic (two cell lines) and ligand based bioas-
say were coupled with LC–ESI–MS biotracing on the paired 
chromatographic-based microassay arrays. By considering the 
digital-specific quasimolecular ions as nodes and dose–effect 
interdependent code pairs as links, the cell phenotypic and 
target-based bioassays can be integrated with LC–ESI–MS 
biotracing to establish an extendable local self-consistent 
framework. Thus, the cell-based phenotypic assay, target-
based assay, and small biomolecules can be comprehensively 
correlated. This helps to eliminate false positives in screening 
and understand the mechanism of action, thereby significantly 
improving the reliability of small biomolecule identification.

Factors affecting self‑consistent analysis

In this experiment, the correlation coefficient is not as large 
as the normal standard calibration curve, and some microar-
ray regions that appear to exhibit bioactivity fail to resolve 
molecules attributed to bioactivity (Fig. 3). There may be par-
ticular reasons, such as the high content, the linear range of 
the signal response, and the memory effect of the thin-layer 
silica gel. The components of natural products are diverse and 
vary greatly in content. The concentration levels of TLC spots 
prepared using a certain sampling amount are not all suitable 
for bioassays, and the ultrahigh concentration levels in some 
microarray units may lead to nonspecific bioactivity effects. 
In addition, these phenomena can occur if the local content is 
too high due to spot overlap. The correlation coefficient here 
reflects the multifactorial correlation between the response 
signals of the bioassay system and those of the LC–ESI–MS 
system. If one of the respective signal responses detected by 
the bioassay or LC–ESI–MS is not within the linear response 
range, the correlation may weaken. In addition, due to the 
memory effect, trace components remaining in the thin-layer 
silica gel can be strongly eluted by methanol. The interfer-
ences from these components will appear as noise detected 
by LC–MS or bioassays. This type of memory residue of 
the complex components is not the same, and interference 
cannot be completely deduced from the reagent blank. After 
all, the chemical composition on the array unit of the chro-
matographic-based microassay array is usually not a single 
component, and it also involves multifactor response values. 
The correlation coefficient mentioned here is different from 
the correlation coefficient of the standard calibration curve 
obtained for the standard reference material.
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Conclusions

Through building the paired chromatographic-based microas-
say arrays, high-throughput micro-separation, in situ record-
ing, μTAS, coding interaction, and correlating recognition of 
substances are achieved, and an extendable local self-consistent 
framework that combines mammalian cell phenotypic and tar-
get-based bioassay with HPTLC-MS is established. Therefore, 
the small molecular contributions and correlations of bioactivi-
ties and their pathways can be associated for comprehensive 
screening. This approach can make use of abundant resources, 
such as validated drug research methods, drug databases, and 
TLC fingerprint library recorded in pharmacopeia. The digital 
acquisition and recognition algorithm of chromatographic data 
is conducive to the computer-aided processing of big data, and 
has the prospect of artificial intelligence. This research strategy 
will greatly promote the drug discovery of small molecules.
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