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Abstract: Mechanics of the bilayer membrane play an important role in many biological and
bioengineering problems such as cell–substrate and cell–nanomaterial interactions. In this work,
we study the effect of thermal fluctuation and the substrate elasticity on the cell membrane–substrate
adhesion. We model the adhesion of a fluctuating membrane on an elastic substrate as a two-step
reaction comprised of the out-of-plane membrane fluctuation and the receptor–ligand binding.
The equilibrium closed bond ratio as a function of substrate rigidity was computed by developing a
coupled Fourier space Brownian dynamics and Monte Carlo method. The simulation results show
that there exists a crossover value of the substrate rigidity at which the closed bond ratio is maximal.
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1. Introduction

Mechanics of the bilayer membrane play an important role in many biological and bioengineering
problems such as membrane remodeling during cell mechanoadaptation [1], cell–substrate and
cell–nanomaterial interactions [2], and supported bilayer membranes [3–6]. In this work, we focus on
the effect of thermal fluctuation and the substrate elasticity on the cell membrane–substrate adhesion.
Cell–substrate adhesion has attracted considerable interest in past decades due to its importance in
mechanobiology as well as in biotechnology where living cells interact with a variety of substrates [7–9].
Molecular and cellular mechanisms by which cells “sense” and respond to the mechanical properties of
the extracellular matrices can, in general, fall into two categories. In the first category, mechanosensing
is actively executed through molecular mechanoenzymatics by which mechanical forces is converted
into biochemical signals [10]. The other category is through “passive” physical laws that are derived
from the kinetics or energetics of the processes in cell–matrix interactions [11]. Due to the complexity
of the biological system, it is very likely that principles from both of these two categories contribute to
the cell–matrix interactions. When focusing on the cell–substrate adhesion, it is generally considered
that different phases can be distinguished [12]. In the early phase (e.g., the first a few minutes of
cell–substrate adhesion), cells come in contact with the substrate to form nascent adhesion patch
mainly via receptor–ligand binding, and in the later phases, much more complicated processes are
involved such as receptor clustering, cytoskeleton remodeling, and focal adhesion formation [13].

While considerable mechanics modeling efforts have been devoted to the later phase (see a
review [11] for more details), the present work is mainly focused on the early phase. The early phase,
despite being relatively simpler than the later phase, has also attracted great interest. For example,
dedicated vesicle adhesion experiments [14,15] where binding molecules are present in the vesicle
membrane and on the substrate have been carried out to mimic cell adhesion. In these experiments,
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out-of-plane membrane fluctuation was used to detect receptor–ligand binding. In particular,
it was found [15] that equilibrium contact zones by ligand–receptor binding were formed and
suppressing membrane fluctuation leads to increase of adhesion strength. Furthermore, it has been
postulated [16] that cells utilize membrane fluctuation to probe surface properties in the first minutes
of cell–substrate contact.

Membrane fluctuation was thought to play an essential role in the early stage of cell adhesion,
which is also the central theme of the present work. Besides the membrane–substrate adhesion,
membrane fluctuation has also been thought to play important roles in many other cellular processes,
such as being utilized to avoid non-specific adhesion [17,18], creating transient gap for actin monomer
intercalation during cell migration [19], inducing long-range interactions between membrane proteins
or domains [20], and affecting protein mobility on cell membranes [21,22]. In this paper, we aim
at developing a quantitative simulation model for the adhesion of the fluctuating membrane and
to ascertain whether the membrane fluctuation can be “utilize” to probe the substrate rigidity and
receptor density.

2. The Model

A pioneering work on theoretical modeling of cell adhesion mediated by reversible
receptor–ligand bonds was presented by Bell [23], in which the cell adhesion was modeled as a
two-step reaction. In the first step, binding proteins diffuse in membranes to form receptor–ligand
encounters, and in the second step, receptor–ligand encounters react to form closed bonds. In our
case of membrane–substrate, we assume receptors in the membrane are dilute and ligand density on
the substrate is saturated, so the effect of the in-plane receptor diffusion on forming receptor–ligand
encounters is neglected and receptors are assumed to be immobile and uniformly distributed in the
membrane (as illustrated in Figure 1). On the other hand, the cell membrane undergoes out-of-plane
undulation as a form of Brownian motion, which brings receptors close to the substrate to form
receptor–ligand encounters or inversely pull closed bonds apart. Qualitatively, we can take the same
idea as Bell to model the adhesion of a fluctuating membrane as a two-step reaction by simply replacing
the in-plane binder diffusion of Bell’s model with the out-of-plane membrane fluctuation,

R + L � R−−L
k0

on


ko f f

RL (1)

where the first step concerns the formation of encounter complex R−−L via membrane fluctuation
and the second step is the formation of receptor–ligand bonds with single-molecule reaction rate
k0

on. The forward reaction of the second step can only occur when the ligand–receptor distance
is within the encounter distance RRL. The unbinding rate constant koff takes Bell’s formula [23] as
ko f f = k0

o f f exp( f xb/kBT), where f is the force acting on a ligand–receptor bond by the membrane

pulling, xb describes how strongly the reaction rate change with force, k0
o f f is the rate at zero force,

kB is Boltzmann constant, and T is the temperature. As showed by Bell [23], for the case of classical
particle diffusion, rates of the diffusion step are simple functions of particle diffusivities and encounter
distance. In contrast, the two-step reaction in this model is complicated by the membrane fluctuation
and we resort to computer simulations. Throughout this paper, we use the closed bond ratio ϕ, which
is simply defined as the number of closed ligand–receptor bonds divided by the total number of
receptors in the membrane, to characterize the adhesion strength. The objective of this paper is to carry
out numerical simulations of the chemical reaction in Equation (1) to calculate the closed bond ratio ϕ,
and to study how it depends on substrate rigidity and receptor density by involving the membrane
fluctuation step. It shall be mentioned that previous cell adhesion models [23–27] mainly focused on
the rupture strength of a cluster of bonds under an external pulling force, while in our present work,
we are concerned with the equilibrium closed bond ratio in the case of no external pulling force.
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Figure 1. A schematic of a fluctuating membrane adhering to an elastic substrate via ligand–receptor 

binding: (a) side view; (b) top view. Note that out-of-plane fluctuation amplitude is exaggerated for 

better visualization. Structurally, the membrane drawn here includes the glycocalyx layer. 

The fluctuation or Brownian motion of the membrane in potential fields will be simulated using 

a Fourier space Brownian dynamics (FSBD) scheme developed by Lin and Brown [22,28]. Single 

ligand–receptor binding-unbinding kinetics will be modeled via Monte Carlo (MC) method and 

hereafter we refer to this coupled scheme as the FSBD-MC (Fourier space Brownian dynamics- Monte 

Carlo) simulation. Membrane fluctuation mediated cooperative behavior [29] among different 

ligand–receptor pairs will be naturally taken into account in the FSBD-MC simulations. On the other 

hand, particle-based membrane simulation models [30–32] are more suitable and straightforward if 

one needs to simulate receptor diffusion and membrane fluctuation simultaneously. However, in the 

present work, since receptor diffusion is neglected and only single-valued out-of-plane deformation 

of a planar membrane is examined, adopting such a Fourier mode-based continuum model can be 

efficient for the large membranes. The overdamped Langevin equation in Fourier space, with the 

amplitudes of the undulation modes as the degrees of freedom, reads [28] 
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Figure 1. A schematic of a fluctuating membrane adhering to an elastic substrate via ligand–receptor
binding: (a) side view; (b) top view. Note that out-of-plane fluctuation amplitude is exaggerated for
better visualization. Structurally, the membrane drawn here includes the glycocalyx layer.

The fluctuation or Brownian motion of the membrane in potential fields will be simulated using
a Fourier space Brownian dynamics (FSBD) scheme developed by Lin and Brown [22,28]. Single
ligand–receptor binding-unbinding kinetics will be modeled via Monte Carlo (MC) method and
hereafter we refer to this coupled scheme as the FSBD-MC (Fourier space Brownian dynamics- Monte
Carlo) simulation. Membrane fluctuation mediated cooperative behavior [29] among different
ligand–receptor pairs will be naturally taken into account in the FSBD-MC simulations. On the
other hand, particle-based membrane simulation models [30–32] are more suitable and straightforward
if one needs to simulate receptor diffusion and membrane fluctuation simultaneously. However, in the
present work, since receptor diffusion is neglected and only single-valued out-of-plane deformation
of a planar membrane is examined, adopting such a Fourier mode-based continuum model can be
efficient for the large membranes. The overdamped Langevin equation in Fourier space, with the
amplitudes of the undulation modes as the degrees of freedom, reads [28]

∂hq(t)
∂t

= Λq
[
Fq(t) + ζq(t)

]
(2)

where hq =
∫

A h(x) exp(−iq · x)dx and inversely h(x) = L−2∑
q

hq exp(iq · x). As illustrated in

Figure 1, x = (x, y), and h(x) is the membrane height, A = L2, L is the membrane side length,
Λq = 1/(4ηq), η is the viscosity of the surrounding fluid, and q = |q|, q = (2πα/L, 2πβ/L), α and
β are integers from 0 to αmax. Note that, in the numerical simulations, two wavelength cutoffs are
defined: λmin = L/αmax and λmax = L. The stochastic force ζq(t) has a Gaussian distribution with〈∣∣ζq(t)

∣∣〉 = 0 and
〈∣∣∣ζq(t)ζq′(t′)

∣∣∣〉 = 2kBTL2Λ−1
q δqq′δ(t− t′), and Fq(t) is the deterministic force

derived from potential energies which will be described in detail later. Numerical integration is used
to update hq in Equation (2) from time t to t + ∆t, and h(x) is obtained by inverse Fourier transform
from hq. At the end of each time step, k0

on is calculated for each open bond if ligand–receptor distance
is within the encounter distance RRL, and ko f f = k0

o f f exp( f xb/kBT) is computed for each closed

bond with given bond force f calculated based on the membrane position. Then, k0
on∆t and ko f f ∆t
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are compared with a uniformly distributed random number in [0,1] to determine whether binding or
unbinding occurs.

The deterministic force Fq in Fourier space is computed from Fq =
∫

A P(x) exp(−iq · x)dx, where
P(x) = −δÊ/δh is the force per unit area acting on the membrane and Ê is the potential or interaction
energy per unit area. Next we define all the potential energies involved in the membrane–substrate
system illustrated in Figure 1 as follows. First, the membrane bending energy is described by the
Canham–Helfrich fluid membrane model [33,34]: Eb = (1/2)

∫
A B
(
∇2h

)2dx, where B denotes bending
rigidity, and∇2 is the Laplace operator in 2D. Thus, the force derived from Eb is Fb

q = −Bq4hq. Second,
we define the equivalent spring constant k of the membrane–substrate linkage (MSL) that takes three
components into account: shear deformation resistance in the thickness direction of the lipid bilayer
membrane, receptor–ligand complex stiffness, and the substrate elasticity. In this paper, we model the
linkage as a linear spring, which is a simplified case for biomaterials that are usually nonlinear. Thus,

the potential energy stored in MSL can be written as EL =
Nb−1

∑
m=0

Nb−1
∑

n=0

∫
A

1
2 k(h− hL)

2δ(xmn − x)φmndx,

where hL denotes the vertical position of rest unbound ligands, xmn = (m∆, n∆) are uniform locations
of ligand–receptor pairs where ∆ denotes receptor spacing as shown in Figure 1. The receptor density is
then characterized by 1/∆2. The total number of receptors in the domain of interest is denoted by (Nb)

2.
The binary function φmn describes ligand–receptor binding status with φmn = 1 for closed bonds and

φmn = 0 for open bonds. The force derived from EL is FL
q = −

Nb−1
∑

m=0

Nb−1
∑

n=0
k[h(xmn)− hL] exp(−iq · xmn).

Since the substrate is a solid bulk material, the thermal fluctuation of the substrate shape is neglected
in this model. Therefore, unbound ligands embedded in the substrate are considered to be at rest with
the substrate. The elevated ligands elastically restore to their rest positions when unbinding from
receptors and such retracting process takes no time by assuming the time scale of elastic restoring
is small compared to membrane fluctuation time scale. The substrate is modeled using a soft-wall
repulsive interaction Ew = εw

∫
A (σw/(h + σw − hsub))

8dx, and Ew is truncated so that Ew ≡ 0 when
h > hsub where hsub is the upper bound of the repulsive interaction range, hsub = 0 is assumed in this
paper. Here, σw and εw are parameters determining the repulsive interaction strength. Note that other
types of enthalpic repulsive interactions [35], if considered, can also be absorbed into Ew. The force
acting on the membrane derived from Ew is

Fw
q =

∫
A

[
8(εw/σw)(σw/(h(x) + σw − hsub))

9
]

exp(−iq · x)dx (3)

3. Results

To validate the implementation of the FSBD simulation method, we first carried out free
membrane simulations (integrating Equation (2) when Fq(t) = Fb

q ), for which a simple analytical
expression (the equation inset in Figure 2) exists for the fluctuation spectrum. As shown in Figure 2a,
the simulation result (square dots) matches with the theoretical curve (solid line) very well. The
equation

√
< h2(x) > ≈

√
AkBT/(4π3B) [36] theoretically predicts the mean fluctuation in physics

space as ~33 nm for B = 20 pN·nm and
√

A = L = 800 nm, which is comparable to the fluctuation range
shown in the inset. The relative mean fluctuation amplitude

√
< h2(x) >/L ≈

√
kBT/(4π3B) ~4%.

The integration time step is chosen so that it is two orders of magnitude smaller than the relaxation
time of the deformation mode of the smallest wavelength. For λmin = 20 nm, B = 20 pN·nm, and
η = 0.06 Poise, the relaxation time is estimated as [37] τ = 4ηλ3/B(2π)3~40 ns.
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show that it is this entropic pressure that gives rise to different closed bond ratios when substrate 

rigidity is varied. Therefore, it is important to revisit the classical problem of how the entropic 

pressure is quantitatively dependent on the membrane–substrate distance d using the FSBD 
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Figure 2. (a) Free membrane fluctuation spectrum. Simulation parameters are as follows L = 800 nm,
kBT = 4.3 pN·nm, B = 20 pN·nm ~5 kBT, η = 0.06 Poise, time step ∆t = 0.5 ns, total simulation
time ttotal = 1 ms, and λmin = 20 nm. A simulation snapshot showing fluctuation magnitude and
morphology in physics space is plotted as an inset. (b) Entropic repulsive interaction between the
fluctuating membrane and the substrate. Simulation parameters are as follows: kBT = 4.3 pN·nm,
B = 20 pN·nm, η = 0.06 Poise, εw = 0.043 pN/nm, time step ∆t = 0.5 ns, and total simulation time
ttotal = 0.6 ms. The triad number denotes (σw, λmin, L) in units of nm.

Membrane fluctuation can induce an entropic repulsive force between the membrane and the
substrate due to the confinement of the fluctuation [38]. Thus, the membrane is pushed away from the
substrate by the entropic pressure. Consequently, the membrane is pinned closer to the substrate on a
stiffer substrate by the MSLs for the same amount of closed bonds. We will in the later section show
that it is this entropic pressure that gives rise to different closed bond ratios when substrate rigidity
is varied. Therefore, it is important to revisit the classical problem of how the entropic pressure is
quantitatively dependent on the membrane–substrate distance d using the FSBD simulations. Here,
instead of considering a fluctuating membrane between two hard walls, we simulate a fluctuating
membrane between a soft wall and an externally applied pressure p that pushes the membrane against
the soft wall. A soft wall is used to make the time–space FSBD numerical simulations applicable. Upon
equilibrium, the magnitude of the applied pressure p will be equal to that of the entropic pressure.
Therefore, we use p to represent the entropic pressure in this section. If the membrane is infinitely large
and the hard wall is assumed, the only length scale involved is the distance d. A simple dimensional
analysis yields the following relation between p and d,
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p = c
(kBT)2

Bd3 (4)

where c is the coefficient to be determined [36,39]. Substantial work has been devoted to determine
the coefficient c (see ref. [40] and also refs cited therein). Here, we carry out the FSBD simulations
by integrating Equation (2) with deterministic forces Fq(t) = Fb

q + Fw
q +Fp

q , where Fp
q = −L2 pδq,0 to

determine the coefficient c. Three more length scales are introduced in our simulations compared to
the ideal case: the upper cutoff of the Fourier mode wavelength, which is side length L, the lower
cutoff wavelength λmin, and σw from the soft wall interaction.

We investigated how the simulation result deviates from Equation (4) when these three length
scales are varied. We found that the p – d relation deviates from Equation (4) drastically when λmin

is varied. This is rather counterintuitive, because small wavelength modes with relatively small
fluctuation seem to be less affected by the hard wall confinement. Varying membrane periodic size
from 800 nm to 240 nm only results in negligible changes in the p – d relation as indicated by the
overlapping three curves, as shown in Figure 2b. In addition, increasing the length scale parameter
σw renders the wall potential softer and thus causes the p – d relation to deviate from Equation (4).
By fitting the simulation data that is closest to Equation (4), we obtain c ~0.078, which is in good
agreement with other simulation results (see the references cited in [40]). Note that, due to the entropic
repulsive force, a weak pressure p0 pushing the membrane towards the substrate is necessary in our
FSBD-MC simulations below to prevent the membrane from diffusing far away from the substrate in
dynamic processes.

Next, the FSBD-MC simulations were carried out to ascertain the effect of the substrate rigidity
and the receptor density on the membrane adhesion. In this case, Fq(t) = FL

q + Fb
q + Fp

q + Fw
q is used

in Equation (2). We first briefly summarize the value of the parameters used in the simulations. The
second step in Equation (1) in the case of zero bond force is a two-state reaction and the equilibrium
constant k0

on/k0
o f f is approximated to be exp(εb/kBT) [41], where εb is the ligand–receptor binding

energy. Assuming εb to be 10 kBT yields k0
on/k0

o f f ~104. In the literature, k0
on was estimated to be from

10−3 to 1 ns−1 for hapten-antibody [23], and k0
o f f was measured to be from 10−11 to 10−6 ns−1 for

integrins [42,43]. Since varying the substrate Young’s modulus is equivalent to changing the MSL
spring constant k if other segments of the linkage remain unchanged, the lumped spring stiffness k is
used to represent the change of substrate stiffness. Typical morphologies of the fluctuating membrane
in our FSBD-MC simulations are shown in Figure 3.
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Figure 3. Snapshots of fluctuating membranes in the FSBD-MC simulations. (a) k = 1 pN/nm;
(b) k = 100 pN/nm.

The closed bond ratio ϕ as a function of the spring constant k for different k0
on and k0

o f f is plotted
in Figure 4a. In all cases, ϕ first increases with k and then decreases. Such a general behavior can be
interpreted as a result of the competition between the change of the rebinding rate and the unbinding
rate. Qualitatively, the rebinding rate decreases with the average membrane fluctuation distance, which
is characterized here by the average distance d between the membrane and the substrate. The distance
d, as shown on the right Y-axis of Figure 4a, decreases with the linkage stiffness k, which implies that
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the membrane is pinned more closely on the stiffer substrate. Therefore, the rebinding rate is larger on a
more rigid substrate, which accounts for the increasing region of the ϕ-k curves. On the other hand, the
linkage stiffness k also affects the receptor–ligand bond force. Assuming the bond force is induced by
the thermal energy, which is constant, the bond force f scales with k as f ∝

√
kBT × k. Thus, the bond

force increases with k, as does the unbinding rate ko f f = k0
o f f exp( f xb/kBT). When the increase in the

unbinding rate outperforms the rebinding rate, the equilibrium closed bond ratio decreases, which
corresponds to the decreasing region of the ϕ-k curves. Note that such a substrate rigidity-dependent
adhesion scenario only exists in a certain parameter range. As for diffusion-limited reactions, in order
for the membrane fluctuation to affect the overall reaction in Equation (1), the rates of the second step
need to be much faster than the first step. Therefore, in order to see the substrate rigidity effect on the
membrane adhesion, we picked the values of k0

on and k0
o f f at their upper bound. As shown in Figure 4a

for smaller k0
on and k0

o f f , the rigidity dependence is weakened and even disappear based on our other
simulation data that is not shown here. Simpler than the rigidity dependence, the closed bond ratio ϕ

monotonically decreases with the receptor distance ∆, as shown in Figure 4b. This is obvious because
lowering the receptor density directly reduces the maximum closed bonds per unit area and thus
results in a greater membrane–substrate distance subject to the entropic repulsive pressure. Therefore,
with other parameters remaining constant, a solely decreasing receptor density leads to a smaller
rebinding rate and thus a lower closed bond ratio.
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εw = 0.01 kBT/nm2.

4. Conclusions

The simulation results presented in this paper show that when thermally excited membrane
fluctuation is taken into account in the specific membrane–substrate adhesion, the adhesion strength
characterized by the closed bond ratio becomes dependent on the substrate rigidity and receptor
density. The fluctuation induced entropic repulsive force provides the means for the system to “probe”
these variations. Such dependence is most evident when the “rate” of the membrane fluctuation
step dictated by the viscosity of the surrounding fluid and the membrane bending rigidity is much
slower than that of the single receptor–ligand binding and unbinding process. For the classical particle
diffusion, the diffusion step only changes the forward and reverse reaction rates but not the overall
equilibrium constant. However, it was shown here that the membrane diffusion does affect the overall
equilibrium and thus the closed bond ratio. For example, there exists a crossover value of the substrate
rigidity at which the closed bond ratio is maximal, and the closed bond ratio monotonically increases
with the receptor density. In addition, it is interesting to point out that the membrane fluctuation
always works to reduce the closed bond ratio compared to a zero-temperature membrane because,
in the absence of membrane fluctuation, the equilibrium constant in Equation (1) K = k0

on/k0
o f f , which

is maximal. Therefore, as shown in our additional simulations that are not presented in this paper,
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when the membrane fluctuating is suppressed or reduced by, for example, increasing the membrane
bending rigidity or increasing the membrane tension [16], the adhesion strength increases.
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