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Mining of metabolite-protein interaction networks facilitates the identification of design principles
underlying the regulation of different cellular processes. However, identification and characterization
of the regulatory role that metabolites play in interactions with proteins on a genome-scale level remains
a pressing task. Based on availability of high-quality metabolite-protein interaction networks and
genome-scale metabolic networks, here we propose a supervised machine learning approach, called
CIRI that determines whether or not a metabolite is involved in a competitive inhibitory regulatory inter-
action with an enzyme. First, we show that CIRI outperforms the naive approach based on a structural
similarity threshold for a putative competitive inhibitor and the substrates of a metabolic reaction. We
also validate the performance of CIRI on several unseen data sets and databases of metabolite-protein
interactions not used in the training, and demonstrate that the classifier can be effectively used to predict
competitive inhibitory interactions. Finally, we show that CIRI can be employed to refine predictions
about metabolite-protein interactions from a recently proposed PROMIS approach that employs metabo-
lomics and proteomics profiles from size exclusion chromatography in E. coli to predict metabolite-
protein interactions. Altogether, CIRI fills a gap in cataloguing metabolite-protein interactions and can
be used in directing future machine learning efforts to categorize the regulatory type of these
interactions.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The flux of biochemical reactions, as the ultimate outcome of
transcription, translation, and post-translational modifications, is
determined not only by the concentration of substrates and active
enzymes, but also by other metabolites that can alter the activity of
enzymes via regulatory interactions, e.g. competitive inhibition or
allosteric activation [1,2]. The role of metabolite-protein regulatory
interactions goes beyond modulating metabolic responses, since
metabolites can also interact with proteins of non-enzymatic fac-
tion, such as transcription factors [3,4]. Therefore, recent systems
biology efforts have been directed at assembling and systemati-
cally analyzing small molecular regulatory networks (SMRNs),
comprising the entirety of documented regulatory interactions
between small molecules and proteins [5,6]. In parallel, advances
in high-throughput technologies have resulted in the development
of in vitro and in vivo approaches to identify and verify metabolite-
protein interactions [7–9].

The systems biology studies of SMRNs are based on combining
the resources distributed across different databases (e.g. BRENDA
[7], STITCH [10]). Metabolite-protein regulatory interactions can
be divided into activating and inhibitory (however, see [11], for
the subtle effects of single-molecules on this categorization). The
inhibitory interactions can be further subdivided into competitive,
noncompetitive, uncompetitive, suicide, and product [1]. Mining of
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the resulting SMRNs has led to the observations that: (1) inhibitory
interactions are the most prevalent metabolite-protein interac-
tions, with domination of competitive inhibition [5,6]; (2) the com-
petitive and allosteric inhibitory interactions are largely due to
structural similarity between the substrate and competitive inhibi-
tor (CI) and are, therefore, found in the network vicinity of the reg-
ulated enzyme [5,6]; and (3) metabolite-protein regulatory
interactions are non-randomly distributed in the network, but
the pattern cannot be explained by thermodynamics principles or
preservation of resources (via prevention of futile cycling) [6].
Therefore, it appears that a large fraction of SMRNs may be
explained by structural similarity between metabolites that act
as substrates and inhibitors, leading to the so-called self-
inhibitory nature of metabolic networks.

However, not all metabolites that are structurally similar to the
substrates of a regulated enzyme act as inhibitors. Moreover, not
all inhibitors are structurally similar to the substrates of the regu-
lated enzyme. While molecular docking approaches provide one
means to narrow down the set of metabolites that can act as CIs
[12–14], they are limited to proteins with resolved crystal struc-
ture [15]. Therefore, this approach is currently unfeasible for
genome-scale studies of competitive inhibitory regulatory interac-
tions. Therefore, despite the prevalence of such regulatory interac-
tions across kingdoms of life [5,6], the presented statistical findings
and computational approaches do not provide a precise means to
pinpoint metabolites that can act as CIs of a given enzyme.

Here we devise a supervised machine learning approach, called
CIRI that determines whether or not a metabolite is involved in a
competitive inhibitory regulatory interaction with an enzyme, pro-
vided information about the reactions that the enzyme can cat-
alyze. To this end, we employ a machine learning procedure to
identify metabolite-reaction, and thereby metabolite-enzyme,
pairs that are not involved in competitive inhibitory interactions
[16]. We validate the performance of CIRI on several unseen data
sets and databases of metabolite-protein interactions not used in
the training [10,17]. Finally, we show that CIRI can be used to
refine predictions about metabolite-protein interactions from PRO-
MIS, an approach which employs metabolomics and proteomics
profiles from size exclusion chromatography [18].

2. Results

2.1. Gold standard of competitive inhibitory interactions

As a supervised learning approach, CIRI relies on high-quality
gold standard to determine whether or not a metabolite-enzyme
regulatory interaction is of competitive inhibitory nature. The gold
standard is based on the computationally reconstructed SMRN of
E. coli that includes 1926 unique interactions, between 454
metabolites and 365 reactions [6]. This SMRN contains 183 com-
petitive inhibitory interactions, between 113 competitive inhibi-
tors (CIs) and 116 reactions (Supplementary Table 1). Large-scale
metabolic networks include gene-protein-reaction (GPR) rules that
specify which enzymes catalyze a reaction along with the genes
that code for them [19]. Therefore, metabolite-reaction interac-
tions reported in the gold standard can be readily transformed into
metabolite-enzyme and metabolite-gene interactions, used in the
following analyses. As a result, the gold standard of competitive
inhibitory interactions can be represented as a bipartite network
(Fig. 1A), in which ADP acts as a CI in interaction with eight
enzymes, while 69% of CIs have only one interaction (see Fig. 1B).
We note that the inhibitors that are included in the gold standard
can be classified into seven classes, including: organic acids, pep-
tides, carcinogens, nucleic acids, carbohydrates, vitamins and
cofactors, and others. The reactions in the gold standard are cat-
alyzed by six enzyme classes, including: oxidoreductases, trans-
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ferases, hydrolases, lyases, isomerases, and ligases (see Fig. 1A
and Supplementary Table 1).

2.2. Feature engineering based on metabolic reaction networks and
structural similarity of metabolites

To study the structural similarity of CIs and substrates involved
in competitive inhibitory interactions, we make use of interactions
included in the SMRN of E. coli. For each competitive inhibitory
interaction between a CI and an irreversible reaction, we extract
all substrates of the reaction, and we calculate their structural sim-
ilarities with the CI using the Tanimoto coefficient; if the reaction
is reversible, we also consider the structural similarity of the prod-
ucts to the CI (see Methods). Finally, we use the maximum struc-
tural similarity over all reactants (i.e. substrates and/or products)
as a score for the competitive inhibitory interactions (Fig. 2A).
We employ the iJO1366 genome-scale metabolic model of E. coli
[21] to obtain information about reversibility and reactants of reac-
tions participating in the gold standard of competitive inhibitory
interactions. Following this approach, we arrive at fingerprints
for 107 CIs and for the substrates of 115 reactions involved in
173 (94.5%) competitive inhibitory interactions in the gold stan-
dard. Other types of regulations in the SMRN of E. coli includes
1205 unique interactions, between 429 regulators and 359 reac-
tions. The fingerprints are available for 369 regulators and for the
substrates of 249 reactions participating in 1152 interactions.

The comparison of the resulting scores indicate that CIs have
higher similarity to the reactants of the reactions they inhibit in
comparison to the metabolites involved in other types of regula-
tions, namely positive regulation (p-value = 2:5 � 10�9), non-
comptetitive inhibition (p-value = 1:8 � 10�8) and collectively (p-
value = 1:8 � 10�8), in the SMRN of E. coli (Fig. 1C). The other types
of regulatory interactions do not contain enough instances in the
employed gold standard to facilitate statistical testing. While this
finding supports existing observations [5,6], it also points out that
there are cases of metabolite-reaction pairs where this statistical
finding does not provide effective classification of competitive
inhibitory interactions. For instance, following the described pro-
cedure (Fig. 2), NADP is an inhibitor of pyrroline-5-carboxylate
reductase, but exhibits the smallest value for the Tanimoto coeffi-
cient of zero with the substrates of the reaction catalyzed for this
enzyme; the same holds for THR and fumarate hydrates (see Sup-
plementary Table 1 for additional examples). If we used the calcu-
lated Tanimoto coefficients to create a naïve classifier by simply
using a threshold value (considering all pair above the threshold
as competitive inhibitory interactions), we find that the area under
the receiver operating characteristic curve (AUC) and area under
the precision-recall curve (AUPR) of 0.78 and 0.07, respectively.
We would like to stress that these findings are over a set of thresh-
olds needed to derive the aforementioned curves. The question
that then arises is: Can the performance of this naïve classifier be
improved following a supervised machine learning approach?

2.3. Identification of metabolite-reaction pairs not involved in
competitive regulatory interactions

Having established that CIs tend to show higher structural sim-
ilarity to at least one of the reaction substrates, here we propose
CIRI, a supervised machine learning approach based on support
vector machine (SVM), to predict competitive inhibitory interac-
tions. While one can envision that this strategy can be expanded
by incorporating more than one of the highly similar substrates,
here we test the simplest scenario of considering the most similar
substrate to the inhibitor of an enzyme to build the features of the
SVM.



Fig. 1. Gold standard of competitive inhibitory interactions. The bipartite network in (A) represents the gold standard of competitive inhibitory interactions. Node colors
indicate the category to which the reaction/metabolite belongs. The categories for metabolites and reactions are retrieved from KEGG [20] and BRENDA [7]. The radius of the
circle that represents a node is proportional to the node’s degree. The degree distribution of nodes in the gold standard network is illustrated in (B). The structural similarity
between CIs and the reactants, measured by Tanimoto coefficients is shown in (C) and is compared with the Tanimoto coefficients over the other types of regulatory
interactions (left-most boxplot) and the specific types of positive regulation and noncompetitive inhibition, included in the gold standard. The means of the Tanimoto
coefficients of the regulator-substrate pair over the other types of regulatory interactions significantly differ from the mean of the Tanimoto coefficients of the CI-substrate
pairs (p-value = ), as do the means for subtypes of positive regulation (p-value = ) and noncompetitive inhibition (p-value = ). The numbers below the boxplots denote the
number of instances (pairs of regulator - substrate) included in the specific types of regulatory interactions.

Fig. 2. A visual illustration of CIRI. (A) A schematic representation of the fingerprints for a CI (C) and the reactants of reaction R are depicted. The structural similarities
between C and all reactants of R are calculated using the Tanimoto coefficient. The reactant with the maximum structural similarity (M2) is selected as the potential
competitive reactant to C. (B) The feature vector for the (C,R) pair in CIRI is constructed by concatenating the fingerprint of the C and that of the reactant with the maximum
Tanimoto coefficient (M2).
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For any pair of a metabolite and a reaction, CIRI predicts
whether or not the metabolite can act as a CI for the reaction.
The features in CIRI is constructed by concatenating the fingerprint
of the CI and that of the reactant (i.e. substrate and/or product) that
maximizes the score of the interaction, as explained above (Fig. 2).
A reaction can be catalyzed by more than one enzyme (e.g. isoen-
zymes), so that the metabolites that act as CIs may differ between
them. Since the assembled gold standard specifies whether a
metabolite act as a CI to a reaction, rather than an enzyme, CIRI
is designed to classify interactions between metabolites and reac-
tions. However, by using the GPR rules, we can readily transfer the
information from reactions to the underlying enzymes and genes,
respectively.

To apply a supervised machine learning approach, we also
need to specify a gold standard of negative instances (i.e.
metabolite-enzyme pairs that are not involved in competitive
inhibitory interactions). While instances that represent
CI-reaction interactions are available from the gold standard
described above, specifying metabolite-reaction pairs that are
not involved in competitive inhibitory interactions is not straight-
forward due to the lack of information about absence of compet-
itive inhibitions between a metabolite and a reaction. To
overcome this issue, CIRI applies the strategy proposed by [16]
to identify such instances.

Using the CIs from the gold standard of competitive inhibitory
interactions, we construct feature vectors for the respective
CI-reaction pairs (i.e. 107 � 115). The 12,132 (¼ 107� 115� 173)
uncharacterized pairs of metabolites and reactions are then
divided into several subsets of size equal to that of positive
instances in the gold standard. At each iteration, one of the subsets
of uncharacterized pairs is treated as the negative class, and
together with the positive class form a training set based on which
an iteration-specific SVM is built (following a 10-fold cross-
validation). All the remaining uncharacterized pairs are in turn
treated as a test set and classified as positive or negative by the
iteration-specific SVM. As a result, we train as many as
juncharachterizedpairsj

jpositivepairsj ¼ 12312
173 70 iteration-specific SVMs whose assess-

ments of the uncharacterized pairs are finally aggregated, and
the uncharacterized pairs can be ranked based on the number of
iterations in which they are classified as positive. Clearly, a higher
rank for a metabolite-reaction pair indicates a higher likelihood
that it belongs to the positive class. Pairs with zero final score com-
prise the negative class of the training data.

From the 12,132 uncharacterized metabolite-reaction pairs,
4,626 (38.1%) receive a score of zero and are treated as instances
that do not represent competitive inhibitory interactions. The
results show that 364 (out of 12132) uncharacterized pairs receive
the highest score of 69 which are cross-examined with the STITCH
database [10]. Form the pairs with the highest score, we find out
that 39% are included in STITCH database. To assess the signifi-
cance of this finding, a null distribution of 1000 sets of 364 random
uncharacterized pairs is generated and their interactions in STITCH
are examined. The maximum percentage of interactions among the
1000 random sets is 24%. This indicates that pairs with the highest
score of 69 are significantly enriched for interactions (p-value < 0.
001)—demonstrating the validity of the employed procedure.
2.4. CIRI accurately predicts metabolite-reaction pairs involved in
competitive inhibitory interaction

We note that the number of negative instances identified is con-
siderably larger than the number of positive instances, leading to a
class imbalance problem. To address this issue, at each iteration, a
balanced subset of data is selected containing all positive instances
and a subset of same size composed of negative instances sampled
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uniformly at random (100 repetitions). Ten percent of positive and
negative instances from the selected data set for this iteration are
then selected as test data, and the rest are used as iteration-specific
training set, on which cross-validation is performed (see Methods).
The best model obtained from the cross-validation with hyperpa-
rameter tuning is then validated on the unseen test data (see
Methods). Our findings indicate that CIRI has area under the ROC
curve (AUC) and the area under the precision-recall curve (AUPR)
values of 0.90 and 0.85, respectively, indicating a 15% increase in
comparison to the naïve classifier, described above, based on a
threshold value for a metabolite-reaction score. The analysis of
the learning curve demonstrates that the cross-validation error
approaches the training error as the training set size increases, sug-
gesting that the training set is representative and the classifier is
not expected to suffer from overfitting issues (Supplementary
Figure 1A).

A similarly constructed balanced data set, containing all posi-
tive instances and a subset of negative instances, is employed to
train the final SVM classifier model. This SVM model is then used
to predict whether or not any given CI could have a competitive
inhibitory role for a given reaction. Since the choice of negative
subset may influence the predictions, 100 different negative sub-
sets of the same size are randomly selected from the negative class
and independently used to train different classifier models. All
trained models are in turn used to predict the class labels for all
possible CI-reaction pairs (see Data section). The results of all mod-
els are at the end aggregated to assign a final score to each pair,
which reflects the number of times the pair is classified as positive,
i.e. forming a competitive inhibitory interaction.

From the 2,583 reactions included in the genome-scale meta-
bolic model of E. coli, fingerprints are available for at least one reac-
tant of 1,007 reactions. Using the CIs from the SMRN of E. coli, we
construct feature vectors for 107;749ð¼ 107� 1007Þ pairs. Fur-
ther, all 100 trained model are applied to predict the class labels
of every possible pairs, and the final score from the predictions
are used to construct the predicted competitive inhibitory network
of this study (see Supplementary Table 2). In the resulting network,
we find that five CIs, including: adenosine, nicotinate D-
ribonucleotide, NAD, AMP and NADP, have competitive inhibitory
interactions with more than 70% of reactions in the network.
Enzymes responsible for pentosyltransferases and hexosyltrans-
ferases and the ones with NAD+ or NADP+ as acceptor, are the most
regulated enzymes in the predicted competitive inhibitory net-
work. Furthermore, we use Tanimoto coefficient to calculate the
structural similarity between all pairs of CIs in the network of pre-
dicted competitive inhibitory interactions. The average structural
similarity of all pairs of CIs in the network is 0.21, which is signif-
icantly lower than that of for the five metabolites with the highest
number of competitive inhibitory interactions (0.69, p-value = 1e-
6). This shows that CIs with higher tendency to inhibit reactions,
share more structural fragments.

The similarity of CIs in the predicted network is also measured
by the Jaccard index. The Jaccard index for two given CIs calculates
the proportion of shared reactions between the two CIs, relative to
the total number of reactions which they regulate. Having estab-
lished that the interaction between CIs and reactions are due to
the high structural similarity of CIs to at least one of the reaction
substrates, it is expected that CI pairs with higher number of
shared reactions, have relatively higher structural similarity.
Therefore, we investigate whether a correlation exists between
the Jaccard indices of the CI pairs and their structural similarities.
In the result network of this study, the two similarity measures for
the CI pairs show a positive Pearson correlation coefficient of 0.41
(p-value = 1.2e-202). This finding further corroborates the validity
of the large-scale predictions for the E. coli network of competitive
inhibitory interactions.
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2.5. Robustness analysis for the performance of CIRI

Here we examine the extent to which the choice of machine-
learning technique, choice of negative instances, as well as the fea-
ture extraction impacts the performance of the prediction model.
To assess the choice of machine-learning technique, we train ran-
dom forests on the same feature vectors and compare the results
with those obtained from an SVM-based classifier. Our findings
show that the classifiers based on random forests perform simi-
larly well with respect to the AUC and AUPR (Fig. 3). However,
the learning curves for the classifiers based on random forests indi-
cate that the training size is not sufficient for effective construction
of this type of classifier (Supplementary Fig. 1 Supplementary
Figure 1B). These findings demonstrate that SVM-based classifiers
are better suited for applications in CIRI.

We also tested the extent to which the findings depend on the
type of molecular descriptor used. Since molecular descriptors, like
atom pairs, result in features with different sizes for different
molecules, they are not readily applicable in solving machine
learning problems like that in CIRI. For this reason, we next assess
the effect of reducing the number of features in the fingerprints, to
64 and 512, and determined the measures of performance. We find
that the performance is not affected for both AUC and AUPR, indi-
cating that smaller fingerprints are already sufficiently informative
(Supplementary Figure 2).

Furthermore, we treat the activating interactions from E. coli’s
SMRN as negative instances to probe whether the choice of nega-
tives instances in CIRI to determine if this strategy has an impact
on the performance. The performance of the resulting SVM is
0.76 and 0.70 with respect to the AUC and AUPR. Therefore, we
conclude that the features themselves are appropriate to distin-
guish between the two classes of interactions, but that the choice
of negatives affects the final predictions made.

Finally, to check the effect of reaction reversibility, we generate
a null distribution of 100 metabolic models with the same set of
reactions present in the E. coli metabolic model but with randomly
set reaction reversibility. We then determine and compare the per-
formance of CIRI on each of the generated models. Our results
point out that the performance of CIRI is insensitive to the choice
of reaction reversibility. The reason is that the scores for a CI and
the two irreversible reactions obtained by splitting a reversible
one on average differ slightly (see Supplementary Figure 3),
explaining the robustness of performance. This is also in line with
the expectation that the structural similarity of metabolites in a
vicinity of a reaction is high.
2.6. Validation of the predictions from CIRI

Two independent interaction sources are employed to validate
the competitive inhibitory network predicted by CIRI. The first
source of interactions is retrieved from Piazza et al. [17] which pro-
vide 60 competitive inhibitory interactions on 15 CIs and 49 genes.
Furthermore, the STITCH database is used to extract all known
metabolite-protein interactions in E. coli. Since competitive inhibi-
tory interactions are the most prevalent metabolite-protein inter-
actions [5,6], the validation here is conducted under the
assumption that most metabolite-protein interactions in STITCH
database are competitive inhibitory. In total, the E. coli
metabolite-protein interaction network includes more than 2.2
million interactions on 88,044 metabolites and 1,028 genes. In
addition, the STITCH database provides confidence score for each
recorded interaction and in this study we apply two different
thresholds of medium confidence (cutoff 0.5) and high confidence
(cutoff 0.7). Applying the score cutoff of 0.5, yields 207,439 interac-
tions on 29,556 metabolites and 3,800 genes, while the score cutoff
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0.7 results in 79,156 interactions on 7,288 metabolites and 2,682
genes.

While these sources provide information about competitive
inhibitory relations between pairs of metabolites and genes, the
predicted network of this study comprises CI-reaction interactions.
Therefore, to validate the predicted network, we first transform the
included metabolite-reaction interactions in terms of metabolite-
gene interactions following the GPR rules from the metabolic
model used. There are 922 genes associated with 1,007 reactions
in the predicted competitive inhibitory network, of which 285
are in one-to-one relation. Two different approaches are adopted
to tackle this issue: In the first, we focus only on those reactions
and genes that are in one-to-one correspondence (i.e. reactions
which are catalyzed only by a single gene in the E. coli metabolic
model, and for which the corresponding gene catalyzes no other
reaction). Therefore, these metabolite-reaction pairs can be easily
transformed into metabolite-gene pairs. In the second approach,
we consider all reactions from the predicted network that are asso-
ciated to at least one gene in the metabolic model. The scores
assigned to the metabolite-reaction pairs in the predicted network
are used to determine a unique score for a metabolite-gene pair.
Three different schemes, i.e. taking the minimum, maximum, or
mean over the reactions associated with a gene, are used to calcu-
late the unique score for a metabolite-gene pairs.

Based on the first approach, the predictions of CIRI show an AUC
of 0.66 when considering interactions retrieved from Piazza et al.
[17] and AUC of 0.63 and 0.65 based on the STITCH interactions
with medium confidence and high confidence, respectively. The
results of using the second approach are summarized in Table 1,
demonstrating that the performance of CIRI on unseen data sets
can reach AUC score as high as 0.75, indicating that CIRI provides
good performance on unseen data sets.
2.7. CIRI can be used to refine the predictions of other approaches

Here, we first use the PROMIS method to predict metabolite-
protein interactions in E. coli. It has been shown that whenmetabo-
lite and gene elution profiles are available from size exclusion
chromatography data, the Pearson correlation cut-off of 0.7
between metabolite and protein elution profiles are indicative of
interaction [18]. Using PROMIS, we collected a data set comprising
64 metabolites and 925 genes that can be mapped to genes in the
genome-scale metabolic model of E. coli. Out of 64 � 925 possible
metabolite-protein pairs, 18,270 have Pearson correlation coeffi-
cient larger than 0.7 and are identified as potential candidates for
interactions.

Like for the interactions in STITCH, not all identified metabolite-
protein interactions identified following PROMIS are competitive
inhibitory. Therefore, having established that CIs tend to show
higher structural similarity to at least one of the reaction sub-
strates, we propose a filtering strategy to retrieve the competitive
inhibitory interactions among all metabolite-gene interactions
identified by PROMIS. To this end, for each identified protein
metabolite interaction, we consider all reactions from the
genome-scale metabolic model of E. coli that are associated to
the protein (and respective gene) participating in the interaction.
For the selected set of reactions, the structural similarities of corre-
sponding reactants with the metabolite participating in the inter-
actions are calculated using the Tanimoto coefficient. Finally, we
take the maximum structural similarity over the reactants (i.e. sub-
strates and/or products) of all reactions that are catalyzed by the
same protein, to score the identified metabolite-protein (i.e.
metabolite-gene) interactions. From the identified interactions
from PROMIS, interactions with score larger than a given cut-off
are considered as competitive inhibitory interactions.



Fig. 3. The performance of CIRI and random forest classifier. In (A) and (B) the ROC and PR curves for CIRI and for the classifier based on random forests are shown,
respectively.

Table 1
The AUC results from predictions of CIRI. To determine a unique score for a
metabolite-gene interaction, three different schemes, i.e. taking the minimum,
maximum, or mean over the reactions associated with the gene is used to transform
metabolic-reaction interactions to metabolic-gene interaction. Here the predictions of
CIRI are validated by employing two interaction sources from Piazza et al. [17] and
STITCH database [10] with different confidence levels.

Minimum
score

Maximum
score

Mean
score

Piazza et al., 2018 0.74 0.75 0.75
STITCH (medium

confidence)
0.63 0.64 0.64

STITCH (high confidence) 0.66 0.67 0.67
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Since each cut-off value on the Tanimoto coefficient results to
different number of competitive inhibitory interactions from PRO-
MIS, we first investigate this number for different cut-off values
(Table 2). This number expectedly decreases with higher values
for the applied cut-off. The competitive inhibitory interactions
retrieved from PROMIS are then considered as an independent
interaction source to validate the competitive inhibitory network
predicted by CIRI. Using different cut-off values, we see that the
sensitivity (or true positive rate) of CIRI can go as high as 0.94.
The highest sensitivity is obtained with the cut-off value of 0.8
for the Tanimoto coefficient. We observe that higher values of
AUC are associated with larger cut-off values for all three different
schemes, i.e. taking the minimum, maximum, or mean over the
reactions associated with the gene is used to transform
metabolite-reaction interactions to metabolic-gene interaction
(Table 2). This is also in line with the higher structural similarity
of CIs and substrates involved in competitive inhibitory interac-
tions. Using the filtering strategy, we show that the performance
Table 2
The impact of different threshold for Tanimoto coefficient values on the retrieved competiti
to filter metabolite-protein interactions predicted by PROMIS method. Different cut-offs res
performance of CIRI for different cut-offs and the three different schemes of transforming

Cut-off values

# Competitive inhibitory interactions
The Pearson correlation coefficient between Jaccard index and structural similarity
AUC- using the minimum score
Sensitivity- using the minimum score
AUC- using the maximum score
Sensitivity- using the maximum score
AUC- using the mean score
Sensitivity- using the mean score
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of CIRI on the retrieved networks can reach AUC score as high as
0.88 (Table 2).

Using different cut-off values, we see that in the retrieved com-
petitive inhibitory networks from PROMIS, NAD, AMP, NADP, FAD,
cAMP, acetyl-CoA, isoleucine, leucine and adenosylhomocysteine
are in the union set of the top five CIs with respect to the number
of interactions in the retrieved networks. The pairwise structural
similarity of all CI pairs are calculated in the retrieved networks,
using Tanimoto coefficient. Moreover, the Jaccard index is used
to quantify the degree of sharing association between two CIs in
the retrieved competitive inhibitory networks. The Pearson corre-
lation coefficient between the Jaccard indices of the CI pairs and
their structural similarities is calculated for each retrieved network
(Table 2). In all result networks using different cut-off values, the
two similarity measures show positive correlations, which indi-
cates that CI pairs with higher number of shared reactions, have
relatively higher structural similarity, as for the analysis based on
the network predicted based on E. coli’s genome-scale metabolic
network in Section 2.4.

The same filtering strategy is used to retrieve the competitive
inhibitory interactions among interactions in STITCH database.
Similarly to the results shown in Table 2, here we also observe that
higher values of AUC are associated with larger cut-off values for
all three different schemes (Table 3). Using the filtering strategy,
the performance of CIRI on the interactions retrieved from STITCH
database improves for both thresholds of medium and high confi-
dence (Table 3). The sensitivity of CIRI in recovering the competi-
tive inhibitory interactions of STITCH depends on the cut-off
value for the Tanimoto coefficient. The cut-off value of 0.8 results
in the highest percentage of recovery, which is consistent with
the results shown in Table 2.
ve inhibitory network from PROMIS. The cut-off values of 0.6, 0.7, 0.8 and 0.9 are used
ult in different number of competitive inhibitory interactions. The table also shows the
metabolite-reaction interactions to metabolite-gene interactions.

0.6 0.7 0.8 0.9

898 692 200 66
0.49 0.44 0.37 0.74
0.58 0.57 0.82 0.74
0.35 0.30 0.80 0.68
0.59 0.58 0.88 0.85
0.39 0.35 0.94 0.82
0.59 0.58 0.86 0.82
0.36 0.31 0.85 0.68



Table 3
The impact of different threshold for Tanimoto coefficient values on the retrieved competitive inhibitory network from STITCH. The cut-off values of 0.6, 0.7, 0.8 and 0.9 are used
to filter metabolite-protein interactions from STITCH with medium and high confidence. Different cut-offs result in different number of competitive inhibitory interactions. The
table also shows the performance of CIRI for different cut-offs and the three different schemes of transforming metabolite-reaction interactions to metabolite-gene interactions.

Cut-off values 0.6 0.7 0.8 0.9

Medium confidence # Competitive inhibitory interactions 2199 1884 1378 1106
using the minimum score AUC 0.76 0.79 0.81 0.81

Sensitivity 0.79 0.83 0.88 0.88
using the maximum score AUC 0.78 0.81 0.83 0.82

Sensitivity 0.86 0.91 0.94 0.93
using the mean score AUC 0.78 0.81 0.83 0.82

Sensitivity 0.79 0.84 0.88 0.88
Cut-off values 0.6 0.7 0.8 0.9

High confidence # Competitive inhibitory interactions 1856 1628 1280 1059
using the minimum score AUC 0.77 0.80 0.81 0.81

Sensitivity 0.80 0.85 0.88 0.88
using the maximum score AUC 0.79 0.82 0.83 0.82

Sensitivity 0.87 0.92 0.94 0.93
using the mean score AUC 0.79 0.82 0.83 0.83

Sensitivity 0.81 0.85 0.88 0.88
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2.8. Universality of competitive inhibitory interactions

Features used in CIRI contain the information on the structures of
twomolecules,which canpotentially compete for attachment to the
same binding site. Since chemical structures and the corresponding
fingerprints are the same across all organisms, the features used in
CIRI do not represent organism-specific information. This indicates
at the universality of the proposed prediction scheme, which may
be applicable across different species. To test this hypothesis, we
evaluate the performance of CIRI, where the SVMclassifier is trained
on data from one organism and tested on another.

To this end, we utilize the competitive inhibitory interaction
data from human to construct the feature vectors for the SVM clas-
sifier [5]. The data set includes 295 competitive inhibitory interac-
tions on 153 CI and 113 substrates, and fingerprints are available
for all molecules participating in interaction set. Therefore, using
the human data set, it is straightforward to form feature vector
for a given pair of CI-substrate, by simply concatenating the finger-
prints of the two. The extracted features are then provided as input
to train a human-based SVM classifier, which is then applied on
E. coli labeled test data to evaluate its performance. The E. coli test
data includes all positive instances from the E. coli gold standard
together with the negative instances identified by the abovemen-
tioned labelling strategy. The performance of human-based SVM
classifier on the E. coli test data (AUC of 0.74) confirms that the pro-
posed prediction scheme can be applied across species.
3. Conclusions

Recent mounting evidence has indicated the prominent role
that metabolite-protein interactions play in regulating the activity
of different cellular process in in shaping the overall functionality
of cellular networks. However, it is paramount to get access to
high-quality networks of metabolite-protein interactions before
attempting to look for patterns that relate their structure to the
functionality of other cellular networks (e.g. those in metabolism
and gene regulation). Advances in supervised machine learning
can employ these accumulated evidences to develop classifiers
for metabolite-protein pairs that are involved in regulatory inter-
actions. However, this approach is challenging due to the different
(sub)classes of metabolite-protein interactions (e.g. activating and
inhibitory). Due to the different underlying mechanisms that the
different types of regulatory interactions are based on, it is not
plausible that same machine learning approaches will be able to
show equally good performance across all.

Here, we focused on the most prominent metabolite-protein
interactions, namely of the competitive inhibitory type, and used
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a recently assembled gold standard along with a procedure for pre-
dicting metabolite-protein pairs not involved in such interaction to
build an SVM based classifier in an approach we termed CIRI. In the
simplest form, the CIRI uses features given by the fingerprints of a
CI and the most similar substrate of a reaction catalyzed by the
protein inhibited by the CI. We showed that the so-designed super-
vised approach outperforms the naïve classifier, based on the usage
of a simple threshold of similarity of structures, by 20%. Thorough
comparative analyses show that the choice of SVM supervised
learning approach offers advantages over random forests, with
respect to the size of the set of instances needed for training. Par-
ticularly, we observed that the random forest classifiers would
require a larger gold standard, which is the reason for opting to
use SVM-based classifiers.

In addition, extensive validation analyses with unseen data sets
that document competitive inhibitor interactions, like that of
Piazza et al. [17], and those, for which the multitude of included
interactions can be assumed to be predominantly of this type
(e.g. STITCH and PROMIS), demonstrate that CIRI shows equally
good performance. Further, the validity of the predicted interac-
tions was further supported by the correlation between the struc-
tural similarity of two metabolites and similarity of reactions/
protein sets in which they act as CIs. Hence, the high-quality pre-
dictions from CIRI can next be validated in customized
experiments.

To guide the follow-up experimental efforts, we highlighted
metabolites and proteins which are predominantly involved in
competitive inhibitory interactions. For instance, predictions bases
on CIRI in multiple data sources in E. coli indicated that NAD, AMP,
and NADP repeatedly appear as metabolites that act as CIs. We
expect that ideas from CIRI can be extended to other types of
metabolite-protein interactions as long as gold standards of suffi-
ciently large size are assembled. However, these extensions would
likely have to include additional structural information about pro-
teins and/or consider only specific parts of the regulatory small
molecule. The present formulation of CIRI would have to be
adjusted for such applications. Nevertheless, our findings demon-
strated that CIRI fills a gap in cataloguing metabolite-protein inter-
actions and can be used in directing future experimental efforts to
demonstrate the functional relevance of this type of interactions.
4. Methods

4.1. Molecular fingerprints and similarity

In chemoinformatics, molecular fingerprint is a way to repre-
sent molecular structure and chemical information of a molecule
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by a binary vector, in which each bit indicates the presence or
absence of a structural fragment in the molecule [22]. Fingerprints
are commonly used to measure the structural similarity of two
molecules as a function of the number of fragments they share
[5]. We use the R package Chemminer [23] to generate the finger-
prints from structure-data files (SDF).

Among several similarity metrics to quantify the molecular sim-
ilarity in the field of chemoinformatics, the well-known Tanimoto
coefficient is confirmed as one of the most reliable metrics [22].
The Tanimoto coefficient for two molecules A and B is defined by

T A;Bð Þ ¼ NA\B
NA þ NB � NA\B

where NA and NB are the number of 1 bits in the fingerprints A
and B, respectively, and NA\B is the number of 1 bits shared by the
fingerprints of both molecules. The Tanimoto coefficient ranges
from zero, when two fingerprints have no 1 bits in common, to
one, when the two fingerprints are identical.

4.2. Support vector machine and random forest classifiers

Having a labelled training set of both positive and negative
instances, with associated feature vectors formed by the concate-
nation of the fingerprints, an SVM can be trained to find the opti-
mal hyperplane separating the two classes. Once the SVM
classifier is trained, it can classify any new CI-reaction pair (p)
based on a scoring function of the form f pð Þ ¼ Pn

i¼1aiKðpi; pÞ, where
n is the number of instances in the training set. Here, ai are
Lagrange multipliers optimized by the SVM to respectively enforce
large positive and negative scores for the pairs in the positive and
negative class. The kernel function K pi; pð Þ gives a measure of sim-
ilarity between two pairs of pi and p. In CIRI, the SVM classifier is
trained with a Gaussian (RBF) kernel function [24], as implemented
in fitcsvm function of MATLAB. Bayesian optimization was used to
perform hyperparameter optimization within cross-validation for
the SVM parameters. In the case of random forests, we also used
Bayesian optimization to tune the values of the minimum leaf size
and the number of predictors to sample at each node. The entire
code for training of the classifiers is available on GitHub under
https://github.com/MonaRazaghi/CIRI.

4.3. Performance measures

AUC and AUPR are most commonly used measures for evaluat-
ing the performance of classifiers. In ROC curve, the true positive
rate (TPR ¼ TP

TPþFN) is plotted against the false positive rate

(TPR ¼ FP
FPþTN), where TP and FN indicate the number of true posi-

tives and false negatives respectively, and FP and TN respectively
show the number of false positives and true negatives. AUC is
the area under ROC curve, and the closer AUC measure for a model
comes to 1, the more accurate it is. Precision-recall curve shows a
plot of the precision (¼ TP

TPþFP) and the recall (¼ TP
TPþFN) for different

thresholds, and similar to AUC, higher values of AUPR indicates
better performance for a classifier.

4.4. PROMIS on E. Coli size exclusion chromatography data

PROMIS is a method for studying protein-small molecule inter-
actions in a non-targeted, proteome and metabolome-wide man-
ner. This approach is based on size exclusion chromatography
combined with LC-MS proteomics and metabolomics analysis of
the collected fractions, assuming that small molecules bound to
proteins would co-fractionate together as a complex [18].

The E. coli strain K12 was cultivated at 37 �C with moderate
shaking until it reached the logarithmic phase (OD600 = 0,8).
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E. coli cells were harvested by centrifugation (RT, 4000g) and snap
frozen in liquid nitrogen. PROMIS experiment was performed as
described previously in [25]. Briefly, E. coli native lysate containing
endogenous protein- protein and protein-metabolites complexes
corresponding to 40 mg of protein, was separated using a Sepax
SRT SEC-300 21.2 � 300 mm column (Sepax Technologies, Inc.,
Delaware Technology Park, separation range 1.2 mDa to 10 kDa)
connected to an ÄKTA explorer 10 (GE Healthcare Life Science, Lit-
tle Chalfont, UK). 40 1-mL protein containing fractions were col-
lected, snap frozen in liquid nitrogen and lyophilized. Further
proteins and metabolites from the lyophilized fractions were
extracted using a methyl-tert-butyl ether (MTBE)/methanol/water
method [26], where, molecules are simultaneously separated into
organic phase (lipids), aqueous phase (polar and semi-polar
metabolites) and protein pellets. Aqueous phase and protein pel-
lets were dried in a SpeedVac and subjected metabolomic and pro-
teomic analysis as described by Sokolowska et al. [25].

Briefly, the dried aqueous phase was suspended in 100 mL
water. Samples were analysed by ACQUITY UPLC (Waters) coupled
with Exactive mass spectrometer (Thermo Fisher Scientific) in pos-
itive and negative ionization modes. The mobile phases consisted
of 0.1% formic acid in water (Solvent A) and 0.1% formic acid in ace-
tonitrile (Solvent B) and the gradient ramped as fallows: 1 min 1%
B, 11 min 1% to 40% B, 13 min 40% to 70% buffer B, then 15 min 70%
to 99% B, followed 2 min washout with 99% B. Mass spectra were
acquired using following settings: mass range from 100 to
1500 m/z, resolution set to 25,000, loading time restricted to
100 ms, AGC target set to 1e6, capillary voltage to 3 kV with a
sheath gas flow and auxiliary gas value of 60 and 20, respectively.
The capillary temperature was set to 250 �C and skimmer voltage
to 25 V. Protein pellets obtained after MTBE extraction were resus-
pended in 50 mL denaturation buffer (6 M urea, 2 M thiourea in
40 mM ammonium bicarbonate). Reduction of cysteines, alkylation
and enzymatic digestion using LysC/Trypsin Mix (Promega Corp.,
Fitchburg, WI) followed by desalting of a digested peptide was per-
formed according to the protocol described in [40]. Dried peptides
were resuspended in MS loading buffer (3% ACN, 0.1% FA) and mea-
sured with Q Exactive HF (Thermo Fisher Scientific) coupled to a
reverse-phase nano liquid chromatography ACQUITY UPLC
M�Class system (Waters). Equivalent of 1ug of proteins was
injected per run and the gradient ramped from 3.2% ACN to 7.2%
ACN over 20 min, then to 24.8% ACN over next 70 min and to
35.2% ACN over next 30 min, followed by a 5 min washout with
76% ACN. The MS was run using a data dependent acquisition
method. Full scans were acquired at a 120,000 resolution, m/z
ranging from 300.0 to 1600.0, a maximum fill time of 50 ms and
an AGC target value of 3e6 ions. Each dd-MS2 scan was recorded
at the resolution of 15,000 with an AGC target of 1e5, maximum
injection time 100 ms, isolation window 1.2 m/z, normalized colli-
sion energy 27 and the dynamic exclusion of 30 sec.

Analysis of the metabolite and protein elution profiles was per-
formed as describe before Sokolowska et al. [25], Gorka M [27], and
included data filtering, normalization and deconvolution. Obtained
data were integrated together using Pearson correlation assuming
that what correlates, and hence co-eluates, together is potentially
in the complex. Pearson correlation coefficient greater than 0.7
was used for delineate putative protein-metabolite interactions.
Altogether, we identified 30.70% of metabolite-protein Pearson
correlations to exhibit values larger than 0.7.
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