
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(8):5304-5320 | https://dx.doi.org/10.21037/qims-23-1799

Original Article

Precise and efficient measurement of tibial slope on magnetic 
resonance imaging (MRI): two novel autonomous pipelines by 
traditional and deep learning algorithms

Shi Qiu1,2^, Yaoting Wang3^, Gengyan Xing4^, Qiumei Pu2^, Zhe Zhao3^, Lina Zhao1,5^

1Multi-Disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; 2Minzu University of China, 

Beijing, China; 3Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; 4Department 

of Orthopedic, the Third Medical Center of Chinese PLA General Hospital, Beijing, China; 5University of Chinese Academy of Sciences, Beijing, 

China

Contributions: (I) Conception and design: L Zhao, G Xing; (II) Administrative support: L Zhao, G Xing; (III) Provision of study materials or patients: 

Y Wang, G Xing; (IV) Collection and assembly of data: Y Wang, Z Zhao; (V) Data analysis and interpretation: S Qiu, L Zhao, Q Pu; (VI) Manuscript 

writing: All authors; (VII) Final approval of manuscript: All authors. 

Correspondence to: Lina Zhao, PhD. Multi-Disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, 

19B Yuquan Road, Shijingshan District, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China. Email:  

linazhao@ihep.ac.cn; Gengyan Xing, PhD. Department of Orthopedic, the Third Medical Center of Chinese PLA General Hospital, 28 Fuxing 

Road, Haidian District, Beijing 100039, China. Email: xgy1350138@163.com.

Background: The measurement of posterior tibial slopes (PTS) can aid in the screening and prevention 
of anterior cruciate ligament (ACL) injuries and improve the success rate of some other knee surgeries. 
However, the circle method for measuring PTS on magnetic resonance imaging (MRI) scans is challenging 
and time-consuming for most clinicians to implement in practice, despite being highly repeatable. Currently, 
there is no automated measurement scheme based on this method. To enhance measurement efficiency, 
consistency, and reduce errors resulting from manual measurements by physicians, this study proposes two 
novel, precise, and computationally efficient pipelines for autonomous measurement of PTS.
Methods: The first pipeline employs traditional algorithms with experimental parameters to extract the 
tibial contour, detect adhesions, and then remove these adhesions from the extracted contour. A cyclic 
process is employed to adjust the parameters adaptively and generate a better binary image for the following 
tibial contour extraction step. The second pipeline utilizes deep learning models for classifying MRI slice 
images and segmenting tibial contours. The incorporation of deep learning models greatly simplifies the 
corresponding steps in pipeline 1.
Results: To evaluate the practical performance of the proposed pipelines, doctors utilized MRI images 
from 20 patients. The success rates of pipeline 1 for central, medial, and lateral slices were 85%, 100%, 
and 90%, respectively, while pipeline 2 achieved success rates of 100%, 100%, and 95%. Compared to the  
10 minutes required for manual measurement, our automated methods enable doctors to measure PTS 
within 10 seconds.
Conclusions: These evaluation results validate that the proposed pipelines are highly reliable and effective. 
Employing these tools can effectively prevent medical practitioners from being burdened by monotonous 
and repetitive manual measurement procedures, thereby enhancing both the precision and efficiency. 
Additionally, this tool holds the potential to contribute to the researches regarding the significance of PTS, 
particularly those demanding extensive and precise PTS measurement outcomes.
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Introduction

The primary structure that limits anterior tibial translation 
(ATT) and internal rotation between the tibia and femur 
is the anterior cruciate ligament (ACL), which maintains 
the stability of the knee joint (1). However, ACL injury is a 
common sports strain injury, and its incidence is increasing 
annually, leading to an increase in the acceptance of 
ligament reconstruction surgery (2). In the diagnosis of ACL 
injury, direct or indirect evaluation of tibial displacement 
is commonly used to determine the injury extent and 
the necessity of ACL reconstruction surgery (2-5).  
Several studies have demonstrated that an increase in the 
posterior tibial slopes (PTS) can increase the risk of ACL 
injury, leading to increased tibial anterior displacement, 
tibial shear force, and ACL loading, thereby affecting the 
biomechanical performance of the knee (5-12). Therefore, 
it is crucial to measure the PTS, particularly on magnetic 
resonance imaging (MRI) scans, to assess the risk of ACL 
reconstruction failure and facilitate informed decision-
making regarding surgical procedures (3,12-15).

Hudek et al. (2009) proposed an effective “circle method” 
to measure the PTS of the medial and lateral plateaus on 
a standard knee MRI. This method has the advantage of 
being able to precisely measure both the medial and lateral 
PTS on MRI, while the lateral PTS is hard to be accurately 
detected and measured due to superimposition and other 
factors on the lateral radiographs (16,17). The differences 
between these two slopes may impact the knee’s dynamic 
landing biomechanics (2,5,6,14,18). Moreover, this method 
is considered the most repeatable and is independent of 
proximal tibial length, making it the preferred method for 
future studies (19). 

This circle method involves three primary steps (16): 
(I) Identify the central slice on the MRI where the 

posterior cruciate ligament (PCL) attaches to the 
tibia, the intercondylar eminence is visible, and the 
anterior and posterior tibial cortices are concave.

(II) Draw two circles on the tibial head, as shown in 
Figure 1: a cranial circle and a caudal circle. The 

cranial circle must touch the anterior, posterior, 
and cranial tibial cortex bones, while the caudal 
circle must touch the anterior and posterior 
cortical borders. The caudal circle should be 
centered on the perimeter of the cranial circle, and 
a line connecting their centers serves as the MRI-
longitudinal axis (MRI-LA).

(III) Measure the medial and lateral PTS, as illustrated 
in Figures 2,3, respectively. The medial and lateral 
PTS are defined as the angle between the tangent 
to the medial or lateral tibial plateau and the 
orthogonal to the MRI-LA. The tangent to the 
medial plateau connects the topmost superior-
anterior and posterior cortical edges, while the 
tangent to the lateral plateau is defined as the 
uppermost even part of the superior-anterior and 
posterior cortices.

Although the PTS measurement method described 
above is the most reliable and consistent method on 
MRI (19), its manual measurements used by physicians 
in practice are often complicated and prone to human 
error (1). For instance, it takes many iterations for the 
doctors to ensure that the caudal circle is tangent to the 
tibial cortical boundary and its center is on the perimeter 
of the cranial circle, which is not only boring and time-
consuming but also has low repeatability. In addition, 
differences in proficiency and standards among various 
physicians can introduce errors and ultimately affect 
the accuracy of determining the MRI-LA and PTS. 
Comparing with the manual drawing measurement, the 
development of computer algorithms to implement this 
measurement technique can be more accurate, efficient, and  
repeatable (20). Therefore, developing accurate, efficient, 
and clinically applicable automated methods for measuring 
PTS is highly demanded.

Hence, this article introduces two new methods for 
automating the PTS measurement technique. The first 
approach utilizes traditional image processing algorithms to 
extract tibia’s contours from the MRI. The second approach 
employs two deep learning models for image classification 
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and tibia segmentation before the same measurement 
procedures. These automated techniques can improve the 
accuracy and efficiency of PTS measurement, benefiting 
both clinical practice and research. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-1799/rc).

Methods

This section will discuss the details of the two automatic 
measurement pipelines and result evaluation approach: the 
first pipeline using traditional methods will be stated in 
Section Pipeline 1, while the second pipeline using deep 
learning models will be discussed in Section Pipeline 2. The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by the Ethics Committee of the Chinese People’s Armed 
Police Force General Hospital (the current Third Medical 
Center of Chinese PLA General Hospital) (approval No. 
Z181100001718018). Informed consent was taken from all 
the patients.

Pipeline 1

The process of handling the central, medial, and lateral 
slices in pipeline 1 can be described as a systematic 
procedure involving several steps, including image 
preprocessing, adaptive thresholding, extraction of tibial 
contour, removal of adhesions, detection of adhesions, 
and finally drawing circles and plateau tangents. The 
interrelation between these steps is shown in Figure 4. To 
ensure the quality of the extracted tibial contour, a cyclic 
process was employed, as shown on the right side of Figure 4.

Orthogonal to the MRI-LA

Lateral PTS
Tangent to the 
lateral plateau

Orthogonal to the MRI-LA

Medial PTS
Tangent to the 
medial plateau

Orthogonal to the MRI-LA

MRI-LA

Eminentia intercondylar

PCL attachment

Anterior &
Posterior tibial cortex

Figure 1 The MRI-LA determination on the central slice. MRI-
LA, MRI-longitudinal axis; PCL, posterior cruciate ligament; 
MRI, magnetic resonance imaging.

Figure 2 Medial PTS measurement. MRI-LA, MRI-longitudinal 
axis; PTS, posterior tibial slopes; MRI, magnetic resonance 
imaging.

Figure 3 Lateral PTS measurement. MRI-LA, MRI-longitudinal 
axis; PTS, posterior tibial slopes; MRI, magnetic resonance 
imaging.

https://qims.amegroups.com/article/view/10.21037/qims-23-1799/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1799/rc
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(I) Preprocessing. As depicted in the example MRI 
image Figure 5, the tibial part, which is the only 
meaningful part for this task, just occupies a 
very small area on the image. Hence, in order to 
eliminate the influence of irrelevant regions and 
facilitate the subsequent tibial contour extraction, 
the image needs to be pruned. However, the tibial 
position of different patients varies across their 
MRI images due to different shooting standards, 
and imaging positions. Consequently, a broader 
area should be selected for pruning to ensure 
complete inclusion of all tibial parts across various 
patients’ MRI images. The pruning area were 
determined through experimentation and set to 
(0.4:1, 0.17:0.73) for images’ height and width. 
Additionally, the presence of fissures attached to 
the tibial edge may affect the radius calculation 
while drawing circles inside the tibial contour, as 
illustrated in Figure 6. Therefore, a filter is needed 
to denoise and smooth the MRI image to reduce 
fissures after tibia contour extraction. Considering 
that the denoising methods such as median filtering 
and Gaussian filtering may blur the edges, leading to 
deviations in PTS measurements, bilateral filtering, 
a nonlinear filter that can preserve edge details while 
denoising, was implemented for this task.

(II) Adaptive thresholding. Tibial contour extraction 
in MRI images was performed after thresholding. 
Due to the presence of artifacts and adhesions on 
MRI images, global thresholding techniques which 
only use one threshold value for the whole image 
cannot retain the complete tibial edges while trying 
to segment it perfectly from surrounding tissues, as 
shown in Figure 7. To overcome this limitation, an 
adaptive thresholding method from the OpenCV  
library (21) was employed. This method computes 

Image 
preprocessing

Adaptive 
thresholding

Tibial contour 
extraction

Adhesion 
removing

Adhesion 
detecting

Circles or
plateau tangents 

drawing

No 

adhesion

Adhesions exist

Figure 4 The flow chart of pipeline 1.

Figure 5 An example of original MRI image. MRI, magnetic 
resonance imaging. 

Figure 6 An example of the influence of the fissure to the circle. 
Green circle: cranial circle. Red circle: caudal circle. Green 
line: MRI-LA. MRI-LA, MRI-longitudinal axis; MRI, magnetic 
resonance imaging. 
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the threshold value for each pixel point by applying 
global thresholding techniques to a small set of 
its neighboring pixels at a time. This adaptive 
approach improves the algorithm’s robustness and 
enables it to adapt better to the brightness, contrast, 
and texture of the local area in MRI images. 
The determination of the threshold value for each 
pixel is a critical step that significantly affects the 
preservation of the tibial contour. The number 
of neighboring pixels or the size of the pixel 
neighborhood used to compute the threshold value 
has a considerable impact on the performance as 
illustrated in Figure 8. When the number is too 
large, more neighboring pixels will be considered 
to determine the local threshold. Hence, the 
thresholding image will be more comprehensive 

and  the  edges  w i l l  be  smoother,  but  the 
consequence is the tibial edges may adhere to other 
tissues, as shown in Figure 8C. On the contrary, if 
the number of neighboring pixels is too small, the 
intervals between tibia and surrounding tissues 
will become more evident, but numerous inwardly 
recessed cracks may appear inside the tibial contour, 
which may affect the accuracy of subsequent 
circle drawing steps, as shown in Figure 8B.  
Therefore, for MRI images with varying brightness 
and contrast conditions, this parameter should also 
be adaptive.

(III) Tibial contour extraction. Once a binary image is 
obtained through adaptive thresholding, the tibial 
contour extraction process was implemented based 
on it. The first step was to utilize the OpenCV 

A B C D

Figure 7 The global thresholding for two MRI images. (A,C) Example MRI images. (B,D) The resulting images after global thresholding. 
Green circle: cranial circle. Red circle: caudal circle. Green line: MRI-LA. MRI-LA, MRI-longitudinal axis; MRI, magnetic resonance 
imaging. 

A B C

Figure 8 The adaptive thresholding with different sizes of the pixel neighborhood. (A) The original MRI image. (B) The binary image of  
41 pixels neighborhood. (C) The binary image of 141 pixels neighborhood. MRI, magnetic resonance imaging. 
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function findContours (21) to obtain all of the 
contours on the binary image. Since the tibia is 
usually the largest area on the processed central 
slice image, the tibial contour could be determined 
based on its area size as shown in Figure 9. 
However, relying solely on adaptive thresholding 
may not be sufficient to remove all adhesions 
completely. In many cases, the tibial contour may 
not be easily separated from surrounding tissues 
due to small blurry areas between them, as shown 
in Figure 8. Continuing to lower this parameter 
to further segment these small areas may lead 
to a compromise in contour integrity, which is 
not desirable. Therefore, after thresholding and 
contour extraction, it is critical to further remove 
any remaining adhesions.

(IV) Adhesion removing. A corner detection algorithm 
was implemented to identify and remove these 
adhesions. This procedure includes 4 steps, as 
illustrated in Figure 10. Firstly, the Harris corner 

detection algorithm from OpenCV (21) was 
applied to identify corner points, which are marked 
in red on Figure 10A. Secondly, the identified 
corner points were filled in with black to effectively 
break the adhesions, and the maximum contour 
was extracted again to obtain the largest boundary 
as the tibial contour. Thirdly, the corner detection 
algorithm was run again to search for any recesses 
created in the second step. Finally, the corner 
points obtained in step three were marked into 
white to compensate for the recesses, and a bilateral 
filtering was performed to smooth the contour.

(V) Adhesion detection. Even though several methods 
for removing adhesions have been applied, it is still 
important to include an adhesion detection step to 
ensure that the tibial contour has been accurately 
segmented.

Due to the large initial value of neighboring 
pixels, the adhesion removing technique through 
corner detection may not be effective enough 

A B C

A B C D

Figure 9 The max contour extraction. (A) Example MRI image. (B) All detected contours on the binary image. (C) The determined tibial 
contour. MRI, magnetic resonance imaging. 

Figure 10 The 4 steps of adhesion removing. The red areas are detected corner points.
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to separate all adhesions. On the contrary, as 
illustrated in Figure 11, the resulting contour’s 
area after adhesion removing may even be larger 
than the input contour due to the fourth step. 
Hence, the area ratio between resulting contour 
and input contour was firstly calculated to catch 
this situation. If the gained ratio exceeds 1.04, it 
indicates the presence of adhesions and as a result, 
the value of neighboring pixels parameter should 
be reduced. This threshold of 1.04 was determined 
experimentally. Even if the input contour has been 
a perfect tibial contour before adhesion removing, 
the resulting contour after adhesion removing 
could still become slightly larger due to the fourth 
step, which drew the obtained corner points as 
white and executed bilateral filtering. Hence, to 
account for this situation, the threshold was set to 
1.04, instead of 1.

Since most  of  adhesions occur between 
infrapatellar fat pad (IPFP) and the tibia as shown 
in Figure 11C, the adhesion detection should focus 
on this area. Hence, the adhesion detection can be 
performed by examining if there are white pixels 
on the upper-left side of the tibia. To this end, 
the rough position of tibia was obtained firstly to 
determine the position of its supper left area. As the 
right side of the tibia do not usually show adhesions, 
the tibial position search started from determining 
the tibial rightmost point. Then, on a column of 
50 pixels to the left of this point, the first white 
point from the top to the bottom was detected 
to determine the position of tibial superior edge. 
If white pixels are present on a row of 15 pixels  
above this point, it indicates the presence of this 
type of adhesion.

Additionally, as shown in Figure 12, there are 

A B C D

A B C D

Figure 11 The example of the contour area becoming bigger after adhesion removing. (A) Example MRI image. (B) Adaptive thresholding 
result. (C) Tibial contour extraction result. (D) Adhesion removing result. MRI, magnetic resonance imaging. 

Figure 12 Adhesion detection occurring between tibia and skin. (A) Adaptive thresholding result. (B) Adhesion removing result. (C) Tibial 
contour re-extraction result. (D) Adhesion detection result. The plotted green contour is the detected tibial contour. The red point is a 
detected convexity defect point. The red line is the connection of the start and end points of the convexity defect.
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A B C D

Figure 13 An example of tibial bottom extension. (A,B) Circles drawing before extension. (C,D) Circles drawing after extension. Green 
circle: cranial circle. Red circle: caudal circle. On (A,C), the green line is the MRI-LA. On (B,D), the purple line is the MRI-LA and the 
green line is its orthogonal. MRI-LA, MRI-longitudinal axis; MRI, magnetic resonance imaging. 

some adhesions between the tibia and skin that 
needed to be detected. To address this issue, 
the convexity defect detection algorithm from  
OpenCV (21) was util ized. This algorithm 
identifies “convex defects”, which are the areas that 
are inside the convex hull of the tibia but outside 
the contours of the tibia. To detect these defects, 
the algorithm computes the vertical distance of 
the convexity defect point to the line connecting 
the start and end points of the convexity defect. If 
the calculated distance is at least 30 and the line 
connecting the start and end points is shorter than 
200, then the tibial contour is deemed to contain 
this type of adhesion. These threshold values were 
established through experimentation.

Overall, the gain of an eligible tibial contour was 
a cyclic process as shown in Figure 4. The value 
of neighboring pixels in the adaptive thresholding 
algorithm was adjusted based on the quality of the 
extracted tibial contour after adhesion removal and 
adhesion detection. Since adhesions attached to 
the tibial contour are easier to be identified than 
defects, the adjustment of the value of neighboring 
pixels in the cyclic process should start from a large 
value and end with a small value. A large value 251 
for this parameter was used as the start. This large 
value is highly likely to cause adhesion problem. 
Therefore, after tibial contour extraction and 
adhesion removing, the aforementioned adhesion 
detection techniques would be applied to detect 
if there are any adhesions attaching to the tibial 
contour. If yes, the number of neighboring pixels 
would be reduced by a certain amount 20. Thus, in 

the next iteration, edge adhesions would become 
less by applying the updated parameter to enhance 
the boundary separation effect. Then, the adhesion 
detection was executed again to decide if this 
parameter should be further reduced to obtain a 
better tibial edge. This cyclic procedure continues 
until no adhesions are detected. By using this 
technique, the tibial contour’s integrity was greatly 
preserved while reducing adhesions.

(VI) Circles drawing. After obtaining the final tibial 
contour, the cranial circle and caudal circle were 
drawn to determine the MRI-LA. The cranial 
circle is required to touch the anterior, posterior, 
and cranial tibial cortex bone, thereby forming 
the largest circle in the tibial head. In order to 
determine the center of the cranial circle, the 
distance from each point within the tibial contour 
to its nearest contour point was calculated. The 
point with the greatest distance served as the center 
of the cranial circle, and this distance was the 
corresponding radius. The caudal circle is required 
to touch the anterior and posterior cortical border 
and its center should be located on the perimeter 
of the cranial circle. Thus, the distance from each 
point on the perimeter of the cranial circle to its 
nearest tibial contour point was computed. The 
center of the caudal circle was the point with 
the biggest distance, with the greatest distance 
serving as its radius. Then, the MRI-LA could be 
determined by connecting the centers of the circles 
as shown in Figure 13.

Nevertheless, in some cases where the tibia is too short, 
the caudal circle drawing would be constrained by the 



Qiu et al. Precise and efficient measurement of tibial slope on MRI5312

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(8):5304-5320 | https://dx.doi.org/10.21037/qims-23-1799

tibial bottom, as shown in Figure 13B. This problem can be 
identified if the distance between the caudal circle’s center 
and the tibial bottom edge approximately equals its radius. 
To address this issue, as shown in Figure 13C, the tibial 
bottom edge would be extended downward by 40 pixels to 
avoid its interference to the caudal circle drawing.

The medial and lateral slices
On the medial and lateral slices, the tangent to the medial 
and lateral plateaus would be determined respectively 
following the process in Figure 4. With the orthogonal to 
the MRI- LA, the medial and lateral PTS can be measured.

(I) Preprocessing. As the tibia areas in the medial and 
lateral slices become much smaller than in the 
central slice, and its position is not as fixed as in 
the central slice, a broad cutting range is necessary 
when removing irrelevant tissues. Furthermore, 
to make the cropped image more observable, it 
was enlarged twice. This resizing operation will 
not affect the angle measurement as the width and 

length were scaled by the same factor. In addition, 
the adaptive thresholding method with predefined 
parameters would be executed to generate a binary 
image for contour extraction.

(II) Tibial contour extraction. The biggest difference 
to the central slice is that the tibial area is not the 
largest area on the medial and lateral slice. Thus, 
after contour segmentation, the tibial contour 
cannot be determined directly based its area. A 
new strategy was proposed to finish this task. 
The presence of a black area between the tibia 
and femur, as shown in Figure 14, indicates a 
certain distance between them. This pattern can be 
utilized to identify the tibial contour by counting 
the number of “concave points” on the contours. A 
concave point is defined as a contour point above 
which there is an all-black area of a certain size. 
The size of the required black area was determined 
experimentally. The contour with the largest area 
among the top three contours which had the most 
concave points would be considered the proposal 
tibial contour. After this, the adhesion removing 
and adhesion detection operations would be 
implemented to remove adhesions and check if 
the tibial contour without adhesions was extracted 
successfully. If not, the value of neighboring pixels 
of the adaptive thresholding algorithm would 
be adjusted accordingly as aforementioned. The 
procedures of adaptive thresholding, adhesion 
removing, and adhesion detection for the medial 
and lateral slices were similar to those applied in 
the central slice. The final tibial contour could be 
obtained following these cyclic operations.

(III) The medial and lateral PTS calculation. The 
convexi ty  defect  detect ion a lgor i thm was 
implemented on the tibial contour to obtain the 
start and end points of each convexity defect and 
the defect points. As shown in Figure 15, the start 
and end points higher than the point which lower 
10 pixels than the tibial rightmost point detected in 
the adhesion detection section would be considered 
a pair of proposal points for the tangent of the 
medial or lateral plateau. The pairs of proposal 
points with very small distances between them 
would be filtered out. The remaining pairs of 
proposal points would be ranked according to 
their average row values. Then, their slopes would 
be computed one by one in the order generated 

Figure 15 The determination of the tangent of the medial plateau, 
which is marked in purple. The start and end points of each 
convexity defect is marked in blue. The defect points are in red. 
The orange points were used to determine the tangent. 

Figure 14 The tibial contour determination on the medial slice. 
The green points are the defined concave points.
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before. If the resulting slope rate was not in 
a reasonable range, the corresponding pair of 
proposal points would be eliminated. This process 
would stop while successfully finding the first 
pair of proposal points with a reasonable slope 
rate. In conclusion, the highest pair of proposal 
points with a reasonable slope would be used to 
draw the tangent of the medial or lateral plateau. 
Subsequently, the orthogonal to the MRI-LA 
would be utilized to calculate the medial and lateral 
PTS as shown in Figure 16.

Pipeline 2

In pipeline 2, two deep learning models, GoogleNet- 
V2 (22) and U-Net (23), were trained for image classification 
and tibial contour segmentation. GoogleNet-V2 was used 
to classify the central, medial, and lateral slices from all the 
MRI images of a patient. This function was not included in 
pipeline 1. U-Net was used to segment the tibial contour 
on the central, medial, and lateral images. This greatly 
simplifies and improves the corresponding complex cyclic 
sections in pipeline 1. The remaining PTS measurement 

sections after slice classification and tibial segmentation are 
the same as aforementioned in pipeline 1.

Classification
(I) Data. The dataset utilized in this study includes a 

total of 2,261 MRI images in RGB format, obtained 
from 119 patients. These MRI images were collected 
from clinical trials of a research project with ethical 
approval statements in the Third Medical Center of 
Chinese PLA General Hospital (previous Chinese 
People’s Armed Police Force General Hospital). Due 
to the high similarity between adjacent images in each 
patient’s 19 MRI images, if they are labeled as one 
central slice, one medial slice, one lateral slice and 
other 16 irrelevant slices, it would hinder the model’s 
convergence and overall performance. Therefore, the 
2,261 images were labeled by professional physicians 
as 1,483 irrelevant images, 263 medial images, 194 
central images, and 321 lateral images. 

(II) Preprocessing. To standardize the shapes of the 
images, all images were resized to 256×256. Since the 
MRI images are predominantly gray, the RGB images 
were converted to grayscale. To remove redundant 
information from the images, they were cropped 
using a range of (96:256, 30:190). The pixel values in 
the images were then normalized to a range of (0, 1) 
to facilitate training of the classification model. The 
labels for the images were assigned as 0, 1, 2, or 3 to 
represent useless slices, central slice, medial slice, and 
lateral slice respectively and they were converted to 
one-hot vectors for training.

(III) Data augmentation.  To improve the model ’s 
generalization capability, augmentation techniques such 
as zoom, horizontal and vertical shift were used during 
training. The zoom range was (−0.2, 0.2) and the shift 
range was (0.9, 1.1). Augmentation was applied to the 
training images with a probability of 50%.

(IV) Training and testing. The model was trained on a 
Nvidia GeForce RTX 3060 GPU using Tensorflow 
and CUDA. The dataset was split into training, 
validation, and test sets, which comprised 75%, 5%, 
and 20% of the entire dataset. The batch size for 
training was set to 80, while for validation, it was 30. 
RMSprop algorithm was utilized as the optimizer with 
a learning rate of 0.01. The loss function employed 
was categorical cross-entropy. The training curves 
of the model and the confusion matrix of testing are 
shown in Figures 17,18, respectively.

A

B

Figure 16 The measurement of the (A) medial and (B) lateral 
PTS. The green and purple lines are the orthogonal of MRI-
LA and the tangent of medial or lateral plateau. MRI-LA, MRI-
longitudinal axis; PTS, posterior tibial slopes; MRI, magnetic 
resonance imaging. 
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Segmentation
(I) Data. The dataset for tibial contour segmentation 

consisted of 823 MRI images from the aforementioned 
dataset for classification, along with their corresponding 
ground truth segmentations generated using our 
mature pipeline 1. An illustration of a sample image-
label pair is shown in Figure 19. The sampled MRI 
images mainly included central, medial, and lateral 
MRI slices.

(II) Preprocessing. The preprocessing method used in the 
segmentation section was similar to that in the classification 
section. The ground truth segmentations were processed 
using the same techniques to ensure that they still match 
after preprocessing. Ultimately, the resulting images were 
grayscale and normalized to 160×160.

(III) Data augmentation. Data augmentation was applied during 
the training process. Five types of transformations 
were implemented with a probability of 50%, namely 
rotation, zoom, shift, shear, and horizontal flipping. 
The ranges of rotation, zoom, shift, and shear were 
set to (5, 5), (0.9, 1.1), (−0.1, 0.1), and (−0.1, 0.1), 
respectively. The MRI image and its ground truth 
were augmented in the same way to ensure they still 
match after augmentation. 

(IV) Training and testing. A batch size of 180, Adam optimizer 
with a learning rate of 0.0001 were used for training. 
Early stopping was employed to prevent overfitting. The 
loss function was binary cross-entropy. The dataset was 
divided into training, validation, and test sets, comprising 
75%, 5%, and 20% of the entire dataset. The training 
curves can be observed in Figure 20. The pixel accuracy 
of the test set was 99.1%.

Result evaluation

Each pipeline was integrated into a software tool for 
evaluators to validate and compare their practical 
performance and effectiveness. The evaluation of images 
from the software was independently conducted by two 
evaluators. One was an orthopedic attending physician with 
professional experience in this area, the other one was an 
internship student who was previously unfamiliar with this 
measurement technique. A total of 380 MRI images from 
20 patients were utilized in the evaluation. For each patient, 
the central, medial, and lateral slice images were manually 
selected by the doctors and fed into both pipelines for PTS 
measurements. To validate the accuracy and effectiveness of 
the obtained medial and lateral PTS, evaluators focused on 
the positions of the cranial and caudal circles, as well as the 
tangents to the medial and lateral plateaus. Specifically, to 
verify the accuracy of the obtained MRI-LA on the central 
slice, evaluators observed whether the anterior, posterior, 
and cranial tibial cortex bones touched the cranial circle, 
and whether the anterior and posterior cortical borders 
touched the caudal circle. For the medial and lateral slices, 
evaluators checked the accuracy of the obtained tangents. 
Furthermore, evaluators compared the results from two 
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model.

Figure 18 The confusion matrix of the trained model on the  
test set.
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pipelines and determined which one works better. The 
focus primarily lay on discerning differences in the extracted 
tibial contours, particularly in locations that may impact 
subsequent circle drawing and tangent determination. A 
pair of examples are shown in Figure 21 to illustrate this 
assessment approach. Figure 21A is the resulting image 
from pipeline 1, while Figure 21B presents the result 
of pipeline 2. Although the resulting images from both 
pipelines are successful and the angles of the obtained MRI-
LA axes differed by only 0.1 degrees, pipeline 2 performs 

better comparing the circles drawn in the areas indicated 
by arrows 1 and 2. Upon careful observation of these two 
areas, it can be found that the tibial edges are relatively 
ambiguous there. The region pointed by arrow 1 seems 
to be where the tibia adheres to the tissue above it, with 
no clear tibial edge apparent. Similarly, the tibial cortex in 
the region indicated by arrow 2 is also relatively indistinct 
on MRI. The indistinct boundaries of these two critical 
areas presents considerable obstacles to the tibial contour 
extraction algorithm of pipeline 1, thereby affecting the 
subsequent drawing of circles.

Results

The summary of the evaluation experiment is presented 
in Table 1 and the comparison between two pipelines is 
shown in Table 2. Regarding the assessment of success and 
failure, both evaluators reached the same conclusions, 
as visually confirming whether the automated pipelines 
accurately drew the circles and tangents was not particularly 
challenging. However, when it comes to results comparison 
of two pipelines, there were a few of small differences 
between their evaluation results. Given the orthopedic 
attending physician is more professional, we took his 
evaluation result as the final result used in Table 2.

Discussion

The automated pipelines for PTS measurement proposed 

A B

Figure 19 An example of training data for segmentation model. (A) MRI image. (B) Ground truth segmentations. MRI, magnetic resonance 
imaging. 
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in this study are characterized by high efficiency and 
robustness. They are able to measure both medial and 
lateral PTS from MRI slices. Compared to manual 
measurements performed by experienced physicians using 
mapping software, which typically take about 10 minutes 
per patient, the proposed pipelines require only about  
10 seconds. Moreover, according to Hudek et al. (2009), 
the interobserver and intraobserver reproducibility of this 
circle method were 0.77 and 0.80 respectively assessed using 
intraclass correlation coefficient (ICC). This slightly lower 

reproducibility on MRI comes from the fact that several 
images are assessed in consecutive steps, instead of only one 
image is used for lateral radiograph (16). The discrepancies 
might arise from some minor differences in plotting 
standard, human error, or some factors that are difficult to 
standardize throughout the manual measurement process. 
Our automated pipelines could be a solid foundation for 
mitigating these deviations and enhancing the reliability and 
reproducibility of results. This is particularly advantageous 
for large-scale studies or those involving numerous doctors 
investigating the role of PTS in ACL and other clinical 
researches related to knee biomechanics. In addition, our 
automated pipelines enrich the application of deep learning 
in clinical procedures.

While the process of training the classification model is 
arduous, its practical significance is limited as physicians 
can rapidly identify the required slices. For the extraction 
of tibial contours, although the traditional image processing 
methods can solve this problem well, due to the complex 

A B

Figure 21 An example of the evaluation approach. (A) Pipeline 1. (B) Pipeline 2. Green circle: cranial circle. Red circle: caudal circle. Purple 
line: MRI-LA. Green line: the orthogonal of MRI-LA. MRI-LA, MRI-longitudinal axis; MRI, magnetic resonance imaging. 

Table 1 The success and failure numbers of both pipelines in terms of central, medial, and lateral slices in the evaluation experiment 

Slice
Pipeline 1 Pipeline 2

Failure Success Failure Success

Central 3 17 (85%) 0 20 (100%)

Medial 0 20 (100%) 0 20 (100%)

Lateral 2 18 (90%) 1 19 (95%)

Table 2 The comparison of two pipelines on each MRI slice 

Slice Pipeline 1 better Pipeline 2 better Deuce

Central 1 4 15

Medial 5 8 7

Lateral 4 12 4

MRI, magnetic resonance imaging.
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nature of MRI images, it is inevitable to pay the price of an 
increase in the algorithmic complexity as well as a decrease 
in its adaptability to deal with the details that may exist 
on some few images in a targeted manner. Furthermore, 
there are significant differences between the processing 
of specific details in the central and medial, lateral layers. 
Consequently, traditional image processing methods would 
require separate extraction algorithms to be designed 
for each layer’s distinct characteristics. In contrast, deep 
learning-based segmentation model enables the use of a 
single model to extract tibial contours across three different 
slices, substantially reducing workload.

Upon evaluating the results, it is evident that pipeline 2 
outperforms pipeline 1 in terms of a higher success rate and 
better outcome. The only instance of failure in pipeline 2 
on the lateral slice occurred due to the prominent lateral 
tibial plateau. The superiority of pipeline 2 is attributed 
to the segmentation model’s ability to directly extract a 
more precise tibial contour. Although the traditional tibial 
contour extraction method can successfully extract most 
contours, it occasionally faces issues such as concave tibial 
edges, which can affect subsequent measurements due to the 
automatic adjustment of parameters. The cyclic process of 
tibial contour extraction is complex, and the parameters of 
the applied algorithms are set experimentally, which impairs 
the robustness of pipeline 1. As shown in Figures 22,23, 
pipeline 1 is unable to extract the precise tibial contour due 
to its inherent limitations. In contrast, the deep learning 
model in pipeline 2 can adjust to the impact of luminance 

and cracks. Moreover, pipeline 2 demonstrates considerably 
better results than pipeline 1, particularly in the lateral 
slice. This can be attributed to the potential defocusing of 
the boundary at the anterior and posterior ends of the tibia, 
which can marginally impact lateral PTS measurement.

Despite the significant simplification of the entire process 
through the use of deep learning models, the demand for a 
large number of well-annotated masks for model training 
is costly. However, fortunately, pipeline 1 is a white box 
and can be a valuable tool for generating the required 
ground truth segmentations for training the black-box deep 
learning model.

The deep learning models employed in this study are 
not the latest models for classification and segmentation. 
To further improve efficiency and accuracy, we will explore 
more effective models and novel techniques in the future. 
Moreover, we are planning to add an extra function to the 
current software. It will enable manual adjustments by 
humans to the location, radius, and angles of the plotted 
circles and tangents generated by the automated pipelines. 
With this function, even if the results from the pipelines 
are not as reliable as those from human assessment, they 
can still serve as a basis for further refinement by humans. 
This approach can guarantee the measurement accuracy 
while speeding up the measurement process. In addition, 
considering the presence of hardware in the knees of ACL-
reconstructed patients, which has the potential to amplify 
artifacts or impact the outcomes of PTS measurements on 
MRI, it could be better if the future automated pipelines are 

A B

Figure 22 Pipeline 1 failed because of the blurry tibial bottom. (A) Pipeline 1. (B) Pipeline 2. Green circle: cranial circle. Red circle: caudal 
circle. Purple line: MRI-LA. Green line: the orthogonal of MRI-LA. The detected tibial contour is marked in orange. MRI-LA, MRI-
longitudinal axis; MRI, magnetic resonance imaging.
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able to adapt to this scenario. 

Conclusions

This paper proposes two accurate, efficient, automatic 
measurement pipelines of the circle method to measure 
the medial and lateral PTS on MRI images. A software 
incorporating these two pipelines are designed to aid 
doctors during clinical decision making. It enables doctors 
to use the circle method to measure PTS within 10 seconds, 
providing a remarkable speed improvement of nearly  
60 times compared to the 10 minutes required for manual 
measurement. Using these automated pipelines can also 
reduce human errors, enhance measurement accuracy, 
and improve clinical result repeatability, which is crucial 
for reusing and comparing measurements in different 
PTS researches. As the first automated tool for the most 
repeatable measurement techniques proposed by Hudek  
et al. (2009), it has the potential to facilitate the study of the 
significance of PTS for ACL injury and its reconstruction 
surgeries, the comparison of different measurement 
methods, and even the development of new ones. 
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