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A B S T R A C T   

Random forests (RFs) are a widely used modelling tool capable of feature selection via a variable importance 
measure (VIM), however, a threshold is needed to control for false positives. In the absence of a good under-
standing of the characteristics of VIMs, many current approaches attempt to select features associated to the 
response by training multiple RFs to generate statistical power via a permutation null, by employing recursive 
feature elimination, or through a combination of both. However, for high-dimensional datasets these approaches 
become computationally infeasible. In this paper, we present RFlocalfdr, a statistical approach, built on the 
empirical Bayes argument of Efron, for thresholding mean decrease in impurity (MDI) importances. It identifies 
features significantly associated with the response while controlling the false positive rate. Using synthetic data 
and real-world data in health, we demonstrate that RFlocalfdr has equivalent accuracy to currently published 
approaches, while being orders of magnitude faster. We show that RFlocalfdr can successfully threshold a dataset 
of 106 datapoints, establishing its usability for large-scale datasets, like genomics. Furthermore, RFlocalfdr is 
compatible with any RF implementation that returns a VIM and counts, making it a versatile feature selection 
tool that reduces false discoveries.   

1. Introduction 

Random forests (RFs) are a non-linear modelling tool that has 
widespread popularity, from research to industry [1]. This versatility is, 
in part, due to the ability of RF to process large volumes of data effi-
ciently [2], which is especially useful for genetic data as it is 
high-dimensional in nature with p >> n. Furthermore, RFs require little 
hyperparameter tuning and are robust against to overfitting due to its 
bootstrapping method. This minimises the need for data splits, which 
can be difficult with small sample sizes [3]. 

Crucially, variable importance measures (VIMs) can be extracted 
from RFs which enables the selection of features associated with the 
response via a threshold value. This is especially relevant for disease 
gene discovery, where highly associated genomic locations are 

identified as likely having a molecular causation on disease. As such, RF 
are a step in the direction of interpretable machine learning. 

Yet, feature selection using VIMs is vulnerable to false positives and a 
statistical assessment is needed to confidently identify which features 
are significantly associated to the outcome. However, here is no theo-
retically defined VIM in the sense of a parametric quantity that a vari-
able importance estimator should try to estimate [4]. Those that do have 
a firmer theoretical basis like Shapley values [1,5,6], or tackle the issues 
of bias in a comprehensive manner like ‘conditional variable impor-
tance’ [7], are too computationally intense to use with high-dimensional 
data like genomic data. 

Instead, there are two main categories of empirical approaches to 
determine the significance of features associated to the response using 
RF VIMs: permutation of the response vector and recursive feature 
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elimination (RFE) [8]. In the permutation approaches, the response 
vector is permuted k times to calculate p values for significance from the 
permuted VIM, akin to the standard procedure for estimating false dis-
covery rates. There currently are two state-of-art approaches utilizing 
permutations: the actual-impurity-reduction (AIR) [9] in combination 
with the Vita approach [10] and the Permutation IMPortance (PIMP) 
[11] algorithms. Permutation approaches are problematic for genomic 
data as their validity relies on the assumption that the statistic for gene j 
is a function of only the data for gene j, which is violated as VIMs are 
functionally related [12,13]. 

The second widely used method is RFE where RF are built recur-
sively, removing a proportion of least important features before a new 
RF is generated with the remaining variables until a single feature is left. 
The verSelRF algorithm [14] and its modifications [8] uses the RFE 
approach. However, the time and compute implication of iteratively 
training RF can be prohibitive. Even with a smaller dataset of 500 
samples × 50,000 gene expression levels (e.g., colon cancer [15]) with, 
say, k = 100 genes that are highly involved with the label, we can define 
ρ = k/n and δ = n/p to get {ρ, δ} = {0.2,0.01}, putting the problem in a 
‘difficult’ region of {ρ, δ} phase space where many algorithmic methods 
of feature recovery have a high probability of failing [16,17]. 

Combining permutation and RFE approaches, Boruta [18] generates 
shadow features by permuting the original features and recursively 
training RFs on this extended set until a stopping criterium is met. A test 
comparing the VIM of the real features to the maximum of all the 
shadow features determines which features are significantly associated. 
Recently rank aggregation techniques on multiple runs of feature se-
lection methods have been proposed and tested on Boruta, Vita, and 
regularised RF [19] showing that the resulting consolidated features 
were more accurate and robust. However, for extremely high dimen-
sional data both the use of shadow variables (i.e., Boruta) and/or 
running feature selection methods multiple times (i.e., rank aggrega-
tion) have significant resource impactions. 

To address the shortcomings of currently availably feature selection 
approaches (AIR, Boruta, RFE, and PIMP), we approach the problem 
from a statistical standpoint. Here, p simultaneous tests can be per-
formed on a genetic dataset X

n × p 
with p > > n to get the test statistics 

{ti}p
i=1. Under assumptions about the distribution {ti}p

i=1, statistics zj can 
be computed, comparing cases with controls which should give, by the 
central limit theorem, zj ∼ N

(
Δj, 1

)
, where Δj is the effect size for gene j. 

Therefore, 
⃒
⃒Δj

⃒
⃒ is small for ‘null genes’ (i.e., genes that show the same 

activity in cases and controls), while 
⃒
⃒Δj

⃒
⃒ is large for genes having much 

different responses for cases versus controls. Inference for the individual 
genes gives the p value, {pi}

p
i=1. 

This is the position taken by the widely used linear models for 
microarray data (LIMMA) approach [20]. By using an empirical Bayes 
argument to make an adjustment to the variance of each gene based on a 
model for the variance of all genes in the sample, genes with very small 
variance are prevented from having a greatly inflated t statistic and from 
appearing significant. Another common practice is to permute the 
phenotype and derive a matrix of statistics of dimension p genes by M 
permutations. Approaches to determining the threshold of significance 
given such a matrix are discussed in [21]. 

For both approaches, the issue of multiple testing needs to be eval-
uated and there are three widely used approaches in genetic studies: 
false discovery rate (FDR) [22], Bonferroni correction [23], and q-value 
[24]. The FDR approach has demonstrated greater power to detect true 
positives than the simpler Bonferroni correction, while the q-value 
builds on the infimum over the p values of the FDR. Further to this, the 
‘local FDR’ approach was proposed to control the FDR using an empir-
ical Bayes estimate of the null distribution [25–28]. 

Based on Efron’s local FDR approach, we developed RFlocalfdr, a 
method for setting a significance level of the VIM: the mean decrease in 
impurity (MDI) importances. The RFlocalfdr approach does not involve 

any refitting of RF and does not use ‘shadow variables’ [9], making it 
applicable to extremely high dimensional datasets, including genomics 
where the number of features may be in the millions. 

2. Methods 

2.1. Illustration of Efron’s empirical Bayes approach 

Several points make an ideal situation for an empirical Bayes esti-
mate of the null distribution as discussed in Efron (2010). Firstly, the 
dataset is composed of two groups: a large group of data that will 
generate null values of some statistic, and a smaller group that will 
generate non-null values (Fig. 1 A). This means that there is sufficient 
data to model the null distribution, which Efron argues one should al-
ways do in cases like this, rather than make a distributional assumption. 
By adopting this approach, the high dimensionality of genetic datasets is 
now an asset as there are enough data points to estimate the null dis-
tribution accurately. Secondly, despite the large ‘sample’ sizes, the N 
(0,1) Gaussian distribution has a very poor fit to the z values. 

We illustrate Efron’s empirical Bayes approach using a dataset from 
Hedenfalk et al. [28], consisting of a matrix with 3226 rows corre-
sponding to the expression levels of genes and 15 columns correspond-
ing to the 15 samples, divided between tumours with the BRCA1 and 
BRCA2 mutations. Let ti be the standard t-statistics arising from the 
comparisons of cases and controls (i.e., tumours with or without the 
BRCA1/BRCA2 mutations). Let zi = ϕ− 1(G0(ti) ), where ϕ is the standard 
normal cdf, and G0 is a putative null cdf for the t-values. G0 can be a 
theoretical null or a permutation null. Interestingly, in this case, the 
permutation density is very similar to the theoretical N(0,1) density 
(Fig. 1B) so a non-parametric approach does not alleviate the problem. 

As per Efron’s approach, a histogram of the {zi}
p
i=1 is plotted (Fig. 1B) 

and it demonstrates that the modelling assumptions are inaccurate as 
the distribution of zi is not a N(0,1) as shown in red. Efron discusses some 
reasons behind this occurrence including failed assumptions, correla-
tions between cases or between features, and unobserved covariates. 

The observed distribution is thus modelled as a mixture 
f(z) = p0f0(z)+(1 − p0)f1(z) where f0(z) is the null distribution of t-sta-
tistics and f1(z) is the distribution of significant t-statistics (Fig. 1b). The 
modelling process involves using the central mass of the null distribu-
tion to fit a Gaussian and then the local FDR is calculated as the ratio of a 
null density and the observed density of the tails f1(z). See Efron (2005, 
2007, 2008, 2010) for more details. 

The possibility of applying this empirical Bayes approach directly on 
the importances returned by AIR which have a distribution designed to 
be symmetric about 0 [9] is discussed and dismissed in the supple-
mentary materials. 

2.2. Empirical Bayes for MDI Importances 

The RFlocalfdr, inspired by Efron’s approach as introduced above, is 
a method for modelling the distribution of MDI importances from RF 
with a view to setting a significance threshold. This method depends on 
having a large number of features and a substantial count of trees 
making it ideally suited for genetic analyses, such as differential gene 
expression and GWAS. 

We illustrate the RFlocalfdr method using a vector of MDI impor-
tances calculated from RF of the 1000 Genomes Projects [30], described 
further in the Results section. The density of the log transformed vector 
of MDI importances is considered (Fig. 2A), and is often the case, 
multi-model. We can model this as a mixture, 

f (z) = pAfA(z)+ pBfB(z) (1)  

and 

fB = p0f0(z)+ (1 − p0)f1(z) (2) 
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The distribution we are interested in Eq. (2), indicated in red in 
Fig. 2A, is assumed to be unimodal and that it is a mixture of null fea-
tures and non-null features. Resultingly, we have two tasks: (1) to 
separate fA(z) and fB(z), (2) like Efron’s problem, to estimate the 
empirical null f0(z) and calculate the local FDR. 

For task 1, modelling pAfA(z)+pBfB(z) by mixtures is quite difficult 
due to the wide range of distributions between different data sets. 
However, the modes of fA(z) are observed to be associated with features 
that were used a specific (and small) number of times in the RF. For 
example, the left most peak of fA(z) in Fig. 2A is composed of features 
that were used only once in the RF. There will often be another peak (at 
− ∞ as we have taken the log) of features that were not used at any time 
in the RF. Building on these observations, we denote the number of times 
each variable is used as C. We then progressively threshold C giving fc(z)

= f(z)| C > c. A skew-normal distribution [31] was explored to be a fit 
for fc(z), and either a Hartigan’s diptest for unimodality or a 
goodness-of-fit test such as the Cramer-von Mises test is applied. How-
ever, as none of these procedures selects a c value giving a satisfactory fit 
(see supplementary materials), our current procedure is to fit a 
skew-normal Sq(z) up to the qth quantile of fc(z), and calculate the L∞ 

norm dc = maxz
⃒
⃒fc(z) − Sq(z)

⃒
⃒. The dc is plot against c, and the minimum 

value c* is chosen. The corresponding distribution, fc∗ (z), is shifted along 
the z positive axis so that the smallest value is 0. For this dataset, the 
selected distribution is shown in Fig. 2B. 

From a histogram of the selected distribution resulting from task 1 
(Fig. 2B), we start task 2 by fitting a spline to the observed bin counts, 
denoted as f and shown in red in Fig. 2C. This can be done using standard 
Poisson generalised linear modelling software, fitting the counts to a 

Fig. 1. (A) The two-group model where the 
data was generated by two processes, one of 
which produces a set of null statistics (density 
shown in red) and one which produces non-null 
statistics (density shown in green). (B) The 
histogram of z-values for the breast cancer ge-
netic dataset [29]. The red curve shows the N(0, 
1) distribution and the black curve shows the 
permutation null distribution, which is similar 
to the theoretical N(0,1) curve. The blue curve 
shows the empirical Bayes Gaussian fit to the 
data.   

Fig. 2. The steps in estimating the local FDR 
from distributions of log MDI importances. (A) 
The density of the log MDI importances shows a 
multi-modal distribution. The density 
p0f0(z)+(1 − p0)f1(z) is indicated in red. (B) 
Histogram of log MDI importances of features 
that were used greater than 30 times in the RF 
showing the desired distribution. (C) A spline is 
fit to the observed bin counts from (B) using 
standard Poisson generalised linear modelling 
(f, coloured in red). (D) Identify a value q such 
that to the left of q, f only depends on f0.   
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natural cubic spline basis on the midpoints of the bins. By assumption, 
there is a point q such that to the left of q fB ∼ f0(z), that is, there is a q 
such that there are only null features to the left of q. A change point 
method related to penalised model selection [32] is used to determine q 
(Fig. 2D) and then p0 is estimated. Using only the data < q, a 
skew-normal is fit to f0 using only the truncated range with the formu-
lation of the skew-normal by [33]. The fit is done with non-linear least 
squares [34]. With f, p0, and f0, the local FDR is estimated as fdr(x) =
p0f0(x)

f(x) and shown in Fig. 3. 

3. Results 

We applied the RFlocalfdr approach on five datasets: (1) a synthetic 
dataset with a strong correlation structure to establish the need for 
statistical approaches in feature selection, (2) chromosome 22 from the 
1000 Genomes Project dataset to demonstrate real-world suitability, (3) 
a gene expression dataset from Spira et al. [35] to demonstrate suit-
ability with non-genomic high-dimensional datasets, (4) the widely used 
benchmarking Boston housing dataset from Harrison and Rubinfeld [36] 
to illustrate the incompatibility of RFlocalfdr with a low-dimensional 
dataset, (5) a dataset of 106 datapoints to show applicability to 
large-scale genomic datasets like whole genome sequencing. Where 
possible, the RFlocalfdr approach was compared to four published ap-
proaches: AIR, Boruta, REF, and PIMP. Unless otherwise stated, the R 
package ranger [37] was used to build all RF and the parameters used 
are given in the supplementary materials. 

3.1. Feature selection on a synthetic dataset 

The synthetic dataset consists of ‘bands’ with ‘blocks’ of {1, 2, 4, 8, 
16, 32, 64} of identical features (Fig. 4A). The features are ∈ {0, 1, 2}, a 
common encoding for genomic data where the numbers represent the 
number of copies of the minor allele. Only band 1 is used to calculate the 
y vector, and y is 1 if any of X [, (1, 2,4, 8, 16, 32, 64)] is non-zero. The 
result of this is that y is unbalanced, containing more 1’s than 0’s. In 
total, there are 50 bands and 200 observations, so X is 300 × 6350 with 
127 non-null features (see supplementary materials for more details). A 
standard RF was fit to this dataset and the resulting MDI importances 
were recorded. 

As shown in Fig. 4B, selecting features above a single importance 
threshold did not achieve a perfect separation of the true positive fea-
tures from band one (in red) and the false positives from the other bands. 
This issue was further exacerbated by blocks with fewer features having 
higher MDI importances as the importances was ‘smeared’ over the 
correlated (in this case, identical) features. The effects of correlation on 
MDI importances are further discussed in the supplementary materials. 
Therefore, a statistical approach is necessary for true positive selection. 

Table 1 shows the performance measures of applying the five feature 
selection methods to this dataset to identify the features significantly 
associated with the response (y). Our RFlocalfdr approach resulted in the 
second highest recall after AIR (0.465 vs 1 respectively), it however had 
much higher precision (0.621 vs 0.318). Boruta and RFE resulted in the 
lowest recall (0.016 and 0.173 respectively) but RFE resulted in the 
highest precision (0.917). See supplementary materials for further de-
tails, including a multiple testing correction for the PIMP values. 

3.2. Feature selection on real-world datasets 

The 1000 Genomes Project dataset was obtained as VCF files from 
their FTP site with each VCF file containing the genotypes of single 
nucleotide polymorphisms (SNPs) for every individual. There are 2504 
individuals with available genotypes in total and no additional pro-
cessing was performed. An RF was used to predict the ethnicity of each 
individual using 1 million SNPs from chromosome 22. The script de-
tailing the analysis in depth can be found in the supplementary 
materials. 

The RFlocalfdr approach selected 6335 SNPs that were significantly 
associated with ethnicity at an FDR of 0.2. It had comparable perfor-
mance to the more resource intensive Boruta algorithm, which returned 
6773 significant SNPs with an 82 % overlap to RFlocalfdr (Fig. 5). Unlike 
RFlocalfdr which offers a continuous p value scale for the adjustment of 
FDR, Boruta offers only two levels and at the most conservative 
‘confirmed’ option, it returns 1443 SNPs, all of which were also 
discovered by RFlocalfdr. Furthermore, a one-way ANOVA showed a 
significant association (P < 2 × 10-16) between RFlocalfdr p values and 
Boruta categories. 

As in the simulated example, AIR and PIMP select orders of magni-
tude (~10x and ~100x respectively) more significant SNPs than RFlo-
calfdr and Boruta (Table 2), potentially having a higher sensitivity. 
However, AIR assigns a p value of 0 to all SNPs, making it impossible to 
tune the specificity which may result in a high false positive rate (Fig. 5). 
The final feature selection approach, RFE, appeared to have focussed on 
specificity and returned 59 nested sets, with a set of only 12 SNPs having 
the smallest prediction error. 

The runtimes of each approach were evaluated using the same pro-
cessing parameters (Table 2). As RFs can be built in parallel, we report 
runtime in units of RF generation. RFlocalfdr only requires one built of 
RF and its relative runtime is 1, making it twice as fast as the next fastest 
method AIR which requires ‘shadow variables’ to be built. Compared to 
the RFE approach, RFlocalfdr was 57 times faster, although the runtime 
of RFE is data dependent and each run of RF in this approach will have a 
reduced number of features making it faster as it goes. Finally, the 
RFlocalfdr approach was 100 times faster than the Boruta and PIMP 
approaches, but we note that the number of evaluations of RF is a user 
set parameter of Boruta and PIMP. Runtimes with full details are dis-
cussed further in the supplementary materials. 

We have also tested the RFlocalfdr approach on two non-genomic 
datasets. Firstly, the gene expression dataset from Spira et al. [35] to 
demonstrate the generalisability of the approach on non-genomic 
high-dimensional datasets where RFlocalfdr identified 19 significant 
genes, see Supplemental Material D. Secondly, on the Boston Housing 
data from Harrison and Rubinfeld [36]. In this dataset, the RFlocalfdr 
approach was unsuccessful due to the small number of non-null features 
(n = 17). However, with the addition of 5000 non-informative features, 
RFlocalfdr identified 15 of the 17 features as significant, see 

Fig. 3. An example of the plot produced from the RFlocalfdr approach. The 
FDR curve is shown in black. 
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Supplemental Material E. 

3.3. Feature selection on large-scale dataset (106 datapoints) 

This dataset was presented in Bayat et al. [2] with 10,000 samples 
and 6 million SNPs as features. Although based on the 1000 Genomes 

Project dataset, it has a synthetic y value allowing us to calculate ac-
curacy while operating on a dataset with true biological structure. 

However, due to the size of the dataset, ranger could not be applied, 
and we had to evaluate two other Apache Spark-based RF imple-
mentations: VariantSpark [2] and ReForest [38]. ReForest fitted the 
model in about 15 h, compared to VariantSpark which took 5 h. We 
hence used VariantSpark going forward. 

Using the MDI and counts reported by VariantSpark, RFlocalfdr 
selected 38 SNPs as significant, including the 5 SNPs used to generate 
the simulated y value. This resulted in a 100 % success rate with an 87 % 
false discovery rate. Given the runtimes reported in Table 2, fitting this 
large-scale dataset would require up to 62 days for the other feature 
selection algorithms to complete. Furthermore, none of the other 
methods accepts MDI importances and counts of variables as is, which is 
returned by VariantSpark and ReForest. Hence, RFlocalfdr is the only 
approach capable of selecting variants associated with a trait using 
whole-genome size datasets in a feasible timeframe and out-of-the-box. 

4. Discussion 

In this paper, we present RFlocalfdr, a method for calculating the 
significance threshold of RF MDI importances for detecting label- 
associated features using an empirical Bayes approach. The accuracy 
of RFlocalfdr was shown to be comparable to the currently published 
more resource intensive techniques in terms of performance metrics and 
also demonstrated advantages. This includes: (1) computational effi-
ciency as it requires only a single fit of RF particularly in comparison to 
RFE or permutation methods such as PIMP, (2) broad applicability to 
any RF implementation that returns MDI importances and counts of 
variables use, and (3) it provides continuous p values, which allows for 
tailored sensitivity and specificity selections. 

Of the other methods tested in this paper, only RFE offers a similar 
capability to adjust the sensitivity/specificity trade-off through the se-
lection of other nested sets with a larger or smaller number of associated 

Fig. 4. (A) The synthetic data is structured into 
bands and blocks. The colour and the y-axis 
show which band/block each feature/variable 
belongs to, not the feature value. Each ‘band’ 
contains ‘blocks’ of sizes 1, 2, 4, 8, l6, 32, and 
64. Each block consists of correlated (identical 
variables), where each variable is ∈ {0, 1, 2}. 
The dependent variable y is 1 if any of X[, c(1, 
2, 4, 8, 16, 32, 64)] is non-zero, so only band 1 
has a relationship to the dependent variable. (B) 
The log MDI importances from the RF on the 
synthetic dataset, arranged by feature number 
and coloured by band. It is impossible to 
threshold the MDI importances to recover the 
only non-null features (coloured in red).   

Table 1 
Performance measures of feature selection for the simulated dataset by five 
methods of feature selection. The best outcomes for each category are in bold 
face.  

Method True Positives False Positives Recall Precision 

AIR  127  273  1  0.318 
Boruta  2  2  0.016  0.500 
RFE  22  2  0.173  0.917 
RFlocalfdr  59  36  0.465  0.621 
PIMP  39  556  0.307  0.067  

Fig. 5. A Venn diagram of the overlaps in features (i.e., SNPs) classified as 
significant by AIR, Boruta, RFE, RFlocalfdr, and PIMP. AIR and PIMP are the 
outliers with more than 104 unique SNPs (i.e., not found by the other ap-
proaches) for each approach. 

Table 2 
The number of significant SNPs returned by each feature selection approach and 
their runtimes. Runtimes are expressed in multiples of the runtime of a single 
Ranger fit for the given hardware configuration, hence, the runtimes describe 
the number of ‘refits’ that each method requires. The processing time outside of 
the RF fit is negligible, by comparison, in all cases.  

Method SNPs Returned as Significant Runtime (as multiples of a single RF) 

AIR 61,092 1.5–2 
Boruta 6773 100 
RFE 12 50–60 
RFlocalfdr 6335 1 
PIMP 787,502 100  
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features. In contrast, Boruta and AIR do not offer this capability as there 
is no criteria for sub-setting the set of associated features, and in prac-
tice, AIR tends to report a vastly larger number of significant features. 
Whether this large number of reportedly significantly features is desir-
able would depend on the context of the dataset, subsequent analysis, 
and the false discovery tolerance. 

As shown in Bayat et al. [2], the ranger implementation of RF was 
unable to process datasets of > 3.2 M features and 10,000 samples with 
488 GB of memory. For ranger to fit RF with a large-scale dataset of 106 

datapoints, several hundred cores and several terabytes of RAM will be 
required. Therefore, feature selection approaches that require multiple 
RF refits (e.g., RFE, PIMP) in conjunction with RF implementations 
where computational requirements exponentially increase with data 
size (e.g., ranger, ReForest) will eventually become infeasible. This is 
particularly true for genetic analyses as availability of large-scale 
genomic datasets become commonplace. The RFlocalfdr approach cir-
cumvents these challenges as it only requires a single RF fit and can be 
applied to any RF implementation that returns MDI importances and 
counts of features used, such as the highly scalable VariantSpark 
implementation. 

RFlocaldfr is highly applicable in problems where there are sufficient 
null variables to allow the accurate estimation of the null density. In 
addition, where the variables are all of the same type and on the same 
scale, the variable importances will be less susceptible to bias. 

issues [7]. However, these caveats still leave large areas of applica-
bility for RFlocaldfr, for example, high-throughput biomolecular data 
generally meets these criteria. 

In conclusion, it is our expectation that RFlocalfdr with its direct and 
real-time capability of detecting trait-associated SNPs will greatly assist 
the analysis of high-dimensional data, such as genomic data. 

Software and data availability statement 

The RFlocalfdr approach is available as an R package through github 
(https://github.com/parsifal9/RFlocalfdr) and a python version is 
included in the VariantSpark github repository (https://github.com/a 
ehrc/VariantSpark/blob/master/python/varspark/stats/lfdr.py). The 
python script has been tested using python version 3.8.12 and requires 
the following libraries: numpy v1.21.2 for numeric transformations, 
pandas v1.4.1 to create and manage data frames, patsy v0.5.2 to create 
the cubic regression splines, scipy v1.7.3 to fit the data using the least 
square method, to compte the cdf and percentile point functions, and 
statsmodels v0.13.2 to fit a generalised linear model. The user of the 
python script is only required to run the ‘fit’ function which requires a 
data frame as input with a single column containing the log-transformed 
RF MDI importances for each variant. Currently the function will return 
a touple with the estimated false discovery rate and a data frame with 
the p values for the statistically significant features. 

The code used to generate the synthetic dataset is provided in the 
github repository (https://github.com/parsifal9/RFlocalfdr/blob/main 
/vignettes/simulated.Rmd). The 1000 Genomes Project phase 3 data-
set can be obtained and downloaded from their FTP site as VCF files 
(https://www.internationalgenome.org/data-portal/data-collection/p 
hase-3). Access and availability of the large-scale dataset with 106 

datapoints of 10,000 samples and 6 million features is described in Bayat 
et al. [2]. 
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