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Neurological conditions like neurodevelopmental disorders and neurodegenerative
diseases are quite complex and often exceedingly difficult for patients. Most of these
conditions are due to a mutation in a critical gene. There is no cure for the majority of these
neurological conditions and the availability of disease-modifying therapeutics is quite rare.
The lion’s share of the treatments that are available only provide symptomatic relief, as
such, we are in desperate need of an effective therapeutic strategy for these conditions.
Considering the current drug development landscape, gene therapy is giving us hope as
one such effective therapeutic strategy. Consistent efforts have been made to develop
gene therapy strategies using viral and non-viral vectors of gene delivery. Here, we have
discussed both of these delivery methods and their properties. We have summarized the
relative advantages and drawbacks of viral and non-viral vectors from the perspectives of
safety, efficiency, and productivity. Recent developments such as clustered regularly
interspaced short palindromic repeats (CRISPR)/Cas9-mediated gene editing and its use
in vivo have been described here as well. Given recent advancements, gene therapy shows
great promise to emerge as a next-generation therapeutic for many of the
neurodevelopmental and neurodegenerative conditions.
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INTRODUCTION

The prevalence of neurological disorders has been rising across the globe and is often associated with
an increasing socioeconomic burden. Many of these debilitating neurological conditions do not
respond to conventional therapies. Therefore, it is imperative to explore novel treatment modalities
like gene therapy. Recent groundbreaking gene therapy trials on patients with spinal muscular
atrophy type 1 (SMA1) resulted in superior motor function and longer survival compared to the
control group (Mendell et al., 2017). These investigations advocate for the further development of
gene therapy strategies to treat neurological conditions by replacing the disease-causing mutant gene
with a healthy copy or inactivating the malfunctioning disease-causing mutant gene. RNA
interference (RNAi) technology, has been one of the popular approaches to inactivate target
gene expression accomplished by a small non-coding RNA of varying length that binds a
complementary sequence of the mRNA target (Davidson and Boudreau, 2007; Jagannath and
Wood, 2007; Aguiar et al., 2017; Balwani et al., 2020). Besides these, studies have been conducted in
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TABLE 1 | Gene therapy for neurological disorders using viral and non-viral vectors.

Delivery vehicles/
vectors

Target
diseases

Preclinical/Clinical
stage

Target
gene

Gene therapy approach Outcome/Current status

Viral vectors
Adenovirus (Ad) PD Preclinical (6-OHDA

lesioned rats)
GDNF Ad-mediated hGDNF expression Improved locomotor behavior; increased

DA and DOPAC levels in striatum and
substantia nigra; shown to be
neuroprotective (Lapchak et al., 1997;
Choi-Lundberg et al., 1998)

HD Preclinical (Quinolinic
acid-lesioned rats)

BDNF Ad-mediated BDNF expression Neuroprotection from quinolinic acid-
induced neuronal death and reduced
lesion volume (Bemelmans et al., 1999)

Lentivirus AD Preclinical (APP23
transgenic mice)

PGC1α Lentiviral vector-mediated hPGC1α
expression

Reduced Aβ deposition with improved
spatial memory, decreased
proinflammatory cytokine, and
neuroprotection (Katsouri et al., 2016)

PD Preclinical (6-OHDA
lesioned rats)

TH,
AADC,
CH1

Lentiviral vector-mediated TH, AADC, and
CH1 expression

Reduction of apomorphine-induced motor
asymmetry and sustained catecholamine
production (Azzouz et al., 2002)

PD Clinical
[NCT01856439,
NCT00627588]

TH,
AADC,
CH1

ProSavin (Lentiviral vector-mediated TH,
AADC, CH1 expression)

Phase I/II (ProSavin is safe and well
tolerated in PD patients; moderate
improvements in motor behavior reported)
(Palfi et al., 2014; Palfi et al., 2018)

Refractory focal
epilepsy

Clinical
[NCT04601974]

KCNA1 Lentiviral vector-mediated expression of
engineered potassium channels in
excitatory neurons

Phase I/IIa (Study ongoing)

Adeno-associated
virus (AAV)

PD Preclinical (MPTP
lesioned rhesus
macaques)

GDNF AAV2-GDNF (AAV2-mediated GDNF
delivery)

No histopathological and immune reaction
and no loss of body weight (Su et al.,
2009)

PD Clinical
[NCT04167540]

GDNF AAV2-GDNF (AAV2-mediated GDNF
delivery)

Phase Ib (ongoing)

PD Clinical
[NCT00195143]

GAD AAV-GAD (AAV-mediated GAD delivery) Phase I (completed); Patients tolerated
the therapy with improvements in motor
scores (Unified Parkinson’s Disease
Rating Scale, UPDRS) (Kaplitt et al., 2007)

PD Clinical
[NCT00229736]

AADC AAV2-hAADC (AAV2-mediated hAADC
delivery)

Phase I (completed); Patients tolerated
the therapy and transgene expression
sustained for 4 years (Mittermeyer et al.,
2012)

PD Clinical
[NCT01973543]

AADC VY-AADC01 (AAV2-mediated hAADC
delivery)

Phase I (completed); The therapy was well
tolerated in patients; dose-dependent
transgene expression and subsequent
improvement in clinical outcome was
observed (Christine et al., 2019)

PD Clinical
[NCT00985517]

NTN CERE-120 (AAV2-mediated NTN delivery) Phase II (completed); Patients tolerated
the therapy (Bartus et al., 2013)

ALS Clinical SOD1 AAV-miR-SOD1 (disrupting SOD1 gene
expression, AAVrh.10)

Phase I/II will be initiated (Mueller et al.,
2020)

ALS Preclinical (G93A-
SOD1 mouse model)

SOD1 AAV9-SaCas9-hSOD1 (in vivo gene
editing)

Improvedmotor function, reduced muscle
atrophy, and increase in survivability (Gaj
et al., 2017)

ALS Preclinical (G93A-
SOD1 mouse model)

SOD1 AAV-mediated cytidine base editor (CBE)
delivery

Longer survival and slow disease
progression observed; improved
neuromuscular functions; reduced levels
of SOD1 immunoreactive inclusions seen
(Lim et al., 2020)

AD Clinical
[NCT05040217]

BDNF AAV2-BDNF (AAV2-mediated BDNF
expression)

Phase I (study ongoing)

AD Clinical
[NCT04133454]

hTERT AAV-hTERT (AAV-mediated telomerase
expression)

Phase I (status unknown)

AD Clinical
[NCT03634007]

APOE2 LX 1001; AAVrh.10hAPOE2 (AAV-
mediated expression of APOE2)

Phase I (study ongoing)

AD Clinical
[NCT00087789,
NCT00876863]

NGF Cere 110; AAV2-NGF (AAV2-mediated
NGF expression)

Phase II (study completed); Cere 110 was
safe and well tolerated but inefficient
(Mandel, 2010)

(Continued on following page)
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TABLE 1 | (Continued) Gene therapy for neurological disorders using viral and non-viral vectors.

Delivery vehicles/
vectors

Target
diseases

Preclinical/Clinical
stage

Target
gene

Gene therapy approach Outcome/Current status

AD Preclinical (Tg 2576
mice)

APP AAV-mediated depletion of APPSW

mutation (CRISPR gene editing)
Reduced level of Aβ secretion; in vivo indel
formation (György et al., 2018)

FTD Clinical
[NCT04747431]

GRN PBFT02; AAV1-GRN (AAV1-mediated
GRN expression)

Phase I/II (study ongoing)

HD Clinical
[NCT04120493,
NCT05243017]

HTT AMT-130; rAAV5-miHTT (perturbing HTT
expression)

Phase I/II (study ongoing) (Spronck et al.,
2021)

HD Preclinical (R6/2 mice) HTT AAV1-SaCas9-HTT (CRISPR-mediated
gene editing disrupting HTT expression)

Reduced mHTT level and associated
inclusion bodies; increased survival
(Ekman et al., 2019)

HD Preclinical (HD140Q-KI
mice)

HTT AAV-HTT-gRNA/AAV-CMV-Cas9 with
ratio 1:4 (CRISPR-mediated gene editing
disrupting HTT expression)

Reduced mHTT level; improved motor
functions (Yang et al., 2017)

RTT Preclinical (Mecp2−/
ymice)

MECP2 AAV-Mecp2 (AAV-mediated Mecp2
expression)

Systemic administration led to liver
toxicity; cerebroventricular administration
resulted in improved survival and
alleviated RTT like aggregate severity
score (Gadalla et al., 2017)

SMA Clinical
[NCT03306277,
NCT02122952]

SMN1 Zolgensma (AAV9-CMV-SMN1; gene
replacement therapy)

Phase III (study completed); Safe, well
tolerated, approved for use (Mendell et al.,
2017)

Giant axonal
neuropathy

Clinical
[NCT02362438]

GAN scAAV9/JeT-GAN (gene transfer therapy) Phase I (study ongoing)

Friedreich’s
ataxia

Clinical
[NCT05302271]

FXN AAVrh.10hFXN; (gene transfer therapy) Phase I (study ongoing)

Niemann-Pick
disease type C

Preclinical
(Npc1tm(I1061T)Dso mice)

Npc1 AAV-CBE; AAV9-mediated delivery of
cytosine base editor

Modest increase in lifespan of the mice
following correction of disease-causing
mutation (Levy et al., 2020)

Non-viral vectors
Polymer-based
vectors

PD Preclinical (6-OHDA
lesioned rats)

VEGF PEI-PLL mediated VEGF gene delivery Prevented loss of motor functions;
protected loss of dopaminergic neurons
of SNpc; prevented microglial activation
and apoptosis (Sheikh et al., 2017)

PD Preclinical (6-OHDA
lesioned rats)

hGDNF Lactoferrin modified PAMAM dendrimer
mediated GDNF gene delivery

Improved motor behavior; decreased loss
of dopaminergic neurons; increased
monoamine neurotransmitter levels
(Huang et al., 2009)

PD Preclinical (Rotenone-
lesioned PD rats)

hGDNF Lactoferrin modified PAMAM dendrimer
mediated GDNF gene delivery

Improved motor behavior; decreased loss
of dopaminergic neurons; increased
monoamine neurotransmitter levels
(Huang et al., 2010)

AD BALB/c mice Bace1 Rabies virus glycoprotein (RVG)-modified
poly(mannitol-co-PEI) gene transporter
(PMT)-mediated Bace1 siRNA delivery

BACE1 protein and mRNA level reduced
in the hippocampus and cortex;
accompanied by reduced Aβ42 level (Park
et al., 2015)

Lipid-based vectors AD Preclinical (C57BL/6
mice)

APOE2 Transferrin-Penetratin modified liposomes
for delivery of ApoE2

Increased expression of apolipoprotein E2
in the brain (Dos Santos Rodrigues et al.,
2019)

PD Preclinical (6-OHDA
lesioned rats)

TH TH plasmid in PEGylated immunoliposome
(PIL) targeted via rat transferrin
receptor (TfR)

Increased TH level in the striatum;
ameliorated apomorphine-induced
rotational behavior (Zhang et al., 2003;
Zhang et al., 2004; Pardridge, 2005)

PD Preclinical (6-OHDA
lesioned rats)

GDNF PEGylated liposome-microbubble-
mediated delivery of GDNF plasmid

Increased GDNF expression (mRNA and
protein); averted 6-OHDA-induced drop
of TH and DAT level; prevented the
apomorphine-induced rotational behavior
(Yue et al., 2018)

AD Preclinical (APP/PS1
transgenic mice)

BDNF Liposomal nanoparticle-mediated BDNF
gene delivery

Two-fold increase in BDNF level with
concomitant reduction (>40%) of Aβ
peptide; Plaque load was reduced with
subsequent increase in synaptic proteins

(Continued on following page)
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recent years to edit the mutated copy of the gene itself in vitro and
in vivo. Such an approach is known as gene editing (Li et al.,
2020).

Clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas9 is one of the widely used gene editing tools.
This method requires the delivery of Cas9 ribonucleoprotein
(RNP) consisting of the Cas9 protein with guide RNA (gRNA)
to the target cells. CRISPR/Cas9-mediated genome engineering is
quite precise and straightforward due to the target specificity and
simple design of gRNA. Studies employing CRISPR have already
exhibited efficiency in preclinical models of neurological
disorders (Gaj et al., 2017; Yang et al., 2017; György et al.,
2018; Lee et al., 2018; Ekman et al., 2019; Ricci and Colasante,
2021). Moreover, a recent report suggests that CRISPR
technology is in fact promising in clinical trials (Frangoul
et al., 2021). While we expect CRISPR-based gene editing will
soon change the therapeutic landscape of complex neurological
disorders, the double-stranded break it creates in the host genome
is the major drawback of Cas9-mediated editing. The non-
homologous end joining (NHEJ) pathway is error-prone and
often associated with undesired insertion or deletion (indel)
mutations (Moore and Haber, 1996; Kosicki et al., 2018; Song
et al., 2021). Further, non-dividing cells are incapable of
undergoing homology-directed repair (HDR)-mediated editing
which reduces the overall efficiency of these processes (Iyama and
Wilson, 2013; Kantor et al., 2020). Base editing offers an
alternative that could overcome these challenges given base

editors do not rely on double-stranded DNA break (Komor
et al., 2016; Eid et al., 2018; Anzalone et al., 2020). The two
major base editors, cytosine base editors (CBEs) and adenine base
editors (ABEs) can introduce all four transitionmutations (A→G,

FIGURE 1 | Perspectives of advantages/disadvantages of viral-, and
non-viral gene delivery methods. Schematic diagram shows the possible
packaging materials of viral and non-viral vectors. Packaged vectors can be
tested in the preclinical models of various neurological disorders.
Followed by successful preclinical trials, human clinical trials can be
conducted. The advantages and the disadvantages of each vector are
marked in green and red, respectively.

TABLE 1 | (Continued) Gene therapy for neurological disorders using viral and non-viral vectors.

Delivery vehicles/
vectors

Target
diseases

Preclinical/Clinical
stage

Target
gene

Gene therapy approach Outcome/Current status

like Synaptophysin, and PSD-95 (Arora
et al., 2022)

Nanoparticle-based
vectors

PD Preclinical (MPTP
injected mice)

SNCA Superparamagnetic nanoparticle (Fe3O4

nanoparticle)-mediated delivery of shRNA
for SNCA

Reduced α-synuclein and concomitant
increase of TH level in substantia nigra;
improved motor function (longer distance
travelled in open field arena) (Niu et al.,
2017)

PD Preclinical (MPTP
injected mice)

SNCA Gold nanoparticle-mediated silencing of
SNCA expression (using RNAi technology)

SNCA level was suppressed; reduced
damage of nigrostriatal pathway (based
on Nissl staining) (Hu et al., 2018)

PD Preclinical (MPTP
injected mice)

SNCA Gold nanoparticle-mediated silencing of
SNCA expression (using RNAi technology)

Elevated TH level; reduced α-synuclein
aggregate in substantia nigra; improved
motor function; ameliorated LTP deficit
(Liu et al., 2020)

AD Preclinical (5XFAD
transgenic mice)

Bace1 R7L10 peptide (nanocomplex)-mediated
Cas9 RNP delivery targeting Bace1
(CRISPR gene editing)

Reduction in BACE1 expression;
decreased Aβ plaque formation;
associative learning and spatial working
memory rescued (Park et al., 2019)

FXS Preclinical (Fmr1
knockout mice)

Grm5 CRISPR-Gold -mediated delivery of Cas9
RNP to knockout Grm5

Reduced mGluR5 level in the striatum;
rescued repetitive behavior (Lee et al.,
2018)

The table depicts major preclinical and clinical studies to treat neurological disorders employing gene therapy modalities. Abbreviations (PD, Parkinson’s disease; HD, Huntington’s
disease; AD, Alzheimer’s disease; ALS, Amyotrophic lateral sclerosis; FTD, Frontotemporal dementia; RTT, Rett syndrome; SMA, Spinal muscular atrophy; FXS, Fragile X syndrome;
GDNF, Glial derived neurotropic factor; BDNF, Brain derived neurotropic factor; PGC1α, Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; TH, Tyrosine hydroxylase;
AADC, Aromatic amino acid dopa decarboxylase; CH1, GTP cyclohydrolase 1; KCNA1, Voltage gated potassium channel Kv1.1; GAD, Glutamic acid decarboxylase; NTN, Neurturin;
SOD1, Superoxide dismutase; TERT, Telomerase reverse transcriptase; APOE2, Apolipoprotein E2; NGF, Nerve growth factor; APP, Amyloid precursor protein; GRN, Progranulin; HTT,
Huntingtin; MECP2, Methyl-CpG Binding Protein 2; SMN1, Survival motor neuron 1; GAN, Gigaxonin; FXN, Frataxin; Npc1, NPC intracellular cholesterol transporter 1; VEGF, Vascular
endothelial growth factor; BACE1, β-Secretase 1; SNCA, α-Synuclein; Grm5, Metabotropic glutamate receptor 5).
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G→A, C→T, T→C) (Gaudelli et al., 2017; Qi et al., 2020; Qin
et al., 2020; Yu et al., 2020). In principle, ~30% of all known
human pathogenic single nucleotide polymorphisms (SNPs) can
be targeted using base editors (Anzalone et al., 2020). Prime
editors, the newest players in the league, are capable of
introducing all four transitions, as well as all eight
transversion mutations. Theoretically, prime editing can edit
~89% of all known human pathogenic SNPs (Kantor et al.,
2020). Hence, base editing and prime editing tools are
perceived as extremely powerful strategies to target disease-
causing point mutations. Such progress will be translated to
patients and pave the way for gene therapy to be the next
generation therapeutic by reverting the disease-causing
mutation to the normal gene, a remarkable way to treat a disease.

Successful gene therapy strategies often rely on successful gene
delivery methods. There are broadly two categories of gene delivery
strategies; viral vector-mediated and nonviral vector-mediated gene
delivery. However, apart from these two strategies, physical methods
have also been tested as a gene delivery strategy. Nevertheless, due to
a lack of target specificity, physical methods such as sonoporation
are not widely accepted in the field. Here, we narrate the major gene
delivery strategies and their relative advantages and disadvantages
for brain targeting. Broadly, viral vectors are considered to be more
efficient while non-viral vectors are on the whole less toxic and
immunogenic. However, both delivery methods show exciting and
hopeful recent advancements.

VIRAL VECTOR-MEDIATED GENE
DELIVERY

Viruses have been an alluring vector for gene therapy due to their
efficiency infecting and delivering genetic material to cells.
However, selecting an appropriate viral vector for gene
therapy requires stringent parameters. Generally, there are
three universally accepted criteria for a good gene delivery
viral vector (Scheller and Krebsbach, 2009); 1. safe and non-
immunogenic, 2. able to protect the transgene, and 3. capable of
prolonged and tissue-specific transgene expression (if applicable).
Considering these factors in mind, adenoviruses, lentiviruses, and
adeno-associated viruses (AAVs) have been used to develop
effective gene delivery vehicles targeting a wide range of
neurological indications (Lapchak et al., 1997; Azzouz et al.,
2002; Albert et al., 2017; Mendell et al., 2017). As viral vectors
manifest a high gene delivery efficiency in vivo, they have received
the limelight in the current decade for their use in gene therapy.
Their applications are summarized in Table 1 and briefly
described below:

Adenovirus-based vectors: Adenoviral vectors can package
5–10 kb of naked double-stranded DNA (dsDNA) (He et al.,
1998). They can infect quite a broad range of cells and express
episomally (Leblois et al., 2000; Kreppel and Kochanek, 2004; Shu
et al., 2016). Two of the major drawbacks of the adenoviral
vectors have been their immunogenicity and low efficiency to
cross blood-brain-barrier (BBB) (Kafri et al., 1998; Franklin et al.,
1999; Tang et al., 2007; Lundstrom, 2018). Recently, efforts were
made to utilize the transcellular transport pathway to facilitate the

BBB penetration of adenovirus serotype-5 (Ad5) vectors. Re-
direction of Ad5 vectors to melanotransferrin transcytosis system
promoted Ad5-mediated gene delivery through BBB (Tang et al.,
2007).

Lentivirus-based vectors: Lentiviral vectors are categorized
under the retroviruses and are capable of infecting both dividing
and non-dividing cells (Naldini et al., 1996; Blömer et al., 1997;
Yang et al., 2008; Lundstrom, 2018). These vectors can package
up to 10 kb of single-stranded RNA (ssRNA) manifesting long-
term transgene expression (Sakuma et al., 2012; Lundstrom, 2018;
Kalidasan et al., 2021). One key concern for the use of lentiviral
vectors has been the possibility of their integration into the host
genome leading to insertional mutagenesis. Integration-defective
lentiviral vectors have been developed to circumvent the
possibilities of insertional mutagenesis in the brain (Philippe
et al., 2006).

AAV-based vectors: AAV-based vectors generally carry
single-stranded DNA (ssDNA) and can package ~4.8 kb of
content (Carvalho et al., 2017; Lundstrom, 2018). Their ability
to infect a wide range of dividing and non-dividing cells makes
them suitable for many therapeutic trials. The existence of more
than 12 serotypes and their various features have made AAV-
based vectors the most attractive vehicle (Ingusci et al., 2019). A
number of natural AAV serotypes exhibit both anterograde and
retrograde trafficking while natural serotypes such as AAV1,
AAV2, AAV6, and AAV9 require high vector doses for
retrograde trafficking due to the relative inefficiency (Haery
et al., 2019). AAV1, AAV5, AAV8, and AAV9 transduce
neurons as well as astrocytes and oligodendrocytes while
AAV2 transduce mostly neurons (Tenenbaum et al., 2004;
Haery et al., 2019). Compared to other serotypes, AAV9
manifests superior BBB crossing ability when assessed in
neonatal mouse CNS (Foust et al., 2009; Zhang et al., 2011;
Haery et al., 2019). Various AAV serotypes can either exist as an
episome or can integrate into the host genome. AAV vectors are
often immunogenic, however, the use of different serotypes for
subsequent administrations has shown promise in combating this
(Lundstrom, 2018).

Advantages of Using Viral Gene Delivery
In recent days, the AAV vectors have gained a lot of attention for
gene therapy given their broad range of cell tropism and
suitability for subsequent engineering (Srivastava, 2016; Li and
Samulski, 2020). Recombinant AAV vectors have unique features
such as their capability to transport through extracellular space
due to the small particle size. Furthermore, replication-
incompetent AAV vectors are often considered as one of the
safer options for in vivo use (Hudry and Vandenberghe, 2019).
They can elicit a stable and sustained transgene expression as an
episome. Recently, the field has seen enormous progress in
developing AAV-mediated targeted gene therapy approaches
in the CNS (see Table 1).

Disadvantages of Using Viral Gene Delivery
Despite having numerous advantages, AAV-mediated gene
delivery requires further fine-tuning. Some of the critical
challenges include identifying a safe and less-invasive route
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of administration, overcoming large-scale manufacturing
obstacles, and successful translation from preclinical
models to humans (complicated by immunological
differences and presence of BBB). Besides these, another
key challenge has been the delivery of larger cargos. Recent
advancements in gene editing technology require the delivery
of massive machinery like CRISPR/Cas9 to target cells.
However, considering the limited carrying capacity of AAV,
the cargo would have to be split into two or more vectors
(Trapani, 2019; Akil, 2020). Such an approach reduces
transduction efficiency as the chances of simultaneous
reach of multiple vectors to the target cells become
stochastic. Therefore, it is important to have a vehicle that
can carry larger complexes to target cells.

NON-VIRAL VECTOR-MEDIATED GENE
DELIVERY

Non-viral vectors have been used as a vehicle for many different
gene therapy trials even though the system has not gotten the
same fame seen with the viral vector models. Nevertheless, non-
viral vectors have shown promise in many of the aspects of an
ideal gene therapy vector. Broadly, there are three major strategies
of non-viral vector-mediated gene therapy such as polymer-based
vectors, lipid-based vectors, and nanoparticle-based vectors
(Mintzer and Simanek, 2009; Jayant et al., 2016; Salameh
et al., 2020). See Table 1 for their applications.

Polymer-based vectors: Polyethyleneimine (PEI) and poly-L-
Lysine (PLL) are cationic polymers which are popularly tested in
vivo CNS for gene therapy (Boussif et al., 1995; Mousazadeh et al.,
2007; Mintzer and Simanek, 2009; Sheikh et al., 2017; Zheng et al.,
2021). Each polymer-based vector demonstrates distinct features;
PEI is versatile given it can be designed to be different lengths, be
branched or linear, undergo functional group substitution or
addition (Morille et al., 2008; Jayant et al., 2016); PLL is unique
due to its biodegradable nature, which is advantage for in vivo use
(Morille et al., 2008; Jayant et al., 2016). Studies demonstrated
that cytotoxicity of PEI and PLL is directly related to molecular
weight and pKa, with higher molecular weight and more cationic
materials being more toxic (Mintzer and Simanek, 2009;
Monnery et al., 2017). Further investigation showed PLL
conjugated with apoprotein E (apoE)-derived peptide
demonstrated to cross BBB (Mousazadeh et al., 2007).
Dendrimers, highly branched spherical polymers, have also
been widely investigated as a gene delivery vehicle.
Polyamidoamine (PAMAM) is the most common form of a
dendrimer due to its ample transfection efficiency (Wang
et al., 2011; Zhu et al., 2019; Mignani et al., 2021).
Cytotoxicity of dendrimers as a result of their surface charge
and chemical structure was shown to be alleviated by
polyethylene glycol (PEG) modification (PEGylation) (Jayant
et al., 2016). Additionally, a single intranasal administration of
PAMAM dendrimers was shown to modulate brain-derived
neurotrophic factor gene expression in the brain (Win-Shwe
et al., 2014).

Lipid-based vectors: Liposomes consist of spherical
concentric bilipid layers capable of carrying nucleic acid to
target cells (Gao et al., 2013). Liposomes have been widely
used as non-viral vectors for CNS targeting (Zhang et al.,
2003; Zhang et al., 2004; Dos Santos Rodrigues et al., 2019).
However, simple liposomes face multiple obstacles including
lysosome-mediated degradation and reduced nuclear uptake.
Cationic liposomes are comparatively more efficient in
transfecting larger nucleic acids and are easy to handle,
though, they tend to form an aggregate in biological fluids
(Jayant et al., 2016; Ewert et al., 2021). Niosomes are more
stable than liposomes (Bartelds et al., 2018; Ge et al., 2019).
The major limitation of niosomes has been the possible
aggregation, fusion, and leaking, which could be circumvented
by the usage of proniosomes (Hu and Rhodes, 2000). Further,
PEGylation of niosomes led to improved gene delivery, reduced
interaction with plasma proteins, and prohibited aggregation in
the serum (Huang et al., 2008). To foster the BBB crossing, trojan
horse liposomes (THL) has been developed. THL relies on its
monoclonal antibody component to bind with the cognate
receptors (e.g., transferrin receptors or insulin receptors)
present on BBB or the cell surface (Boado and Pardridge,
2011). Another approach is designing dual-functionalized
liposomes having penetratin and transferrin attached to the
surface (Dos Santos Rodrigues et al., 2018; Dos Santos
Rodrigues et al., 2019).

Nanoparticle-based vectors: Nanoparticle-based vectors are
at the forefront of gene delivery modalities as a result of their
safety profile as well as their cost-effective production method.
Nanoparticles are defined as solid colloidal particles with sizes
ranging from 1 to 1000 nm consisting of macromolecular
materials in which the active compound (drug/biologically
active material e.g., DNA/RNA/protein) is encapsulated,
absorbed, or entrapped (Kreuter, 2014). Generally,
nanoparticles are biocompatible and readily biodegradable,
making them suitable gene delivery vehicles for CNS targeting
(Calzoni et al., 2019). Major components of nanoparticles are
poly-butylcyanoacrylide (PBCA), poly-lactic acid (PLA) and
related copolymers (Kreuter, 2014). In many cases, modulating
the surface properties of these nanoparticles by PEGylation, or
polysorbate-80 coating improves gene delivery efficiency.
PEGylation, in particular, prolongs systemic circulation time
and reduces the immunogenicity of the nanoparticles (Suk
et al., 2016). Whereas, polysorbate-80 coating was shown to
enhance BBB crossing (Ren et al., 2009). Similar to liposomes,
functionalizing nanoparticles with specific ligands shown to be
capable to cross BBB (Lombardo et al., 2020). For example, ApoE-
modified nanoparticles have been shown to circumvent BBB
(Wagner et al., 2012). Other investigations demonstrated that
insulin-targeted gold nanoparticles can effectively cross BBB via
receptor-mediated endocytosis (Shilo et al., 2014). Gold
nanoparticle was also shown to deliver the large cargo such as
CRISPR/Cas9 RNP leading to a behavioral rescue in a preclinical
mouse model of fragile X syndrome (FXS) without showing any
significant cytotoxicity (Horejs, 2018; Lee et al., 2018;
Trenkmann, 2018).
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Advantages of Using Non-Viral Gene
Delivery
Non-viral vectors have multiple advantages over viral vectors.
Lower toxicity and immunogenicity make non-viral vectors a
safer tool for gene delivery. Other advantages of the non-viral
vectors would be the ease of production, thereby, cost-
effectiveness, and their ability to be engineered (Ramamoorth
and Narvekar, 2015). On top of that, non-viral vectors can
transfer bigger sizes of nucleic acid residues and/or proteins
(Morrell et al., 2008; Chang et al., 2017; Lee et al., 2018; Park
et al., 2019; Zhang et al., 2021; Jubair et al., 2021; O’Keeffe Ahern
et al., 2022). Considering the current progress in gene editing
technology, transferring larger biomolecule complexes is
desired.

Disadvantages of Using Non-Viral Gene
Delivery
Regardless of many advantages over the viral vectors, non-viral
vectors do face some challenges. Firstly, the comprehensive
mechanisms of their actions are not well elucidated (Wu et al.,
2018). Hence, it has been difficult to strike the optimum balance
between efficiency and toxicity. Secondly, non-viral vectors
generally exhibit lower efficiency for CNS targeting compared
to viral vectors (Mintzer and Simanek, 2009; Jayant et al., 2016).
However, recent advancements in chemical modifications of the
lipid carriers and the other non-viral vectors are promising in
enhancing CNS targeting. Another hurdle has been ‘protein
corona’ formation (Corbo et al., 2016). Systemically
administered lipid nanoparticles encounter and interact with
countless biomolecules which change their surface properties
and form protein coronas (Caracciolo, 2015; Giulimondi et al.,
2019). This phenomenon can impact cellular uptake,
biodistribution, immune reaction, and toxicity of the vector
(Corbo et al., 2016). Therefore, it is imperative to develop a
safe yet efficient delivery modality.

DISCUSSION

Gene therapy for complex neurological conditions including
neurodevelopmental and neurodegenerative disorders is still in
its adolescence. The field has encountered a lot of challenges in
the last couple of decades. One of the major challenges has been
safety and tolerability. Subsequent efforts and advancements have
led to many successful clinical trials addressing the safety
concern. Nevertheless, we have seen a surge in the number of
clinical trials targeting complex disorders employing gene
therapy approaches in the last couple of decades (Kaplitt et al.,
2007; Mittermeyer et al., 2012; Palfi et al., 2014; Mendell et al.,
2017; Palfi et al., 2018; Christine et al., 2019). It is noteworthy to
mention that the proportion of these gene therapy trials is still not
on par with conventional small-molecule therapeutic
development. Therefore, it is critical to reiterate that more
efforts are needed for the successful translation of gene
therapy strategies from bench to bedside. Gene therapy could

be a game-changer in treating rare monogenic disorders in the
years to come. Debilitating indications like amyotrophic lateral
sclerosis (ALS) and Huntington’s disease (HD) are quite
aggressive and lack an effective disease-modifying therapy. In
most cases, the only treatment available is symptomatic
alleviation. In such a scenario, targeting the underlying
etiology could be both beneficial and advantageous. The
development of gene therapy strategies has shown us a light at
the end of the tunnel.

Successful gene delivery strategies are often the rate-limiting
step for efficient gene therapy (see Figure 1). Viral vectors have
been designed to evade the immune system and deliver their
nucleic acids to target organs (Chan et al., 2021). Such a function
constitutes one of the mechanisms of increased efficiency of viral
vector-mediated gene delivery. The American Society of Gene &
Cell Therapy (ASGCT) proclaimed in the Q1-2021 quarterly data
report that 89% of the total gene therapies in development
employ viral vectors including AAV (42%), lentivirus (29.9%),
and adenovirus (12.6%). A similar trend is expected for the gene
therapy landscape of neurological disorders. Considering current
gene therapy preclinical development, neurological disorders are
the secondmost widely targeted non-cancer non-rare indications.
Furthermore, Zolgensma, the only FDA-approved gene therapy
against SMA utilizes the AAV9 vector, indicating that viral
vectors have been the primary choice (Al-Zaidy et al., 2019;
Urquhart, 2019).

Gene delivery strategies are rapidly evolving to deliver a wide
assortment of bioactive materials such as nucleic acids, proteins,
or gene editing tools into the brain. However, bioactive materials
(e.g., nucleic acids) are susceptible to degradation by serum
nucleases and need protective modifications for successful
delivery to the cells (Chiou et al., 1994; Juliano, 2016; Roberts
et al., 2020). Therefore, current progress towards designing non-
viral vectors which can protect bioactive materials against
degradation inside the body becomes promising. Gene delivery
through PEGylated liposomes can effectively protect nucleic acids
while retaining their bioavailability (Suk et al., 2016). In addition,
toxicity has been one of the major concerns masking the flare of
gene therapy strategies. A good number of efforts have beenmade
to design biocompatible and biodegradable cargo for safe gene
delivery (Han et al., 2000). Non-viral vectors have shown an
upper hand when it comes to safe gene delivery to the target
tissues. Studies are ongoing to make non-viral vectors more
efficient above and beyond being safe. Current advancements
in gene editing technology also contribute to the popularization
of non-viral vectors.

Lastly, most of the efficient viral vectors (AAV-mediated
vectors) have limitations in their carrying capacity, whereas,
non-viral vectors can carry larger DNA/RNA as well as
proteins quite effortlessly (see Figure 1). This makes them
suitable to deliver gene editing machinery such as CRISPR/
Cas9. The development of virus-like particles (VLP) which are
composed of virus assembly proteins, but lack the viral genetic
material is one of the recent advancements in the field to
overcome the limitations of both types of vectors. VLPs have
become an attractive vehicle as they possess a similar efficiency to
viral vectors without having the associated risk of genomic
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integration of viral gene construct. VLP-mediated gene editing
was successful in ex vivo human cells as well as in vivo mouse
brains (Banskota et al., 2022). With these results, VLP could turn
out to be an efficient gene therapy vector in the future.

In conclusion, gene therapy is undoubtedly one of the
crucial developments of this century. No wonder the Nobel
prize 2020 (Chemistry) was conferred to Drs. Jennifer
Doudna and Emmanuelle Charpentier for their discoveries
in CRISPR/Cas9-mediated gene editing. The cutting-edge
technological advancements in gene therapy are giving
hope to millions of people suffering from excruciating
neurological conditions. Despite great progress in the field,
we are still dealing with challenges in bringing gene therapy
medicines to market. Nevertheless, the consistent efforts and
developments by experts across the globe are encouraging.
With the increase in cross-functional collaborations in these
sectors, we can expect to see various approved gene therapy
treatments for patients in the near future. Gene therapy will
emerge as next-generation therapeutics for many
neurodevelopmental and neurodegenerative diseases in the
decades to come.
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