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Abstract Epigenetic regulations of genes by reversible
methylation of DNA (at the carbon-5 of cytosine) and
numerous reversible modifications of histones play important
roles in normal physiology and development, and epigenetic
deregulations are associatedwith developmental disorders and
various disease states, including cancer. Stem cells have the
capacity to self-renew indefinitely. Similar to stem cells, some
malignant cells have the capacity to divide indefinitely and are
referred to as cancer stem cells. In recent times, direct
correlation between epigenetic modifications and reprogram-
ming of stem cell and cancer stem cell is emerging. Major
discoveries were made with investigations on reprogramming
gene products, also known as master regulators of totipotency
and inducer of pluoripotency, namely, OCT4, NANOG,
cMYC, SOX2, Klf4, and LIN28. The challenge to induce
pluripotency is the insertion of four reprogramming genes
(Oct4, Sox2, Klf4, and c-Myc) into the genome. There are
always risks of silencing of these genes by epigenetic modi-
fications in the host cells, particularly, when introduced

through retroviral techniques. In this contribution, we will
discuss some of the major discoveries on epigenetic mod-
ifications within the chromatin of various genes associated
with cancer progression and cancer stem cells in comparison
to normal development of stem cell. These modifications may
be considered as molecular signatures for predicting disorders
of development and for identifying disease states.
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Introduction

Defining the growth requirements for the maintenance
and differentiation of developmental and cancer cells,
and attempts to define their predictive molecular signa-
tures have proved frustrating in the past. However,
currently there has been remarkable progress in under-
standing molecular mechanisms of development and
cancer biology. Under certain conditions of cell cycle
control mechanisms, cells of many developing organs
and cancer cells of those particular organs follow general
mechanisms and may be compared for understanding the
disease state. Some studies examining specific epigenetic
features of embryonic and cancer stem cells—such as the
aberrant DNA-methylation, abundance of modified his-
tones, Polycomb group (PcG) protein binding patterns,
replication timing, and chromatin accessibility have
provided important insights into the unique properties
of stem cells. Here, we discuss the unique epigenetic
features of developmental and cancers stem cells, and
explore the new questions that these findings have raised
about stem cells, cancer stem cells, and their implications
for practical applications.
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Stem cells

Indefinite self-renewal and multipotency are two funda-
mental properties of Stem cells. They have the capacity to
divide with at least one daughter retaining the phenotype of
the mother (Pardal et al. 2003a; Gupta and Massagué 2006;
Rapp et al. 2008; Michor 2008; Hart and El-Deiry 2008;
Maitland and Collins 2008). Conceptually there are two
major types of stem cells: namely, embryonic stem (ES)
cells and adult stem cells. Embryonic development is a
process of differentiation, growth, and maturation of
different organs by which all the tissues and cells of an
organism are derived from zygotic stem cells. This property
is defined by the ways of conversion of totipotency to
pluripotency to multipotency to unipotency (See Scheme 1).
In adult organisms, cells of many tissues retain their
stemness properties and play critical roles in tissue
regeneration and repair. These adult stem cells are consi-
dered pluripotent as generally they have limited ability for
differentiation and are committed to create the mature
differentiated cells in the tissues where they reside. This
differentiation process is part of the homeostatic system that
can renew senescent differentiated cells and replace tissue
loss following injury. In many tissues, it is now proven that
homeostasis is maintained by a hierarchical system in
which, firstly, stem cells generate transit-amplifying cells.
These rapidly cycling cells maintain a degree of multi-

potency and can expand and differentiate into non-cycling,
terminally differentiated cells. This hierarchy is prominent
in most of the cells of epithelial origin, including gut,
breast, lung, prostate, skin, cornea, and liver (Leedham et
al. 2005; Kakarala and Wicha 2008; Otto 2002; Richardson
et al. 2004a; Tsujimura et al. 2002; Alonso and Fuchs 2003;
Lavker et al. 2004; Vessey and de la Hall 2001).

Embryonic stem cells are derived from embryos and the
derivation of human embryonic stem cell (hESC) line has
involved embryo destruction. Many people have ethical
objections to their use for any purpose other than repro-
duction. But at present, derivation of at least five hESC
lines is possible without embryo destruction. hESC may be
cultured in three different ways. In first two processes
blastomere cocultured with green fluorescent protein
(GFP)-labeled hESC for 12–24 and 12 h, respectively, in a
modified medium (blastocyst medium supplemented with
laminin and fibronectin) which is approximately similar to
the inner cell mass (ICM) niche. In another process,
blastomeres were cultured in blastocyst medium without
GFP-hESC. In these three processes, stable hESC generated
3.8%, 20% and 50%, respectively, and cultures were stable
hESC to re-differentiate in vivo and vitro. Blastomere
culture medium was supplemented with laminin and
fibronectine. Laminin is a component of basement mem-
branes and associated with induction of apical/basal
polarity, possibly which suppressed trophectoderm differ-

Totipotency = Germ cells and placenta, all somatic cell types                                            

    (Fertilized egg) 

                                                                                                                      Embryonic Stem cell

Pluripotency = Germ cells, all somatic cell types                                                          

    Inner cell mass (ICM) of Blastocyst 

 

  

Multipotency   = Linage-restricted cell types 

Neural stem cells 

    Haematopoietic stem cell 

Mesenchymal stem cell 

 

Unipotency = Single cell type 

    Epidermal stem cell 

Germ line stem cell 

Scheme 1 Levels of stem-cell
state
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ention (Chung et al. 2008). Stable induced pluripotent stem
cell was also generated from human fibroblasts by directly
delivering four reprogramming proteins (octamer binding
transcription factor, Oct4; Sox2; Klf4; and c-Myc) fused
with cell membrane penetrating peptide. These four
proteins induced pluripotent stem cells morphology,
proliferation, and expression profiles of characteristic
pluripotency markers were similar to human embryonic
stem cell (Kim et al. 2009). Adult stem cells derived from
skin cells or bone marrow cells upon treatment with
reprogramming proteins also have acquired the properties
of embryonic stem cells. But this work is not widely
accepted because of higher time required for the protein-
mediated process (poor efficiency) in comparison to the
gene delivery-mediated process. However, scientists believe
that by exploiting the potential of embryonic stem cells to
develop into any cells of the body, they may be able to treat
many incurable conditions, but there is lack of full under-
standing of the mechanisms of epigenetic silencing or
activation of genes.

Epigenetics related to development and cancer biology

Epigenetics is the study of the stable inheritance of phenotype
without altering the genotype manifested by changes in gene
expression (Probst et al. 2009). Epigenetic changes in
eukaryotic biology are best observed during cellular differ-
entiation (Probst et al. 2009; Klose and Bird 2006; Jaenisch
and Bird 2003; Feinberg et al. 2006; Jones and Baylin 2007).
During embryogenesis, totipotent stem cells become the
various pluripotent cell lines of the embryo which in turn
become fully differentiated cells. In other words, a single
fertilized egg cell—the zygote—changes into the many cell
types found in vertebrates. This process is regulated by
activating some genes while silencing many others by
complex processes of epigenetic regulations. It involves a
unique modification of DNA at the cytosine 5-carbon
position (hereafter, DNA-methylation), and numerous mo-
difications in histones for the activation or repression of
certain genes (Jones and Baylin 2007). Additionally, various
proteins associated with the chromatin folding and dynamics
may be activated or silenced. What this means is that every
cell in our body has the same programming/instruction
manual, but different cell types are using different chapters.
Most epigenetic changes that are involved with the chroma-
tin modifications related to gene expression only occur
within the course of one individual organism's lifetime, but
some epigenetic changes are inherited from one generation
to the next. Epigenetic processes include paramutation (the
result of heritable changes in gene expression that occur
upon interaction between alleles), gene bookmarking (a
mechanism of epigenetic memory that functions to transmit
through mitosis the pattern of active genes and/or genes that

can be activated to daughter cells), imprinting, gene
silencing, X chromosome inactivation, position effect,
reprogramming, transvection (an epigenetic phenomenon
that results from an interaction between an allele on one
chromosome and the corresponding allele on the homolo-
gous chromosome), maternal effects, the progress of
carcinogenesis, and many effects of teratogens, regulation
of histone modifications and heterochromatin formation, and
technical limitations affecting parthenogenesis and cloning
(Probst et al. 2009; Klose and Bird 2006; Jaenisch and Bird
2003; Feinberg et al. 2006; Jones and Baylin 2007; Christman
2002; Patra et al. 2008; Vaissiere et al. 2008; Patra and Szyf
2008; Patra 2008a).

Epigenetic regulation of genes by DNA methylation
and histone modifications

Methylation at the carbon-5 position of cytosine base is the
only known stable modification of DNA, which occurs
primarily in CpG dinucleotides and is often altered in cancer
cells (Jones and Baylin 2007). This modification consists of
the covalent addition of a methyl group catalyzed by a
family of enzymes called DNA methyltransferases
(DNMTs), using S-adenosylmethionine as the donor of the
methyl group (Klose and Bird 2006; Christman 2002; Patra
et al. 2008; Vaissiere et al. 2008; Patra and Szyf 2008; Patra
2008a). In mammals, the de novo methylation generally
does not occur during normal postgastrulation development
but is seen frequently during the establishment of cell lines
in vitro and in tumor tissues (Jones et al. 1990; Kawai et al.
1994). It was suggested that the maintenance of DNA
methylation depends on DNMT1 that specifically recognizes
hemi-methylated DNA and methylates the complementary
strand and de novo methylation is carried out by DNMT3a
and DNMT3b proteins (Klose and Bird 2006; Jaenisch and
Bird 2003). DNMT3a is involved in the nucleolar inactiva-
tion of resting and growth-arrested cells. Methylation of
DNA repeats in the region of centromeric satellite DNA is
specially maintained through Dnmt3b (Thompson et al.
2010). Recent data suggest that the DNMT1 protein is
methylated by the histone methyltransferase (e.g., SET7) and
demethylated by histone demethylase (e.g., LSD1) (Esteve et
al. 2009; Wang et al. 2009a), which increase or decrease
respectively the DNMT1 activity in the different stage of cell
cycle. DNA methylation can inactivate a gene in a number
of ways; for example by attracting CpG-methylated-DNA
binding proteins, by attracting histone deacetylases
(HDACs) and by inducing variations in histone methylation
(Jones and Baylin 2007; Patra et al. 2008; Patra and Szyf
2008; Patra 2008a). Only a small fraction of the eukaryotic
genome is transcriptionally competent. The state of chroma-
tin in these regions must be dynamic to meet the changing
transcriptional requirements of a cell. This balance between
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euchromatin and heterochromatin ensures that the gene-
expression pattern of a given cell type is stably maintained in
daughter cells as a heritable state. In terms of CpG-
density, there are two types of gene promoters. One type
accounts for ∼50% of the genes in the mammalian
genome and contains unmethylated CpG-islands. The
other promoter type is CpG-poor in composition, as is
the rest of the genome. Among the genes that have CpG-
poor promoters, it is not known for how many of those
CpG-methylation might have a modulatory role in their
transcription? High-CpG-density promoters (HCPs) are
associated with two classes of genes: ubiquitous “house-
keeping” genes and highly regulated “key developmen-
tal” genes (Saxonov et al. 2006). In ES cells, HCPs at
housekeeping genes are enriched with the transcription
initiation mark H3K4me3 (“univalent”) and genes are
generally highly expressed, whereas HCPs at develop-
mental genes are enriched with both H3K4me3 and the
repressive mark H3K27me3 (“bivalent”) and genes are
generally silent (Meissner et al. 2008; Mikkelsen et al.
2007; Bernstein et al. 2006).

Genome-wide decrease of DNA methylation certainly
contributes to development of cancers (Bedford and van
Helden 1987). This hypomethylation has been associated
with the emergence of chromosome instability both in
mouse (Dodge et al. 2005), and human neoplasms (Schulz
et al. 2002). However, it is the regional hypermethylation
of critical genes that has attracted immense interest in
understanding the pathogenesis of cancer (Patra et al.
2002). Methylated genes commonly found in cancer affect
diverse cellular processes, some of which have roles in
tumor physiology and signaling such as the hormonal
response (androgen receptor, AR; estrogen receptor 1/2;
retinoic acid receptor beta; retinoic acid receptor responder
protein 1), tumor invasion/architecture (adenomatous
polyposis coli, APC; caveolin 1; cluster of differentiation
44; E-cadherin 1; E-cadherin 13; laminin subunit alpha-3;
laminin subunit beta-3; laminin subunit gamma-2; uroki-
nase type plasminogen activator), cell cycle control (G1/S-
specific cyclin-D2; Cyclin-dependent kinase inhibitor 2
A), repair of DNA damage (glutathione-S-transferase P;
O-6 methylguanine DNA methyltransferase), and signal
transduction (disabled homolog 2-interacting protein;
death-associated protein kinase 1; endothelin receptor type
B; Ras Association domain Family 1A; Patra and Szyf
2008; Patra 2008a; Patra et al. 2002; Li et al. 2005; Joshua
et al. 2008). Some other genes are also demethylated, e.g.,
uPA (Pulukuri et al. 2007; Patra and Bettuzzi 2007),
heparanase (Ogishima et al. 2005), and clusterin (Rauhala et
al. 2008) which may have functional importance, especially
for the invasive phenotype. These epigenetic signatures and
changes have been reviewed extensively (Schulz and Hatina
2006; Dobosy et al. 2007; Cooper and Foster 2009).

Eukaryotic genomes undergo hundreds of modifications
in their core histones tails. One of the best-studied histone
modifications is acetylation, and histone acetylation events
play crucial roles in all kinds of nuclear phenomena
involving DNA, namely: replication, recombination, repair,
condensation, and transcription. Acetylation is catalyzed by
histone acetyltransferases (HATs) such as monocytic leu-
kemia zinc finger protein (MOZ), MOZ-related factor,
males-absent on the first protein, HIV-1 tat-interacting
protein (TIP60), and human acetylase binding to origin of
replication complex—ORC1 (Esteller 2007; Clayton et al.
2006; Kouzarides 2007), where acetyl-coenzyme A is the
donor of acetyl-group. Primary site of acetylation is the side
chain of lysine (K) residues of the all histones, but
frequencies are moderate for H4 and highest for H3.
Downstream molecular consequences of histone acetylation
are (a) binding of chromodomain proteins at sites where
lysines are acetylated and (b) alteration of histone–DNA
binding. The later event opens faces of DNA for further
interactions with macromolecules/enzymes for the events
like replication, repair, or transcription. The amount of
residual acetylation level depends on the precise balance
between the action of HATs and histone deacetylases
(HDACs). Until now, four classes of HDACs have been
identified: Class I are ubiquitously expressed in human cell
lines and tissues. Class II has tissue specific expression and
can shuttle between the nucleus and cytosol. The class III
family is numbers of NAD+dependent proteins (Liu et al.
2010; Ropero and Esteller 2007); and the class IV is
homologous to the class I and II cytoplasm, and it may be
responsible for the acetylation of non-histone proteins
(Ropero and Esteller 2007). HDAC1 and HDAC2 have
been shown to directly interact with DNMT1 (Robertson et
al. 2000; Rountree et al. 2000). We and others have shown
that HDACs are associated with cancer development (Liu et
al. 2010; Patra et al. 2001). Recently, it is observed that
inhibition of HDAC by chidamide in colon cancer cells
increase acetylation level in histone H3, and arrests the
cancer cell cycle at G1 phase by inhibiting the PI3K/Akt
and MAPK/Ras signaling pathways and promotes the
apoptosis of cancer cell (Liu et al. 2010). The addition of
an acetyl group to the lysine residue neutralizes the charge,
which relaxes the bound DNA from the histone complex.
As a consequence, portions of DNA with largely acetylated
histones result in euchromatin formation and activation of
gene transcription, while histone deacetylation is associated
with chromatin condensation (heterochromatinization) and
gene suppression. A survey of results published over the
last decades described that histone acetylation can modulate
gene transcription at global (genome-wide) and gene-
specific levels (Jones and Baylin 2007; Patra et al. 2008;
Vaissiere et al. 2008; Patra and Szyf 2008; Clayton et al.
2006; Kouzarides 2007; Liu et al. 2010; Ropero and
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Esteller 2007; Robertson et al. 2000; Rountree et al. 2000;
Patra et al. 2001; Bedford and Clarke 2009; Li and Zhao
2008; Schulz and Hoffmann 2009a; Seligson et al. 2005;
Brown et al. 2000). It is now clearer that promoter-specific
hyperacetylation occurs in at the backyard of global
acetylation, preventing deacetylation on those sites that
activates basal transcription. This facilitates a rapid return
to the default state of acetylation when transcription is
turned on (Vaissiere et al. 2008; Patra and Szyf 2008;
Clayton et al. 2006; Kouzarides 2007; Brown et al. 2000)

Another major modification of histone tails is the methyl-
ation at several lysine (K) and arginine (R) residues. Histone
methylations are linked to both transcriptional activation and
repression. Methylated K residues, obtained in H3 at positions
−4, −9, −27, −36, and −79, and in H4 at K 20. Lysine can be
mono-, di-, and trimethylated, whereas arginine (R) can
additionally be tetramethylated. The dimethylated form of R
may again be symmetric or asymmetric (Bedford and Clarke
2009). Histone methylation is reversible and catalyzed by
two families of enzymes called histone lysine methyltrans-
ferases and protein arginine methyltransferases, and the
methyl group can be removed by histone demethylases
(Kouzarides 2007; Bedford and Clarke 2009). Stunning
numbers of reversible modifications along with different
combinations of modification involving physical interactions
of enzymes and regulatory proteins in both directions throws
insights of complexity of epigenetic regulation by histone
modification (Patra and Szyf 2008; Kouzarides 2007). In
reality, the consequences of histone methylation depend on
the modified residue, as we know that methylation of H3K4,
H3K36, or H3K79 correlates with the active gene transcrip-
tion; however, methylation at H3K9, H3K27, or H4K20 is
usually linked to gene repression. Moreover, mono-, di-, and
trimethylation at the same K residues lead to different levels
of gene activation or repression and are involved in distinct
cellular pathways (Patra and Szyf 2008; Li and Zhao 2008).
H3K27me3 represses the gene when located at promoter
region. It is specifically coupled with HOX gene repression
and X chromosome inactivation (Schulz and Hoffmann
2009a). Histone modifications are altered in cancer, and
since these are mitotically heritable, they can play the same
roles and undergo the same selective processes as genetic
alterations in the development of a cancer. It is essential to
identify the usual patterns of normal tissues before deter-
mining the altered patterns of histone modification in cancer.
To date, some examples from recent studies are available: for
example, lower level of H4K12-Ac is an indicator of
recurrence in prostate cancer (Seligson et al. 2005) and
increased H3K4 dimethylation and H3K18 acetylation
activation mark correlated with poor prostate cancer prog-
nosis (Schulz and Hoffmann 2009a). Moreover, specific
epigenetic gene silencing can also occur by aberrant
targeting of HDACs to the gene promoter, which causes

histone hypoacetylation (Seligson et al. 2005). Typical genes
silenced in this manner in various human cancers include the
tumor-suppressor gene p21WAF1 (cyclin-dependent kinase
inhibitor 1; Patra et al. 2001). Among the members of
polycomb repressive complex (PRC), the most studied is the
polycomb protein enhancer of zeste homologue 2 (EZH2),
an essential component of a protein complex that catalyzes
methylation of histone H3 at K9 contributing to transcrip-
tional repression of a large number of specific genes. PRC1
complex was also required for trimethylation at H3K27,
which is responsible for stable maintenance of gene
repression (Schulz and Hoffmann 2009a). EZH2 is overex-
pressed in high percentage in prostate cancer patients, with
moderate increases in localized tumors, and higher expres-
sion in metastatic cases. EZH2 overexpression may lead to
the stable downregulation of approximately 100 genes and
increased expression of a smaller number (Varambally et al.
2002). Moreover, global patterns of histone modification are
shown to be linked to the risk of prostate cancer recurrence
(Cooper and Foster 2009). Specifically, the activating histone
modifications H3K18 acetylation and H4 R3 dimethylation
have been reported to occur in many cases of prostate cancer
and to be associated with higher grades and a worse
prognosis (Seligson et al. 2005). New evidences are
accumulating against the convention: histone modifications
that mark inactive chromatin are associated with DNA-
hypermethylated promoters, whereas histone marks for
active chromatin are normally associated with hypomethy-
lated promoters. Using a ChIP-based microarray approach, it
was found that in prostate cancer and PC3 cell line around
5% of promoters (16% with CpG islands and 84% without
CpG islands) were enriched with H3K27me3, a modification
that marks inactive chromatin. The genes containing this
mark were specifically silenced in PC3 compared with
normal prostate epithelial cells even though most of the
promoter of the genes with CpG islands showed low levels
of DNA methylation (Kondo et al. 2008). Apart from
changes of chromatin state and dynamicity by methylation
and acetylation of histones, emerging evidence suggest a role
for phosphorylation, beyond chromatin condensation (Patra
and Szyf 2008; Kouzarides 2007).

Molecular marks for identifying stem-cells

Each cell in our body has its unique epigenetic mark. These
epigenetic marks establish their genotype, developmental
history and it reflects into the phenotype of the cell
(Table 1). During the process of fertilization, paternal
genome exchange protamines and DNA demethylation
and histone modifications occur (Santos et al. 2002). But
some area of heterochromatin in and around centromere
(Santos et al. 2002; Rougier et al. 1998), including
intracisternal A particle (IAP) retrotransposons (Lane et
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al. 2003) and permanently methylated imprinted genes
remain methylated (Olek and Walter 1997) for maintaining
the normal chromosome stability. The real mechanism and
cause of demethylation is unknown. It may be a part of the
process by which gametic genome return to embryonic
totipotency. The maternal genome remains epigenetically
unaffected. Before DNA demethylation, highly acetylated
histones are generally incorporated into the paternal
pronucleus (Santos et al. 2002; Adenot et al. 1997). Then
immediately, histones are deacetylated by HDACs and
monomethylated (Lepikhov and Walter 2004; Erhardt et al.
2003) with specific histone methyltransferase, including
SET 7/9 for H3K4me (Olek and Walter 1997), G9a and
ERG-associated protein with SET domain (ESET) for
H3K9me (Beaujean et al. 2004; Dodge et al. 2004), and
Ezh2 free unknown HMTase for H3K27me. These mo-
difications may be of help to protect the specific regions
from DNA demethylation. Recent data suggest that in
maternal pronucleus protection against DNA methylation is
related to H3K9me2 (Erhardt et al. 2003). Before blastocyte
stage when one cell develops to eight-cell stage, passive
demethylation takes place due to failure of maintenance
methylation that usually follows the DNA replication.
Oocytes containing DNMT1o leave the nucleus for first
three cleavage divisions (Carlson et al. 1992; Bestor 2000),
but at eight-cell stage it is only present in the nucleus
(Mertineit et al. 1998). After that in 16-celled embryo,
morula and blastocyte DNMT1o again appeared in cyto-
plasm. Cellular maintenance DNMT1 is expressed after
implantation (Howell et al. 2001). Remodeling of histone
during passive DNA demethylation is not clear. Firstly,
different epigenetic lineages appear in blastocyst as
embryonic and extraembryonic lineage, which are pluripo-
tent. Oct4 and Sox2 express in preimplantation stage which
maintains the pluripotenty of ES and Cdx2 express in
trophectoderm (TE). There are so many global differences
in DNA methylation and acetylation between two lineages.
H3K27me1, me2, and me3 more frequently found in ICM
than TE (Lepikhov and Walter 2004). DNA methyltrans-
ferases DNMT1, DNMT3a and DNMT3b, Ezh2, ESET,
and G9a (euchromatic H3K9 and perhaps H3K27 HMTase;
Dodge et al. 2004; Morgan et al. 2005) are important for
embryonic growth, not for TE lineage (Morgan et al. 2005).
After implantation, methylation levels increase in the
blastocyst inner cell mass, which is the progenitor of the
embryo proper. Parent-of-origin-specific-imprinting marks
must be removed in primordial germ cells (PGCs) and
thereafter established according to the sex of the individual.
Evidence indicates that this demethylation might also be
active [removal of the methyl group from methylated DNA
with the help of DNA repair based mechanisms or by a
direct DNA demethylase] (Patra et al. 2008; Patra and Szyf
2008). After fertilization at 7.5 days, PGCs arise from

epiblast in the posterior primitive and enter the genital ridge
between 8.5 and 11.5 days (Morgan et al. 2005). Until
day 13.5, they contentiously proliferate and then enter
either meiotic prophase I (females) or mitotic arrest until
birth (males, see Fig. 1). In between 11.5 and 13.5 days,
most methyl marks are erased in imprinted genes and single
copy genes (Gehring et al. 2009). PGCs at this stage
display an overall increase in nuclear size, loss, or down-
regulation of linker histone H1, H3K9me3, H3K27me3,
H4/H2AR3me2s, H2A.Z, and H3R26me2, and the disap-
pearance or redistribution of factors that are associated with
facultative or constitutive heterochromatin (Sasaki and
Matsui 2008; Hemberger et al. 2009). During this process,
presence of DNMT1 indicates that it is an active rather than
passive demethylation process, and implicates for the
presence of a DNA demethylase (Patra et al. 2008; Morgan
et al. 2005). Transposable elements, like IAP and long
interspersed nuclear element (LINE) resist demethylation to
a variable extent (Rakyan et al. 2003). Methylation patterns
are reestablished at later stages during gametogenesis by de
novo methyltransferases.

Pluripotent cells are characterized by distinctive cellular
markers and functions that relate to their uncommitted state.
Evidence from various sources has indicated that chromatin
might generally be less compact and more “transcription-
permissive” in undifferentiated ES cells compared with
differentiated cells. Differentiation of mouse and human ES
cell increases histone H4 deacetylation in pericentromeric
region and becomes heterochromatin in nature (Keohane et
al. 1996). Heterochromatinization pattern in ES cell and
differentiated cell is different. In case of lymphocyte cell,
many inactive genes are present near centromeric hetero-
chromatin (Brown et al. 1999). But in ES cell, this type of
gene inactivation was not observed (Smale 2003). Bi-valent
chromatin structure, in which active and repressive marker
are closely arranged, is a special epigenetic signature in
stem cell. This bi-valent chromatin structure decided which
of the highly conserved genes in ES cell, including
transcription factors of the Sox, Fox (forkhead box protein),
Pax (paired box gene), Irx, and Pou families become switch
on or off in later stages of embryonic development. A gene
with H3K27me3 is expressed when jointly associated with
di- or tri-methylated H3K4 in ES cell, but in differentiated
cell, including T-cell and neural progenitor cell genes with
only H3K27me3 was expressed when remained in promoter
region of many non-transcribed developmental genes
(Spivakov and Fisher 2007). In ES cell, a multiprotein
complex repressor protein, PcG plays a crucial role in
maintenance of pluripotency. At least four PcG have been
identified. Among them polycomb repressor complex (PRC)
1 and 2 are important for ES cells function maintenance.
PRC2 mainly consists of embryonic ectoderm development
(EED), suppressor of zeste 12 and the HMTase enhancer
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EZH2, and catalyzes the methylation of H3K27. PRC1 can
bind with the methylated H3K27. Polycomb groups are
correlated with transcriptional repression of Nanog, Oct4,
and Sox2 which are the key controllers of Human ES cell
pluripotency. RING1A and RING1B which are main
proteins of PRC1 have ubiquitin ligase activity in case of
mono-ubiquitination of H2AK119 transcriptional regulator,
including Msx1 (muscle segment homeobox gene 1),
HoxA7, Gata4 are repressed by EED and RING1B which
are the key components of PRC2 and PRC1, respectively
(Spivakov and Fisher 2007). Other main important protein
groups are trithorax (trxG) group proteins, jumanji protein,
and SetDB1 proteins. Function of these proteins depends on
each other during ES cell development and differention.
TrxG proteins mainly proceed as transcriptional activator
protein. trxG has several groups including TAC1 (Trithorax
Acetylation Complex), SW1/SNF (SWItch/sucrose nonfer-
mentable), NURF, Ash1 (the absent, small or homeotic

discs1 gene), and MLL1–3 (mixed lineage leukemia1–3;
Ringrose and Paro 2004; Schuettengruber et al. 2007). TrxG
and PcG maintain transcriptional expression and repression
antagonistically by posttranslational modification of histone.
Two multiprotein complexes of trxG proteins have HMTase
activity. TAC1 group containing trithorax (Trx) protein
posseses both HATase and H3K4 HMTase activity (Petruk
et al. 2008). Another protein group, Ash1 methylates H3K4,
H3K9, H3K20, and H3K36. Human Trx homolog MLL1–3
group of trxG protein is responsible for H3K4 trimethylation
at human HOXA9 locus (Schuettengruber et al. 2007). The
PcG- and trxG-conserved group of proteins epigenetically
regulate several hundred important developmental genes
throughout the development, including abdA, AbdB in 2–6-
h embryo, Ubx in 2–6-h embryo, larval brain, and larval
third leg disc, tumor-infiltrating lymphocyte gene in embryo
and larval brain, slam (signaling lymphocytic activation
molecule) in Drosophila embryo; HoxD cluster in human

Fig. 1 Embryo development and epigenetic reprogramming cycle.
Epigenetic modifications take place in two phases during the embryo
development. Fertilization signals the reprogramming during preim-
plantation development. I-A In preimplantation development just after
fertilization, DNA demethylation takes place in male pronucleus but
female pronucleus remains unchanged. I-B Thereafter, both genomes
are passively demethylated, except at imprinted genes and some
transposons, for several rounds of cell division. This demethylation
occurs due to disruption of maintenance methylation mechanism. I-C
The genome is de novo methylated around the blastocyst stage, which

responsible for differentiation of the first two lineages of the blastocyst
stage, the inner cell mass (ICM) and the trophectoderm. All embryonic
lineages differentiate from the ICM. II-A PGCs arise from somatic
tissue and develop into mature gametes during gametogenesis stage.
Their genome undergoes DNA demethylation in the embryo between
day 11.5 and 12.5, including all imprinted genes. II-B Following
demethylation, the genomes of the gametes are de novo methylated
and acquire imprints; this process continues up to 18.5 in males and in
maturing oocytes before ovulation in females

Clin Epigenet (2011) 2:27–53 39



adult fibroblasts and Hox cluster in embryonic placenta and
adult tissue, etc. (Hekimoglu and Ringrose 2009). In
Drosophila or fly, they bind to the PcG and trxG response
elements; but in human, very little is known about these
regions (Hekimoglu and Ringrose 2009; Papp and Müller
2006). In ES cell, PcG protein complex and TrxG protein
maintain the “bivalent chromatin structure”. EZH2 catalyzes
H3K27Me3 and the ASH1 and Trx/MLL proteins catalyze
H3K4Me3 in ES cell which are determined the target gene
will become silent or active in differentiated cell (Hekimoglu
and Ringrose 2009). Misbalance in PcG/TrxG maintenance
may cause cancer or several rare genetic diseases. Mutation
in TrxG protein may cause leukemogenesis. After mutation,
a TrxG protein lin-59 that maintained the transcription of
Hox gene lin-39 is aberrantly activated. A LIN-39/CHE-20
(TALE-class Hox cofactor) complex binds to the promoter of
pro-apoptotic BH3-only gene egl-1 and inhibits the tran-
scription and allows survival of ventral cord (VC) neuron.
Downregulation of LIN-39 disrupted the regulatory mecha-
nism by allowing egl-1/BH3 transcription and may be the
cause of immature VC neuron death. LIN-39 overexpres-
sions due to mutation suppress the normal apoptosis and
promote leukemia (Potts et al. 2009). With PcG and TrxG
protein, jumanji group proteins are required for ES cells
differentiation and normal development. Large family of
jumanji-domain-containing proteins functions as histone
lysine demethylases, although functions of remaining few
members are unknown (Glass and Rosenfeld 2008)—
jumanjiC domain-containing histone demethylase (JHDMs)
such as JHDM 2A, 2C, 2B, and 2D are Fe(II) and α-
ketoglutarate-dependent protein that oxygenated methylated
histone lysine residue (Hamada et al. 2009). The UTX
(ubiquitously transcribed tetratricopeptide repeat X), UTY
(ubiquitously transcribed tetratricopeptide repeat Y) and
JMJD3 protein also are jumanjiC domain-contaning protein,
capable to demethylating H3K27Me3 at promoter region and
activate the gene expression. They are highly expressed in
ES cell and maintained demethylation of the Hox gene
promoter region and help Hox gene expression. They have a
significant role in X-chromosome inactivation and mainte-
nance (Karl et al. 2007; Sen et al. 2008). Jumanji and ARID
domain containing protein JARID2 forms a stable complex
with PRC2 that is responsible for recruit PcG protein to
heterologous promoter in ES cell. PCR2-JARID2 complex is
required for ES cell differentation (Pasini et al. 2010).
JHDMs has role in cancer development. It was shown that
JMJD2C is correlated with the abnormal growth of the
oesophagal squamous cancer and JMJD2A, 2B, and 2C are
involved in prostate cancer (Hamada et al. 2009). Apart from
these proteins, a H3K9 methyltransfarase named as SetDB1
has a very important role in maintaining ES cell develop-
ment and cell differentiation. Thirty-eight percent of
repressed gene in ES cell chromosome is co-occupied by

SetDB1 and PcG subunit Suz12 and repress the expression
of genes involve in cell differentiation. SetDB1 act as a
transcriptional repressor through H3K9Me3 (Bilodeau et al.
2009). Recent study suggests that at leatst two pathways
control the ES cell pluripotency and self renewal activity.
One is control by Nanog, Oct4, and Sox2 group which are
related with up or down-regulation of 474 genes. Another
group has estrogen-related receptor-β (Esrrb), T-box 3
(Tbx3), T-cell lymphoma breakpoint 1 (Tcl1) and develop-
mental pluripotency-associated 4 (Dppa4) genes which
couple with up or down regulation of 272 genes (Spivakov
and Fisher 2007, see Fig. 2)

Molecular marks for identifying cancer stem cells

Classical analyses of carcinogenesis implicated that every cell
within a tumor can develop a new primary tumor, and this
reasoning formed the basis for most tumor therapies to the
present day (Pardal et al. 2003b). Current findings in the field
of tumor biology have suggested a stem-cell model of
carcinogenesis, which assumes that only a subset of tumor
cells are carcinogenic and are defined on their capability to
initiate tumor growth in serial transplantation models (Clarke
and Fuller 2006). These self-renewing cancer stem cells
(CSCs) or tumor-initiating cells (TICs) must not to be
confused with normal adult stem cells, which are pluoripotent
organ-specific cells that have the biological properties of self-
renewal and with each division they divided both progenitor
cells and at least one offspring that maintains the stem-cell
phenotype. There are a few similarities but the main
mechanism of SC and CSC formation are different. There
are three different models behind cancer propagation includ-
ing the CSC model, the clonal evolution model, and the
interconversion model. But it is not precisely restricted that a
cancer cell followed only one model. It may follow more than
one pathway which finally depends on genetic or epigenetic
changes in the cancer cell (Shackleton 2010a). Mainly two
theories behind the formation of CSC are related to epigenetic
changes. One theory is that CSCs arise from already
differentiated cell after some alteration and epigenetic changes
(Reya et al. 2001); another is transformation of immature
tissue stem cell or progenitor cell in tumor cell (Pardal et al.
2003a; Miyoshi et al. 2009). Normal adult stem cells and
cancer cells occur from same origin/tissue and sometime
express same markers. Human mammary stem cells and some
breast cancers, both lack CD24 expression (Al-Hajj et al.
2003; Lim et al. 2009). Human acute myelogenous leukemia
stem cells and normal human hematopoietic stem cells both
are supplemented with the CD34+CD38− bone marrow
markers and also lack CD24 expression (Lapidot et al.
1994; Shackleton 2010b). Although normal and cancer stem
cells arise from same tissue and sometimes express same
markers, it is not mandatory that they always express same
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markers. As for example, in induced mouse leukemia which
was induced by MLL-ENL (MLL-eleven nineteen leukemia),
MLL-AF9, and MOZ-TIF2 (monocytic leukemia zinc finger-
transcriptional mediators/intermediary factor 2) fusion gene
product had more similar phenotype to differentiated hemato-
poietic cells than hematopoietic stem cells, and tumorigenic
mammary cancer cells arising in mouse contain markedly
lower levels of CD29 expression than normal mouse mammary
stem cells (Shackleton 2010b). Several studies show that many
kind of developmental genes including Nanog, Ssea4 (Stage-
Specific Embryonic-Antigen-4), Tra-1–60 (Tumor Rejection
Antigen 1–60), and Tra-1–80 expression are misbalanced in
esophageal, stomach, colorectal, liver, pancreatic, and chol-
angiocellular cancer cells. These cancer cells are not able to
differentiate in different kind of cell line but when induced
pluoripotent stem (iPS) cells were prepared from this type of
cancer cell by inducing those genes that are able to
differentiate in ectoderm, mesoderm, and endoderm. These
iPS cells are capable to maintain almost all epigenetic status
including methylation of DNA strands and the H3K4 residue

in promoter regions of pluripotency-associated genes such as
NANOG (Miyoshi et al. 2009). More examples of such
epigenetic differences that are markedly observed in various
developmental and cancer cells are provided in Table 1 and
references 108–157 (cited in the Table).

Evidences are accumulating in favor of putative marker
candidates for cancers, including prostate TICs having
CD44, while the normal prostate stem cell lies within the
basal compartment (Tang et al. 2007). Various subpopula-
tions have been delineated as putative prostate TICs on the
basis of various cell-surface markers (Signoretti and Loda
2006). For instance, since most prostate tumors resemble
luminal cells (CK8+/18+AR+CD44−p63−), it had been
proposed that prostate TICs are due to the dedifferentiation
and transformation of luminal cells (Nagle et al. 1987; Liu
et al. 1999). Keratin profile and intrinsic androgen
independence, respectively, are other modes for analyz-
ing prostate cancer including the transit-amplifying cell
and basal cell. Characterization of prostate TICs have
been most promising with a basal cell subpopulation of

 = downragulation and = expression. 

Fig. 2 During early embryogenesis, master transcriptional regulatory
genes and signaling pathways play essential roles in cell line
differentiation. Esrrb, Tbx3 and Tcl1, as well as Nanog, Oct4 and
Sox2, are required for self-renewal property of ES cells. Oct4 is
required to prevent trophectodermal differentiation; Nanog and Sox2
appear to be global regulators that repress multiple differentiation
programs, whereas Esrrb, Tbx3 and Tcl1 are essential to block the
differentiation into epiblast-derived lineages. These regulators couple
with transcriptional network and control the expression ofdifferent
genes through distinct molecular pathways. Downregulation of

Nanog, SOX2, ESRRB, Tbx3 or TCL1 leads to the immediate
induction of Otx2 (orthodenticle homolog 2), Pitx2 (paired-like
homeodomain transcription factor-2), Sox18 (SRY (Sex determining
region Y)-box 18), and probably additional genes, which help in the
differentiation of cell lineages in epiblast. Tead4 expresses when Oct4,
Nanog and Sox2 are repressed. Tead4 expression is responsible for
Cdx2 gene expression that is nesessary for placenta development.
Nanog directly repress GATA6, which results in repression of GATA4,
thereby inhibiting primitive endoderm differentiation
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CD44+α2β1CD133+ cells, which possess remarkable in
vitro proliferative potential and can reconstitute prostatic-
like acini in immune-compromised male nude mice with
concomitant expression of differentiation markers, such
as AR, PAP, and K18. Prostate TICs typically represent
0.01% to 0.5% of the total cell population and they appear to
express many of the same markers as PSCs. Ultimately, the
characterization of TICs and the nature of their involvement in
prostatic carcinogenesis remain promising areas of investigation
(Joshua et al. 2008; van Leenders and Schalken 2001;
Verhagen et al. 1992; De Marzo et al. 1998; Bonkhoff and
Remberger 1996; Richardson et al. 2004b). It has been
demonstrated that prostate TICs are, like PSCs, negative
for androgen receptor expression and predominantly
express the basal cell cytokeratins (Richardson et al.
2004b; Collins et al. 2005) and express higher mRNA
levels of several ESCs genes, including OCT3/4, BMI1,
β-catenin, and SMOOTHENED (Lawson et al. 2007;
Patrawala et al. 2006). Deleted in liver cancer 1 (DLC1), a
gene that encodes a Rho GTPase activating protein, is a
tumor suppressor gene in liver and other carcinomas.
Methylation of DLC1 gene increases in the prostate of
older man and expression of the DLC1 gene decreased.
This kind of gene repression may involve in early stage of
prostate cancer formation. From various studies, it is
revealed that hypermethylation is associated with early
stage cancer development and hypomethylation help in
progression of prostate cancer (Jaenisch and Bird 2003;
Feinberg et al. 2006; Jones and Baylin 2007; Patra et al.
2008; Schulz and Hoffmann 2009b).

Signaling cascades from membrane to nucleus

CSC's behaviors are constantly affected by external signals
from their niche, including neighboring stromal, immune,
and non-stem tumor cells. Extracellular and paracrine
effects are mediated commonly from cell-surface ligand-
receptor systems. Accumulating evidence has demonstrated
that cancer cells and CSC functions hinge on major
receptor-mediated pathways. For example, receptor tyrosine
kinases (RTK) family mediates the effects of multiple
oncogenic growth factor pathways, among which the EGFR
(epidermal growth factor receptor) is one of the best
characterized in cancers, including prostate cancer. Malig-
nant cancer cells frequently have increased EGFR signaling
as a result of either amplified EGFR copy number or
reciprocal crosstalk with TGF-β. The signal initiated by
RTKs is transduced and amplified through downstream
molecule cascades, such as Ras-MAPK, Ras-Raf-MEK-
ERK-Elk, and the pro-survival AKT/phosphoinositide 3-
hydroxykinase pathway [for an outstanding review, see
Patra 2008a, 2008b; for abbreviations, like EGFR etc. see
Supplementary Table 1].

Embryonic signaling, programming, and re-derived
pluripotency

Role for OCT4

The POU homeodomain containing, class 5, transcription
factor 1; POU5F1 (OMIM 164177), alternatively known
as octamer-binding transcription factor 3; OCT3/OTF3
and octamer-binding transcription factor 4; OCT4/OTF4
have been shown to be important regulators of tissue-
specific gene expression in early mammalian develop-
ment and in lymphoid and pituitary differentiation.
Takeda et al. (1992) amplified POU-related sequences in
human pancreatic islet mRNA by PCR and degenerating
oligonucleotide primers specific for the homeodomain
(Takeda et al. 1992). The sequences of both of the PCR
products were identical to human OCT1 (OMIM 164175),
and two others were homologous to mouse Oct3. They
showed that OCT3 gene spans about 7 kb and consists of
five exons, and two forms of OCT3 mRNA are expressed
in adult tissues as a result of alternative splicing—OCT3A
and OCT3B. OCT3A and OCT3B are composed of 360
and 265 amino acids, respectively, of which the 225 amino
acids at the COOH-termini are identical. The sequence of
human OCT3A showed 87% amino acid identity with
mouse Oct3. Reverse transcriptase PCR showed low level
of expression of both OCT3A and OCT3B mRNA in all
adult human tissues examined (Takeda et al. 1992). The
gene is specifically expressed in embryonic stem (ES)
cells but can also be detected in adult stem cells such as
bone marrow-derived mesenchymal stem cells. Expression
of Oct4 is downregulated during stem-cell differentiation.
Oct4 plays a critical role in maintaining pluripotency and
self-renewal of ES cells (Niwa et al. 2000), but its utility
as a marker of pluripotency has been challenged recently
by studies suggesting that it is expressed in a variety of
differentiated cells, including peripheral blood mononu-
clear cells. Requirements for Oct3/4 in the maintenance of
developmental potency in murine embryonic stem (ES)
cells were tested by conditional expression and repression
(Niwa et al. 2000). Although transcriptional determination
has usually been considered as a binary on–off control
system, Niwa et al. (2000) found that the precise level of
Oct3/4 governs three distinct fates of ES cells (Niwa et al.
2000). A less-than-twofold increase in expression causes
differentiation into primitive endoderm and mesoderm. In
contrast, repression of Oct3/4 induces loss of pluripo-
tency and dedifferentiation to trophectoderm. Thus, a
critical amount of Oct3/4 is required to sustain stem cell
self-renewal, and up- or downregulation induces diver-
gent developmental programs. Those findings established
a role for Oct3/4 as a master regulator of pluripotency that
controls lineage commitment and illustrated the sophistication
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of critical transcriptional regulators. However, detection of
Oct4 expression by RT-PCR could be prone to artifacts
generated by pseudogene transcripts. We therefore suggest to
analyze the sequences of human Oct4 and its pseudogenes
and designed PCR primers that can avoid false-positive
detection of Oct4 expression. Oct3 plays many other roles,
including cardiac development in the early mouse embryo
(Zeineddine et al. 2006).

Mammalian forkhead box protein Foxd3 and Oct4
bound identical regulatory DNA sequences in the osteo-
pontin (SPP1; OMIM 166490) promoter (Guo et al. 2002).
It was observed that Oct4 interacted directly with Foxd3,
and osteopontin promoter was activated by both of the
proteins, either independently or in combination. However,
the activation of both Foxa1 (OMIM 602294) and Foxa2
(OMOM 600288) promoters by Foxd3 was inhibited by co-
expression of Oct4 (Guo et al. 2002). More significantly,
Oct4 neither bound to the forkhead box in the FoxA1 or
FoxA2 promoters that FoxD3 bound to, nor did it activate
transcription from these promoters. Significantly, Oct4
blocked the transcriptional activation of the FoxA1 and
FoxA2 promoters by FoxD3. This repression was specific
for FoxD3. Oct4 did not repress the activation of the FoxA1
or FoxA2 promoters by FoxA1 or FoxA2 proteins.
Immunoprecipitation studies found that Oct-4 could phys-
ically interact with the DNA binding domain of FoxD3,
which implies that when Oct-4 is not binding to DNA it can
function as a corepressor to inhibit the lineage-specific
promoters used here. It is possible that the dimerization and
conformational changes that Oct4 undergoes when it binds
DNA prevent it from acting as a corepressor of FoxD3.
When Oct-4 is not binding DNA, then it can bind to the
FoxD3 DNA-binding domain and repress FoxD3 transcrip-
tional activation. Two possible mechanisms for the inhibi-
tion of FoxD3 activation of FoxA1 or FoxA2 exist. First,
Oct4 could inhibit FoxD3 activation of the FoxA1 or
FoxA2 promoters by blocking binding of FoxD3 to the
Forkhead Box sequence in those promoters. Second, Oct-
4 could function as a true corepressor by decreasing
FoxD3 interaction with the transcriptosome apparatus. In
either case, this inhibition prevents inappropriate activa-
tion of endodermal promoters in a totipotent ES cell.
When Oct4 is downregulated after gastrulation and the
initial formation of the primitive endoderm, then FoxA1
and FoxA2 can be activated appropriately by the FoxD3,
which is still bound. Once activated, the proteins these
promoters generate will maintain expression throughout
organogenesis even as FoxD3 is downregulated (Guo et
al. 2002). Oct4 is one of the partners in the protein
network in which Nanog (OMIM 607937) operates in
mouse ES stem cells (Wang et al. 2006). The network is
highly enriched with nuclear factors that are individually
critical for maintenance of the ES cell state and co-

regulated on differentiation. The network is linked to
multiple co-repressor pathways and is composed of
numerous proteins whose encoding genes are putative
direct transcriptional targets of its members and this
network seems to operate as a cellular module dedicated
to pluripotency (Wang et al. 2006).

Mice with targeted disruption of the Oct4, or Oct3 gene
were generated by homologous recombination in ES cells
(Nichols et al. 1998). Oct4-deficient embryos developed to
the blastocyst stage with inner cell mass cells that were
restricted to differentiation along the extra-embryonic
trophoblast lineage, hence, were not pluripotent. Tropho-
blast proliferation was not maintained in Oct4 −/− embryos
in absence of a true inner cell mass. However, expansion of
trophoblast precursors was restored by an Oct4 target gene
product, fibroblast growth factor-4 (FGF4, OMIM 164980).
Therefore, Oct4 also determines paracrine growth factor
signaling from stem cells to the trophectoderm, and the
activity of Oct4 is essential for the identity of the
pluripotential founder cell population in the mammalian
embryo. In a very recent demonstration, Tay et al. (2008)
showed the existence of many naturally occurring miRNA
targets in the amino acid coding sequences of the mouse
Nanog, Oct4, and Sox2 genes and concluded that the
abundance of coding sequence-located miRNA targets,
some of which can be species-specific (Tay et al. 2008).

Retrovirus-mediated transfection of four transcription
factors, Oct3/4, Sox2 (OMIM 184429), c-Myc (OMIM
190080), and Klf4 (OMIM 602253) into mouse fibroblasts
generated induced pluripotent stem (iPS), from mouse
fibroblasts (Takahashi and Yamanaka 2006). Subsequently,
selection for Fbx15 (OMIM 609093) expression showed
that these iPS cells are similar to embryonic stem (ES) cells
in morphology, proliferation and teratoma formation.
However, iPS cells are different with regard to DNA
methylation patterns and gene expression, and fail to
produce adult chimeras. Interestingly, selection for Nanog
expression results in germline-competent iPS cells with
increased ES cell-like gene expression and DNA methyla-
tion patterns compared with Fbx15 iPS cells (Okita et al.
2007). The transgenes were strongly silenced in Nanog iPS
cells. The generation of mouse iPS cells by repeated
transfection of two expression plasmids, one containing
the cDNAs of Oct3/4, Sox2, and Klf4 and the other
containing the c-Myc cDNA, into mouse embryonic
fibroblasts resulted in iPS cells without evidence of plasmid
integration. These iPS cells produced teratomas when
transplanted into mice and contributed to adult chimeras.
The production of these virus-free iPS cells, albeit from
embryonic fibroblasts, addresses a critical safety concern
for potential use of iPS cells in regenerative medicine
(Morgan et al. 2005). The adult mouse neural stem cells
express higher endogenous level of Sox2 and c-Myc than
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embryonic stem cells and that exogenous Oct4 together
with either Klf4 or c-Myc is sufficient to generate iPS cells
from neural stem cells (Kim et al. 2008).

Independently, by another group, it was demonstrated
that the transcription factors Oct4, Sox2, c-Myc, and
Klf4 can induce epigenetic reprogramming of a somatic
genome to an embryonic pluripotent state (Wernig et al. 2007).
Fibroblasts that had reactivated, in contrast to selection for
Fbx15 activation (Takahashi and Yamanaka 2006), the
endogenous Oct4 (Oct4-neo) or Nanog (Nanog-neo) loci
grew independently of feeder cells, expressed normal
Oct4, Nanog, and Sox2 RNA and protein levels, were
epigenetically identical to ES cells by a number of
criteria. Four factors, OCT4, SOX2, NANOG, and
LIN28 (OMIM 611043), were found sufficient to
reprogram human somatic cells to pluripotent stem cells
that exhibited the essential characteristics of embryonic
stem cells (Yu et al. 2007a). These induced pluripotent
human stem cells have normal karyotypes, express
telomerase activity, express cell-surface markers and genes
that characterize human ES cells, and maintain the
developmental potential to differentiate into advanced
derivatives of all three primary germ layers (Yu et al.
2007a). Using Oct4, Sox2, Klf4, and Myc iPS cells
derived from fetal, neonatal, and adult human primary
cells, including dermal fibroblasts isolated from a skin
biopsy of a healthy research subject (Park et al. 2008).
Human iPS cells resemble embryonic stem cells in
morphology and gene expression profile and in the
capacity to form teratomas in immune-deficient mice.
It was suggested that defined molecular components can
reprogram human cells to pluripotency. A method was
established to generate patient-specific cell lines in
culture (Park et al. 2008). Stadtfeld et al. (2008)
generated mouse iPS cells from fibroblasts and liver cells
by using nonintegrating adenoviruses transiently express-
ing Oct4, Sox2, Klf4, and c-Myc (Stadtfeld et al. 2008).
These adenoviral iPS cells showed DNA demethylation
characteristic of reprogrammed cells, expressed endogenous
pluripotency genes, formed teratomas, and contributed to
multiple tissues, including the germ cell line, in chimeric
mice.

Role for NANOG

Homeobox transcription factor NANOG (OMIM
607937). Embryonic stem (ES) cells derived from the
inner cell mass (ICM) of blastocysts grow infinitely
while maintaining pluripotency. Lif (OMIM, 159540)
can maintain self-renewal of mouse ES cells through
activation of Stat3 (OMIM 102582), but is dispensable
for maintenance of ICM and human ES cells. In search
of a critical factor(s) that underlies pluripotency in both

ICM and ES cells, Mitsui et al. (2003) performed an in
silico differential display and identified several genes
specifically expressed in mouse ES cells and preimplan-
tation embryos (Mitsui et al. 2003). One of them, encoding
a homeoprotein, the authors designated Nanog (from “Tir
Na Nog,” the mythologic Celtic land of the ever young)
was capable of maintaining ES cell self-renewal indepen-
dently of Lif/Stat3. The mouse Nanog cDNA contains an
open reading frame encoding a 305-amino acid polypep-
tide and has a long 3-prime untranslated region containing
a B2 repetitive element. The predicted Nanog protein
contains a homeobox domain that is most similar to those
of the Nk2 gene family (see 606727). The human Nanog
protein (FLJ12581) shares 52% overall amino acid identity
with the mouse protein and 85% identity in the homeo-
domain. Both human and mouse Nanog contain trp-rich
repeats, in which trp-x-x-x is repeated eight and ten times,
respectively. Human Nanog contains an Alu repetitive
element in the 3-prime untranslated region. EST database
searching identified clones corresponding to human Nanog
in libraries from NT2 human teratocarcinoma cells, germ
cell, and testis tumors, marrow, and other tumors. No EST
clones were detected in libraries from normal somatic
tissues. The NANOG gene contains four exons and spans
7 kb (Hart et al. 2004). The human NANOG protein
contains 305 amino acids (Chamber et al. 2003; Chambers
et al. 2007; Clark et al. 2004). There are three splice
variants of mouse Nanog (Hart et al. 2004). The longest
variant encodes a 305-amino acid protein, and both shorter
variants encode a 279-amino acid protein. RT-PCR
detected Nanog expression in undifferentiated mouse
ES cells and embryonal carcinoma cells. In preimplan-
tation embryo, expression was detected in morula and
blastocysts, but little is known about how Nanog
expression is regulated. Nanog gene is transcribed under
the control of a regulatory region that lies within 332 bp
upstream of the transcriptional start site. Fox D3
(Forkhead Box Protein-D3) (Pan et al. 2006), Oct3,
and Sox2 are bind to the Nanog promoter region (Kuroda
et al. 2005) and positively regulate the transcription of
Nanog and TCF3 (Transcription factor 3, a transcription
factor that functions downstream of the Wnt pathway), and
p53 (Lin et al. 2005) negatively regulate the Nanog
transcription after binding to the promoter region. Leuke-
mia inhibitory factor and bone morphogenetic protein
(Matsuda et al. 1999) signaling and their downstream
effectors signal transducer and activator of transcription-3
(Matsuda et al. 1999; Suzuki et al. 2006) and T
(Brachyury, a novel family of putative transcription factor)
may also be involved in Nanog regulation (Suzuki et al.
2006). Expression was present after implantation, but it
was downregulated after embryonic day 8.5. Low levels of
Nanog were detected in many adult mouse tissues. In situ
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hybridization showed Nanog confined to the inner cell
mass in mouse blastocysts. Expression was downregulated
as epiblast cells entered the primitive streak and under-
went epithelial to mesenchymal transition. After the late-
bud stage, expression of Nanog waned, and it was not
detectable by day 8. In developing gonads, Nanog
expression was detected at embryonic day 11.5 (Hart et
al. 2004).

Role for MYC

The MYC (OMIM 190080, Gene map locus 8q24.12-
q24.13), a proto-oncogene encodes a DNA-binding factor
that can activate and repress transcription. Via this
mechanism, MYC regulates expression of numerous target
genes that control key cellular functions, including cell
growth and cell cycle progression. MYC also has a critical
role in DNA replication. Deregulated MYC expression
resulting from various types of genetic alterations leads to
constitutive MYC activity in a variety of cancers and
promotes oncogenesis (Dominguez-Sola et al. 2007). The
x-ray structures of the basic/helix-loop-helix/leucine zipper
(bHLHZ) domains of MYC-MAX and MAD (OMIM
600021)-MAX heterodimers bound to their common DNA
target, the enhancer box (E box) hexanucleotide (5-prime-
CACGTG-3-prime) was determined (Lee et al. 1997). E-
box recognition by these two structurally similar transcrip-
tion factor pairs determines whether a cell will divide and
proliferate (MYC-MAX) or differentiate and become
quiescent (MAD-MAX). Deregulation of MYC has been
implicated in the development of many human cancers,
including Burkitt lymphoma (OMOM 113970), neuroblas-
tomas, and small cell lung cancers. Induction of MYC
promotes cell proliferation and transformation by activating
growth-promoting genes, including the ornithine decarbox-
ylase (ODC1) and CDC25A gene (Nair and Burley 2003).
MYC transcriptionally represses the expression of the
growth arrest gene (GAS1; 139185). A conserved MYC
structure, MYC box 2, is required for repression of GAS1
and for MYC induction of proliferation and transformation,
but not for activation of ODC1 (Lee et al. 1997). Over-
expression of MYC in colorectal cancers is a commonly
observed phenomenon. MYC oncogene is a target in
adenomatous polyposis coli (APC; 611731)—beta-catenin
(CTNNB1; OMIM 116806) signaling pathway (He et al.
1998a). They showed that expression of MYC is repressed
by wild-type APC and activated by CTNNB1, and that
effects are mediated through T-cell factor 4 (TCF4; OMIM
602228) binding sites in the MYC promoter (He et al.
1998a). Inactivating mutations in the APC gene or DNA-
hypermethylation of promoter found in most colorectal
cancers, cause aberrant accumulation of CTNNB1 which
then binds TCF4 causing increased transcriptional activa-

tion of unknown genes. MYC directly activates telomerase
by inducing expression of its catalytic subunit; telomerase-
reverse transcriptase (TERT) (Wu et al. 1999). MYC
activity regulates a pathway linking cell proliferation and
chromosome integrity in normal and neoplastic cells.
However, TERT-driven cell proliferation is not genopro-
tective because it is associated with activation of the MYC
oncogene (Wu et al. 1999). Human mammary epithelial
cells, which normally stop dividing in culture at 55 to 60
population doublings (PDs), were infected with human
TERT retrovirus at PD40 and maintained until PD250
(Wang et al. 2000). MYC induces transcription of the E2F1,
2 and 3 genes in mouse embryonic fibroblasts. For S phase
arrest and indication of apoptosis by MYC a cell requires
distinct E2F activities. The ability of Myc to induce S phase
was impaired in the absence of either E2f2 or E2f3 but not
E2f1 or E2f4 (Wang et al. 2000).

MYC physically interacts with SMAD2 (Mothers
against decapentaplegic homolog 2) and SMAD3, two
specific signal transducers involved in TGF-beta signaling.
Through its direct interaction with SMADs, MYC binds to
the SP1-SMAD complex on the promoter of the p15
(INK4B) gene, thereby inhibiting the TGF-beta-induced
transcriptional activity of SP1 and SMAD/SP1-dependent
transcription of the p15 (INK4B) gene. The oncogenic
MYC promotes cell growth and cancer development partly
by inhibiting the growth inhibitory functions of SMADs
(Feng et al. 2002). Gao et al. (2009) reported that the c-Myc
oncogenic transcription factor also regulate microRNAs
and stimulate cell proliferation, transcriptionally represses
miR23a (OMIM 607962) and miR23b (OMIM 610723),
resulting in greater expression of their target protein,
mitochondrial glutaminase in human P-493 B lymphoma
cells and PC3 prostate cancer cells. (Gao et al. 2009)

Animal model studies implicated the role of MYC in
embryonic development, tissue regeneration, and cancer.
Baudino et al. (2002) have reported the lethality of c Myc-
null embryos by embryonic day 10.5 with defects in growth
and in cardiac, neural development, defects in vasculo-
genesis, and primitive erythropoiesis, and compromised
differentiation and growth of yolk sac and embryonic stem
(ES) cells. c-Myc expression was required for the expres-
sion of Vegf, angiopoietin-1, angiopoietin-2, and
thrombospondin-1, and expression of Vegf partially rescued
the lethal defects (Baudino et al. 2002). A reversible
transgenic mouse model of pancreatic beta-cell oncogene-
sis, using a switchable form of the MYC protein depicted
that activation of MYC in adult, mature beta cells induced
uniform beta-cell proliferation but was accompanied by
overwhelming apoptosis that rapidly eroded beta-cell mass
(Pelengaris et al. 2002). Brief MYC inactivation appears to
cause epigenetic changes in tumor cells that render them
insensitive to MYC-induced tumorigenesis. The authors
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raised the possibility that transient inactivation of MYC
may be an effective therapy for certain cancers (Jain et al.
2002). Langenau et al. (2003) described the induction of
clonally derived T cell acute lymphoblastic leukemia in
transgenic zebrafish expressing mouse c-Myc under the
control of the zebrafish Rag2 promoter. This transgenic
model provided a platform for drug screens and genetic
screens aimed at identifying mutations that suppress or
enhance c-MYC-induced carcinogenesis (Langenau et al.
2003). In transgenic mice that conditionally overexpressed
Myc in liver cells, upon Myc activation, all transgenic mice
developed liver tumors and succumbed to invasive liver
cancers. Myc inactivation induced tumor regression and the
differentiation of tumor cells into normal liver cells. Their
tumorigenic potential remained dormant as long as Myc
remained inactive; Myc reactivation immediately restored
their neoplastic properties (Shachaf et al. 2004). Ruggero et
al. (2004) have generated transgenic mice that overex-
pressed translation initiation factor-4E, a downstream
effector molecule of myc signaling axis, and observed a
marked increase in tumorigenesis in the mice compared
with their wild type littermates (Ruggero et al. 2004).
Sansom et al. (2007) have simultaneously deleted both Apc
and Myc in the adult murine small intestine and observed
that loss of Myc rescued the phenotypes of perturbed
differentiation, migration, proliferation, and apoptosis,
which occur on deletion of Apc. Remarkably, this rescue
occurred in the presence of high levels of nuclear beta-
catenin. Array analysis revealed that Myc is required for the
majority of Wnt (OMIM 164820) target gene activation
following Apc loss (Sansom et al. 2007). Cells transformed
with panel of oncogenes, other than MYC, escaped
apoptosis when treated with small-molecule CDK1
(cyclin-dependent kinases 1) inhibitors. The inhibitor of
apoptosis protein survivin (BIRC5; 603352), a non-CDK
target, was required for the survival of cells overexpressing
MYC in MYC-transformed cells. Inhibition of CDK1 had
rapidly downregulated survivin expression and induced
MYC-dependent apoptosis (Goga et al. 2007). Soucek et al.
(2008) used a dominant-interfering Myc mutant to deter-
mine both the therapeutic impact and side effects of Myc
inhibition in a preclinical mouse model of Ras (OMIM
190020)-induced lung adenocarcinoma. They showed that
Myc inhibition triggers rapid regression of incipient and
established lung tumors, defining an unexpected role for
endogenous Myc function in the maintenance of Ras-
dependent tumors in vivo. Systemic Myc inhibition also exerts
profound effects on normal regenerating tissues. However,
these effects are well tolerated over extended periods and
rapidly and completely reversible. These data demonstrated the
feasibility of targetingMyc, a common downstream conduit for
many oncogenic signals, as an effective, efficient, and tumor-
specific cancer therapy (Soucek et al. 2008).

Role for hedgehog and wnt

The regulation of stem cells and in particular their
dysregulation in cancer is thought to occur through a
relatively small number of signaling pathways such as
Hedgehog and Wnt (Joshua et al. 2008). The name Wnt
was coined as a combination of Wg (wingless) and Int and
can be pronounced as “wint”. These pathways are all likely
to be co-regulated to maintain stem-cell homeostasis and
their dysregulation may be crucial to the emergence of a
TICs phenotype or morphological characteristics of more
advanced disease. The “Hedgehog” proteins are secreted
hydrophobic proteins that are made up of three signaling
genes Sonic hedgehog (Shh), Indian hedgehog, and Desert
hedgehog. Shh binds to the specific receptor, Patched, on
the cell surface. It ultimately activates an intracellular signal
transduction pathway activating the Gli (GLIoma-associated
oncogene homolog) family of transcription factors. This
family of transcription factors has multiple oncogenic effects:
(1) acceleration of proliferation rate by activation of regulators
of G1/S and G2/M phase progression, (2) induction of Bcl-2
(B-cell lymphoma 2) and direct inhibition of apoptosis, and
(3) activation of epithelial to mesenchymal transition-
promoting factors such as Snail, and enhancement of
invasiveness and metastasis. Furthermore, there are multiple
control mechanisms at the membrane level with a second
transmembrane protein, Smo (Smoothened), a cell-surface
hedgehog ligand sequestration protein, Hip (also known as
Hedgehog interacting protein), transcription repression
through Gli3 and a cytoplasmic network of proteins including
Fused and SuFu (Suppressor of Fused). The expression of
these Hedgehog proteins is high in the fetal human prostate
and decreases to low levels in adult prostate tissue where it is
thought to regulate the prostatic epithelial homeostasis by
inhibiting proliferation and promoting terminal differentiation
of ducts (Joshua et al. 2008; Hooper and Scott 2005; Wang et
al. 2003; Karhadkar et al. 2004; Shaw and Bushman 2007).
Similar to the Hedgehog pathway, the Wnt pathway is
implicated in directing embryonic growth, and governing
processes such as cell fate specificity, proliferation, polarity,
and migration. The wingless gene had originally been
identified as a recessive mutation affecting wing and haltere
development in Drosophila melanogaster. It was subse-
quently characterized as segment polarity gene in D.
melanogaster that functions during embryogenesis and also
during adult limb formation during metamorphosis. The INT
genes were originally identified as vertebrate genes near
several integration sites of mouse mammary tumor virus.
The following is a list of human genes that encode WNT
signaling proteins: WNT1, WNT2, WNT2B, WNT3,
WNT3A, WNT4, WNT5A, WNT5B WNT6 WNT7A,
WNT7B WNT8A, WNT8B, WNT9A, WNT9B, WNT10A,
WNT10B, WNT11, and WNT16. The Int-1 gene and the
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wingless genes were found to be homologous, with a
common evolutionary origin evidenced by similar amino
acid sequences of their encoded proteins. The canonical Wnt
pathway is characterized by binding of Wnt proteins,
through transmembrane receptors, to ultimately form a
complex with axin to induce its dephosphorylation. Axin
acts as a scaffold protein for a complex involving the APC
gene and beta-catenin, thereby facilitating phosphorylation
of both APC and beta-catenin by glycogen synthetase kinase
3B. As a consequence, cytoplasmic beta-catenin is trans-
located to the nucleus, where it associates with the T-cell
factor (Tcf) and lymphoid enhancer (LEF) family of tran-
scription factors. The beta-catenin/Tcf/LEF complex activates
transcription of target genes with relevance to carcinogenesis
including those that regulate cellular proliferation (c-MYC, c-
Jun, cyclinD1, cellular migration (uPA, CD44, MMP-7) and
cellular differentiation (FGF2, PPAR-gamma; Joshua et al.
2008; Ikeda et al. 1998; Kobayashi et al. 2000; Roose and
Clevers 1999; He et al. 1998b; Gounari et al. 2002; de la
Taille et al. 2003).

Conclusion and perspectives

Recent research in cancer biology, including prostate cancer
has provided support for the cancer stem-cell hypothesis
(Blum et al. 2009). Two important components of this
hypothesis are that tumors originate in stem or progenitor
cells as a result of dysregulation of the normally tightly
regulated process of self-renewal. As a result, tumors contain
and are driven by a cellular subcomponent that retains key
stem-cell properties including self-renewal, which drives
tumorigenesis and differentiation that contributes to cellular
heterogeneity. Advances in stem-cell technology have led to
the identification of stem cells in normal and malignant
tissues. The study of these stem cells has helped to elucidate
the origin of the molecular complexity of human cancers.
The cancer stem-cell hypothesis has important implications
for early detection, prevention, and treatment of prostate and
other cancers. Notably, both hereditary and sporadic prostate
cancers may develop through dysregulation of stem-cell self-
renewal pathways. These aberrant stem cells may provide
targets for the development of cancer prevention strategies.
Furthermore, because prostate cancer stem cells may be
highly resistant to radiation and chemotherapy, the develop-
ment of more effective therapies for this disease may require
the effective targeting of this cell population.

The origin of cancer stem cells is still debated, but the most
probable hypothesis is that they arise from normal stem cells
over time, in a process that parallels, and in fact underlies, the
slow and multi-step development of cancer from normal
tissues (Miller et al. 2005). The rationale for this theory is
that stem cells, through their longer life span, are the only
cells able to accumulate all the mutations necessary to

initiate cancer. Furthermore, tissue-specific stem cells and
CSCs are notably similar, sharing fundamental abilities of
self-renewal and differentiation (Martínez-Climent et al.
2006). DNA methylation and PRCs were analyzed by a
new experimental and analytical strategy using customized
high-density tiling arrays to investigate coordinated patterns
of gene expression (Gal-Yam et al. 2008). Both DNA
methylation and polycomb marks differentiate cancer cells
from their normal counterparts. Disruption of bivalent
chromatin profile in ES cell may also be responsible for
cancer formation. Control of gene expression by key
regulatory genes (Nanog, Oct4, Sox2, Esrrb, Tbx3, Tcl1,
and Dppa4), passive or active DNA methylation/demethyla-
tion and histone modification maintain pluripotency and self-
renewal character in ES cell. They also help in embryo
development and cell differention. Three major changes in
the epigenomic landscape distinguished the two cell types.
Developmentally, significant genes containing CpG islands
which are silenced by PRCs in the normal cells acquire
DNA methylation silencing and lose their PRC marks
(epigenetic switching). Because these genes are normally
silent this switch does not cause de novo repression but
might significantly reduce epigenetic plasticity. Two other
groups of genes are silenced by either de novo DNA
methylation without PRC occupancy (5mC reprogramming)
or by de novo PRC occupancy without DNA methylation
(PRC reprogramming). These data suggested that the two
silencing mechanisms act in parallel to reprogram the cancer
epigenome and that DNA hypermethylation may replace
polycomb-based repression near key regulatory genes,
possibly reducing their regulatory plasticity. Any small
mistake in these vital control systems may cause cancer.
Unlike genetic alterations, epigenetic changes are potentially
reversible. The large-scale development of small-molecule
inhibitors of DNA and histone-modifying enzymes is now in
full swing. Clear information about epigenetic altaration
makes a glorious path in cancer biology research. In the
clinic, the success of HDAC inhibitors and DNA demethylat-
ing agents like aza cytidine as anti-cancer drugs demonstrates
“proof of principle” of this approach and provides great hope
for the development of a more comprehensive portfolio of
“epigenetic drugs” in the future.

Acknowledgements The work was done, in part, during one of the
authors (SKP) stay at the Department of Experimental Medicine,
University of Parma, Italy. Thanks are due to MHRD, Government of
India, for financial assistance for conducting cancer epigenetics research
in the NIT-Rourkela. We are grateful to the two unanimous reviewers for
critically evaluating the manuscript. We apologize for many other
important contributions that we have not been able to include and discuss.

Conflict of Interest The authors declared that they don’t have any
financial relationship or conflict with the organization that sponsored the
research.

Clin Epigenet (2011) 2:27–53 47



References

Adenot PG, Mercier Y, Renard J-P, Thompson EM (1997) Differential
H4 acetylation of paternal and maternal chromatin precedes DNA
replication and differential transcriptional activity in pronuclei of
1-cell mouse embryos. Development 124:4625–4625

Aguilera O, Fraga MF, Ballestar E, Paz MF, Herranz M, Espada J, Garcia
JM, Munoz A, Esteller M, Gonzalez-Sancho JM (2006) Epigenetic
inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in
human colorectal cancer. Oncogene 25:4116–4121

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF
(2003) Prospective identification of tumorigenic breast cancer
cells. Proc Natl Acad Sci USA 100:3983–3988

Alonso L, Fuchs E (2003) Stem cells of the skin epithelium. Proc Natl
Acad Sci USA 100(Suppl 1):11830–11835

Barco R, Garcia CB, Eid JE (2009) The synovial sarcoma-associated
SYT-SSX2 oncogene antagonizes the polycomb complex protein
Bmi1. PLoS ONE 4(4):e5060

Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean
KH, White EL, Davis AC, Ihle JN, Cleveland JL (2002) cMyc is
essential for vasculogenesis and angiogenesis during development
and tumor progress. Genes Dev 16:2530–2543

Beaujean N, Taylor J, Gardner J, Wilmut I, Meehan R, Young L
(2004) Effect of limited DNA methylation reprogramming in the
normal sheep embryo on somatic cell nuclear transfer. Biol
Reprod 71:185–193

Bedford MT, Clarke SG (2009) Protein arginine methylation in
mammals: who, what, and why? Mol Cell 33(1):1–13

Bedford MT, van Helden PD (1987) Hypomethylation of DNA in
pathological conditions of the human prostate. Cancer Res
47:5274–5276

Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J,
Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A,
Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin
structure marks key developmental genes in embryonic stem
cells. Cell 125:315–326

Bestor TH (2000) The DNA methyltransferases of mammals. Hum
Mol Genet 9:2395–2402

Bilodeau S, Kagey MH, Frampton GM, Rahl PB, Young RA (2009)
SetDB1 contributes to repression of genes encoding develop-
mental regulators and maintenance of ES cell state. Genes Dev
23:2484–2489

Blum R, Gupta R, Burger PE, Ontiveros CS, Salm SN, Xiong X,
Kamb A, Wesche H, Marshall L, Cutler G, Wang X, Zavadil J,
Moscatelli D, Wilson EL (2009) Molecular signatures of prostate
stem cells reveal novel signaling pathways and provide insights
into prostate cancer. PLoS ONE 4(5):e5722

Bonkhoff H, Remberger K (1996) Differentiation pathways and
histogenetic aspects of normal and abnormal prostatic growth: a
stem cell model. Prostate 28:98–106

Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG (1999)
Dynamic repositioning of genes in the nucleus of lymphocytes
preparing for cell division. Mol Cell 3:207–217

Brown CE, Lechner T, Howe L, Workman JL (2000) The many HATs
of transcription coactivators. Trends Biochem Sci 25:15–19

Büssing I, Slack FJ, Großhans H (2008) let-7 microRNAs in
development, stem cells and cancer. Trends Mol Med 14
(9):400–409

Caldwell GM, Jones C, Gensberg K, Jan S, Hardy RG, Byrd P,
Chughtai S, Wallis Y, Matthews GM, Morton DG (2004) The
Wnt antagonist sFRP1 in colorectal umorigenesis. Cancer Res
64:883–888

Calvanese V, Horrillo A, Hmadcha A, Suarez-Alvarez B, Fernandez
AF, Lara E, Casado S, Menendez P, Bueno C, Garcia-Castro J,
Rubio R, Lapunzina P, Alaminos M, Borghese L, Terstegge S,

Harrison NJ, Moore HD, Brüstle O, Lopez-Larrea C, Andrews
PW, Soria B, Esteller M, Fraga MF (2008) Cancer genes
hypermethylated in human embryonic stem cells. PLoS ONE 3
(9):e3294

Carlson LL, Page AW, Bestor TH (1992) Properties and localization
of DNA methyltransferase in preimplantation mouse embryos:
implications for genomic imprinting. Genes Dev 6:2536–2541

Chamber I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S,
Smith A (2003) Functional expression cloning of Nanog, a
pluripotency sustaining factor in embryonic stem cells. Cell
113:643–655

Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M,
Vrana J, Jones K, Grotewold L, Smith A (2007) Nanog
safeguards pluripotency and mediates germline development.
Nature 450:1230–1234

Chi P, Allis CD, Wang GG (2010) Covalent histone modifications—
miswritten, misinterpreted and mis-erased in human cancers. Nat
Rev Cancer 10:457–469

Cho WCS, Chow ASC, Au JSK (2009) Restoration of tumour
suppressor hsa-miR-145 inhibits cancer cell growth in lung
adenocarcinoma patients with epidermal growth factor receptor
mutation. Eur J Of Cancer 45:2197–2206

Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as
inhibitors of DNA methylation: mechanistic studies and their
implications for cancer therapy. Oncogene 21(35):5483–5491

Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu S,
Zdravkovic T, Llic D, Genbacev O, Fisher S, Krtolica A, Lanza
R (2008) Human embryonic stem cell lines generated without
embryo destruction. Cell Stem Cell 2:113–117

Clark AT, Rodriguez RT, Bodnar MS, Abeyta MJ, Cedars MI, Turek PJ,
FirpoMT, Pera RAR (2004)Human STELLAR,NANOG, andGDF3
genes are expressed in pluripotent cells and map to chromosome
12p13, a hotspot for teratocarcinoma. Stem Cells 22:169–179

Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve.
Cell 124:1111–1115

Clayton AL, Hazzalin CA, Mahadevan LC (2006) Enhanced histone
acetylation and transcription: a dynamic perspective. Mol Cell
23:289–296

Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005)
Prospective identification of tumorigenic prostate cancer stem
cells. Cancer Res 65(23):10946–10951

Cooper CS, Foster CS (2009) Concepts of epigenetics in prostate
cancer development. Br J Cancer 100:240–245

Dammann R, Strunnikova M, Schagdarsurengin U, Rastetter M,
Papritz M, Hattenhorst UE, Hofmann HS, Silber RE, Burdach S,
Hansen G (2005) CpG island methylation and expression of
tumourassociated genes in lung carcinoma. Eur J Cancer
41:1223–1236

de la Taille A, Rubin MA, Chen MW, Vacherot F, de Medina SG,
Burchardt M, Buttyan R, Chopin D (2003) Beta-catenin-related
anomalies in apoptosis-resistant and hormone-refractory prostate
cancer cells. Clin Cancer Res 9:1801–1807

De Marzo AM, Nelson WG, Meeker AK, Coffey DS (1998) Stem cell
features of benign and malignant prostate epithelial cells. J Urol
160:2381–2392

Dobosy JR, Roberts JL, Fu VX, Jarrard DF (2007) The expanding role of
epigenetics in the development, diagnosis and treatment of prostate
cancer and benign prostatic hyperplasia. J Urol 177:822–831

Dodge JE, Kang YK, Beppu H, Lei H, Li E (2004) Histone H3-K9
methyltransferase ESET is essential for early development. Mol
Cell Biol 24:2478–2486

Dodge JE, Okano M, Dick F, Tsujimoto N, Chen T, Wang S, Ueda Y,
Dyson N, Li E (2005) Inactivation of Dnmt3b in mouse
embryonic fibroblasts results in DNA hypomethylation, chromo-
somal instability, and spontaneous immortalization. J Biol Chem
280:17986–17991

48 Clin Epigenet (2011) 2:27–53



Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M,
Galloway DA, Gu W, Gautier J, Dalla-Favera R (2007) Non-
transcriptional control of DNA replication by c-Myc. Nature
448:445–451

Erhardt S, Su IH, Schneider R, Barton S, Bannister AJ, Perez-Burgos
L, Jenuwein T, Kouzarides T, Tarakhovsky A, Surani MA (2003)
Consequences of the depletion of zygotic and embryonic
enhancer of zeste 2 during preimplantation mouse development.
Development 130:4235–4248

Esteller M (2007) Cancer epigenomics: DNA methylomes and histone
modification maps. Nat Rev Genet 8(4):286–298

Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G,
Peinado MA, Gonzalez S, Tarafa G, Sidransky D, Meltzer SJ,
Baylin SB, Herman JG (2000) Analysis of adenomatous
polyposis coli promoter hypermethylation in human cancer.
Cancer Res 60:4366–4371

Esteve PO, Chin HG, Benner J, Feehery GR, Samaranayake M,
Horwitz GA, Jacobsen SE, Pradhan S (2009) Regulation of
DNMT1 stability through SET7- mediated lysine methylation in
mammalian cells. Proc Natl Acad Sci USA 106:5076–5081

Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor
origin of human cancer. Nat Rev Genet 7(1):21–33

Feng X-H, Liang Y-Y, Liang M, Zhai W, Lin X (2002) Direct
interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-
beta-mediated induction of the CDK inhibitor p15(Ink4B). Molec
Cell 9:133–143

Gal-Yam EN, Egger G, Iniguez L, Holster H, Einarsson S, Zhang X,
Lin JC, Liang G, Jones PA, Tanay A (2008) Frequent switching
of Polycomb repressive marks and DNA hypermethylation in the
PC3 prostate cancer cell line. Proc Natl Acad Sci USA
105:12979–12984

Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, Ochi T, Zeller KI,
De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) c-Myc
suppression of miR-23a/b enhances mitochondrial glutaminase
expression and glutamine metabolism. Nature 458:762–765

Gehring M, Reik W, Henikoff S (2009) DNA demethylation by DNA
repair. Trends Genet 25(2):82–90

Glass CK, Rosenfeld MG (2008) Transcriptional regulatory machinery
and epigenetics at a crossroads. Curr Opin Cell Biol 20:249–252

Goga A, Yang D, Tward AD, Morgan DO, Bishop JM (2007)
Inhibition of CDK1 as a potential therapy for tumors over-
expressing MYC. Nat Med 13:820–827

Gokul G, Ramakrishna G, Khosla S (2009) Reprogramming of HeLa
cells upon DNMT3L overexpression mimics carcinogenesis.
Epigenetics 4(5):322–329

Gounari F, Signoretti S, Bronson R, Klein L, Sellers WR, Kum J,
Siermann A, Taketo MM, von Boehmer H, Khazaie K (2002)
Stabilization of beta-catenin induces lesions reminiscent of prostatic
intraepithelial neoplasia, but terminal squamous transdifferentiation
of other secretory epithelia. Oncogene 21:4099–4107

Gu P, LeMenuet D, Chung AC, Mancini M, Wheeler DA, Cooney AJ
(2005) Orphan nuclear receptor GCNF is required for the
repression of pluripotency genes during retinoic acid-induced
embryonic stem cell differentiation. Mol Cell Biol 251:8507–
8519

Guo Y, Costa R, Ramsey H, Starnes T, Vance G, Robertson K, Kelley
M, Reinbold R, Scholer H, Hromas R (2002) The embryonic
stem cell transcription factors Oct-4 and FoxD3 interact to
regulate ectodermal-specific promoter expression. Proc Nat Acad
Sci 99:3663–3667

Guo L, Zhong D, Lau S, Liu X, Dong XY, Sun X, Yang VW, Vertino
PM, Moreno CS, Varma V, Dong JT, Zhou W (2008) Sox7 is an
independent checkpoint for b-catenin function in prostate and
colon epithelial cells. Mol Cancer Res 6:1421–1430

Gupta GP, Massagué J (2006) Cancer metastasis: building a
framework. Cell 127:679–695

Hagiwara K, Li Y, Kinoshita T, Kunishma S, Ohashi H, Hotta T,
Nagai H (2010) Aberrant DNA methylation of the p57KIP2 gene
is a sensitive biomarker for detecting minimal residual disease in
diffuse large B cell lymphoma. Leuk Res 34:50–54

Hamada S, Kim TD, Suzuki T, Itoh Y, Tsumoto H, Nakagawa H,
Janknecht R, Miyata N (2009) Synthesis and activity of N-
oxalylglycine and its derivatives as Jumonji C-domain-containing
histone lysine demethylase inhibitors. Bioorg Med Chem Lett
19:2852–2855

Hart LS, El-Deiry WS (2008) Invincible, but not invisible: imaging
approaches toward in vivo detection of cancer stem cells. J Clin
Oncol 26:2901–2910

Hart AH, Hartley L, Ibrahim M, Robb L (2004) Identification, cloning
and expression analysis of the pluripotency promoting Nanog
genes in mouse and human. Dev Dyn 230:187–198

Hattori N, Nishino K, Ko YG, Hattori N, Ohgane J, Tanaka S, Shiota
K (2004) Epigenetic control of mouse Oct-4 gene expression in
embryonic stem cells and trophoblast stem cells. J Biol Chem
279:17063–17069

Hattori N, Imao Y, Nishino K, Hattori N, Ohgane J, Yagi S, Tanaka S,
Shiota K (2007) Epigenetic regulation of Nanog gene in embryonic
stem and trophoblast stem cells. Genes Cells 12(3):387–396

He T-C, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT,
Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-
MYC as a target of the APC pathway. Science 281:1509–1512

Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk JJ (2007) High
mobility group A2 is a target for miRNA-98 in head and neck
squamous cell carcinoma. Mol Cancer 6:5

Hekimoglu B, Ringrose L (2009) Non-coding RNAs in polycomb/
trithorax regulation. RNA Biol 6(2):129–137

Hemberger M, Dean W, Reik W (2009) Epigenetic dynamics of stem
cells and cell lineage commitment: digging Waddington's canal.
Mol Cellbiology 10:526–537

Hooper JE, Scott MP (2005) Communicating with hedgehogs. Nat
Rev Mol Cell Biol 6:306–317

Howell CY, Bestor TH, Feng DF, Latham KE, Mertineit C, Trasler
JM, Chaillet JR (2001) March genomic imprinting disrupted by a
maternal effect mutation in the Dnmt1 gene. Cell 104:829–838

Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A
(1998) Axin, a negative regulator of the Wnt signaling pathway,
forms a complex with GSK-3beta and beta-catenin and promotes
GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J
17:1371–1384

Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression:
how the genome integrates intrinsic and environmental signals.
Nat Genet 33(Suppl):245–254

Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M,
Sundberg CD, Bishop JM, Felsher DW (2002) Sustained loss of
a neoplastic phenotype by brief inactivation of MYC. Science
297:102–104

Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A,
Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is
regulated by the let-7 microRNA family. Cell 120(5):635–647

Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K,
Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, Chin
L, Brown D, Slack FJ (2007) The let-7 microRNA represses cell
proliferation pathways in human cells. Cancer Res 67:7713–7722

Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell
128:683–692

Jones PA, Wolkowicz MJ, Rideout WM 3rd, Gonzales FA, Marziasz
CM, Coetzee GA, Tapscott SJ (1990) De novo methylation of the
MyoD1 CpG island during the establishment of immortal cell
lines. Proc Natl Acad Sci USA 87(16):6117–6121

Joshua AM, Evans A, Van der Kwast T, Zielenska M, Meeker AK,
Chinnaiyan A, Squire JA (2008) Prostatic preneoplasia and
beyond. Biochim Biophys Acta 1785:156–181

Clin Epigenet (2011) 2:27–53 49



Kakarala M, Wicha MS (2008) Implications of the cancer stem-cell
hypothesis for breast cancer prevention and therapy. J Clin Oncol
26:2813–2820

Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A,
Isaacs JT, Berman DM, Beachy PA (2004) Hedgehog signalling
in prostate regeneration, neoplasia and metastasis. Nature
431:707–712

Karl AK, Cloos PAC, Christensen J, Pasini DS, Rappsilber J, Issaeva
I, Canaani E, Salcini AE, Helin K (2007) UTX and JMJD3 are
histone H3K27 demethylases involved in HOX gene regulation
and development. Nture Letters 449:731–735

Kawai J, Hirose K, Fushiki S, Hirotsune S, Ozawa N, Hara A,
Hayashizaki Y, Watanabe S (1994) Comparison of DNA
methylation patterns among mouse cell lines by restriction
landmark genomic scanning. Mol Cell Biol 14(11):7421–
7427

Keohane AM, O'Neill LP, Belyaev ND, Lavender JS, Turner BM
(1996) X-inactivation and histone H4 acetylation in embryonic
stem cells. Dev Biol 180:618–630

Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-
Bravo MJ, Ruau D, Han DW, Zenke M, Scholer HR (2008)
Pluripotent stem cells induced from adult neural stem cells by
reprogramming with two factors. Nature 454:646–650

Kim D, Kim C, Moon J, Chung Y, Chang M, Han B, Ko S, Yang E,
Cha K, Lanza R, Kim K (2009) Generation of human induced
pluripotent stem cells by direct delivery of reprogramming
proteins. Cell Stem Cell 4:472–476

Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and
its mediators. Trends Biochem Sci 31:89–97

Kobayashi M, Honma T, Matsuda Y, Suzuki Y, Narisawa R, Ajioka Y,
Asakura H (2000) Nuclear translocation of beta-catenin in
colorectal cancer. Br J Cancer 82:1689–1693

Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C,
Yamochi T, Urano T, Furukawa K, Kwabi-Addo B, Gold DL,
Sekido Y, Huang TH, Issa JP (2008) Gene silencing in cancer by
histone H3 lysine 27 trimethylation independent of promoter
DNA methylation. Nat Genet 40(6):741–750

Kouzarides T (2007) Chromatin modifications and their function. Cell
128:693–705

Krivtsov AV, Armstrong SA (2007) MLL translocations, histone
modifications and leukaemia stem-cell development. Nat Rev
Cancer 7:823–833

Kuroda T, Tada M, Kubota H, Kimura H, Hatano SY, Suemori H,
Nakatsuji N, Tada T (2005) Octamer and Sox elements are
required for transcriptional cis regulation of Nanog gene
expression. Mol Cell Biol 25:2475–2485

Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, Reik W
(2003) Resistance of IAPs to methylation reprogramming may
provide a mechanism for epigenetic inheritance in the mouse.
Genesis 35:88–93

Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP,
Lin S, Prochownik E, Trede NS, Zon LI, Look AT (2003) Myc-
induced T cell leukemia in transgenic zebrafish. Science
299:887–890

Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes
J (1994) A cell initiating human acute myeloid leukemia after
transplantation into SCID mice. Nature 17:645–648

Lau SK, Chang KL (2006) OCT4: a sensitive and specific
immunohistochemical marker for metastatic germ cell tumors.
Adv Anat Pathol 13:76–79

Lavker RM, Tseng SC, Sun TT (2004) Corneal epithelial stem cells at
the limbus: looking at some old problems from a new angle. Exp
Eye Res 78(3):433–446

Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON (2007) Isolation
and functional characterization of murine prostate stem cells.
Proc Natl Acad Sci USA 104(1):181–186

Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7
represses the HMGA2 oncogene. Genes Dev 21:1025–1030

Lee TC, Li L, Philipson L, Ziff EB (1997) Myc represses transcription
of the growth arrest gene gas1. Proc Nat Acad Sci 94:12886–
12891

Leedham SJ, Brittan M, McDonald SA, Wright NA (2005) Intestinal
stem cells. J Cell Mol Med 9(1):11–24

Lepikhov K, Walter J (2004) Differential dynamics of histone H3
methylation at positions K4 and K9 in the mouse zygote. BMC
Dev Biol 4:12–16

Li X, Zhao X (2008) Epigenetic regulation of mammalian stem cells.
Stem Cells Dev 17:1043–1052

Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K (2002) Causal
relationship between the loss of RUNX3 expression and gastric
cancer. Cell 109:113–124

Li LC, Carroll PR, Dahiya R (2005) Epigenetic changes in prostate
cancer: implication for diagnosis and treatment. J Natl Cancer
Inst 97:103–115

Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH (2009) Aberrant
luminal progenitors as the candidate target population for basal
tumor development in BRCA1 mutation carriers. Nat Med
15:907–913

Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y
(2005) p53 induces differentiation of mouse embryonic stem
cells by suppressing Nanog expression. Nat Cell Biol 7:165–171

Liu AY, True LD, LaTray L, Ellis WJ, Vessella RL, Lange PH, Higano
CS, Hood L, van den Engh G (1999) Analysis and sorting of
prostate cancer cell types by flow cytometry. Prostate 40:192–199

Liu L, Chen B, Qin S, Li S, He X, Qiu S, Zhao W, Zhao H (2010) A
novel histone deacetylase inhibitor Chidamide induces apoptosis
of human colon cancer cells. Biochemical and Biophysical
Research Communications 392(2):190–195

Lubieniecka JM, de Bruijn DRH, Su L, van Dijk AHA, Subramanian
S, de Rijn M, Poulin N, Kessel AG, Nielsen TO (2008) Histone
deacetylase inhibitors reverse SS18-SSX–mediated polycomb
silencing of the tumor suppressor early growth response 1 in
synovial sarcoma. Cancer Res 68(11):4303–4310

Maitland NJ, Collins AT (2008) Prostate cancer stem cells: a new
target for therapy. J Clin Oncol 26:2862–2870

Martínez-Climent JA, Andreu EJ, Prosper F (2006) Somatic stem cells
and the origin of cancer. Clin Transl Oncol 8:647–663

Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T,
Yokota T (1999) STAT3 activation is sufficient to maintain an
undifferentiated state of mouse embryonic stem cells. EMBO J
18:4261–4269

Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing
between let-7 and Hmga2 enhances oncogenic transformation.
Science 315:1576–1579

Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A,
Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A,
Jaenisch R, Lander ES (2008) Genome-scale DNA methylation
maps of pluripotent and differentiated cells. Nature 454:766–770

Mertineit C, Yoder JA, Takedo T, Laird D, Trasler J, Bes-tor TH
(1998) Sex-specific exons control DNA methyltransferasein
mammalian germ cells. Development 125:889–897

Michor F (2008) Mathematical models of cancer stem cells. J Clin
Oncol 26:2854–2861

Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G,
Alvarez P, Brockman W, Kim TK, Koche RP, Lee W,
Mendenhall E, O'Donovan A, Presser A, Russ C, Xie X,
Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES,
Bernstein BE (2007) Genome-wide maps of chromatin state in
pluripotent and lineage-committed cells. Nature 448:553–560

Miller SJ, Lavker RM, Sun TT (2005) Interpreting epithelial cancer
biology in the context of stem cells: tumor properties and
therapeutic implications. Biochim Biophys Acta 1756:25–52

50 Clin Epigenet (2011) 2:27–53



Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD,
Hess JL (2002) MLL targets SET domain methyltransferase
activity to Hox gene promoters. Mol Cell 10:1107–1117

Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K,
Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein
Nanog is required for maintenance of pluripotency in mouse
epiblast and ES cells. Cell 113:631–642

Miyoshi N, Ishii H, Nagai K, Hoshino H, Mimori K, Tanaka F,
Nagano H, Sekimoto M, Doki Y, Mori M (2009) Defined factors
induce reprogramming of gastrointestinal cancer cells. Proc Natl
Acad Sci 107(1):40–45

Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic
reprogramming in mammals. Hum Mol Genet 14:R47–R58

Nagle RB, Ahmann FR, McDaniel KM, Paquin ML, Clark VA,
Celniker A (1987) Cytokeratin characterization of human
prostatic carcinoma and its derived cell lines. Cancer Res
47:281–286

Nair SK, Burley SK (2003) X-ray structures of Myc-Max and Mad-Max
recognizing DNA: molecular bases of regulation by proto-
oncogenic transcription factors. Cell 112:193–205

Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R,
Dubois G, Mazo A, Croce CM, Canaani E (2002) ALL-1 is a
histonemethyltransferase that assembles a supercomplex of
proteins involved in transcriptional regulation. Mol Cell
10:1119–1128

Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction
with the let-7 precursor loop mediates regulated microRNA
processing. RNA 14(5):1539–1549

Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D,
Chambers I, Scholer H, Smith A (1998) Formation of pluripotent
stem cells in the mammalian embryo depends on the POU
transcription factor Oct4. Cell 95:379–391

Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of
Oct-3/4 defines differentiation, dedifferentiation or self-renewal
of ES cells. Nat Genet 24:372–376

Ogishima T, Shiina H, Breault JE, Tabatabai L, Bassett WW, Enokida
H, Li LC, Kawakami T, Urakami S, Ribeiro-Filho LA, Terashima
M, Fujime M, Igawa M, Dahiya R (2005) Increased heparanase
expression is caused by promoter hypomethylation and up-
regulation of transcriptional factor early growth response-1 in
human prostate cancer. Clin Cancer Res 11:1028–1036

Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE (2007) A stem
cell-like chromatin pattern may predispose tumor suppressor
genes to DNA hypermethylation and heritable silencing. Nat
Genet 39:237–242

Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-
competent induced pluripotent stem cells. Nature 448:313–317

Olek A, Walter J (1997) The pre-implantation ontogeny of the H19
methylation imprint. Nat Genet 17:275–276

Otsubo T, Akiyama Y, Yanagihara K, Yuasa Y (2008) SOX2 is
frequently downregulated in gastric cancers and inhibits cell
growth through cell-cycle arrest and apoptosis. Br J Cancer
98:824–883

Otto WR (2002) Lung epithelial stem cells. J Pathol 197(4):527–535
Pan G, Li J, Zhou Y, Zhen H, Pei D (2006) A negative feedback loop

of transcription factors that controls stem cell pluripotency and
self-renewal. FASEB J 20:1730–1732

Papp B, Müller J (2006) Histone trimethylation and the maintenance
of transcriptional ON and OFF states by trxG and PcG proteins.
Genes Dev 20:2041–2054

Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of
stem-cell biology to cancer. Nat Rev Cancer 3:895–902

Park I-H, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH,
Lensch MW, Daley GQ (2008) Reprogramming of human
somatic cells to pluripotency with defined factors. Nature
451:141–146

Pasini D, Cloos PAC, Walfridsson J, Olsson L, John-Paul Bukowski
JP, Johansen JV, Bak M, Tommerup N, Rappsilber J, Helin K
(2010) JARID2 regulates binding of the Polycomb repressive
complex 2 to target genes in ES cells. Nature Letters 464:306–310

Pateras IS, Apostolopoulou K, Koutsami M, Evangelou K, Tsantoulis
P, Liloglou T, Nikolaidis G, Sigala F, Kittas C, Field JK, Kotsinas
A, Gorgoulis VG (2006) Downregulation of the KIP family
members p27KIP1 and p57KIP2 by SKP2 and the role of
methylation in p57KIP2 inactivation in nonsmall cell lung
cancer. Int J Cancer 119(11):2546–2556

Patra SK (2008a) Ras regulation of DNA methylation and cancer. Exp
Cell Res 314:1193–1201

Patra SK (2008b) Dissecting lipid raft facilitated cell signaling
pathways in cancer. Biochim Biophys Acta 1785:182–206

Patra SK, Bettuzzi S (2007) Epigenetic DNA methylation regulation
of genes coding for lipid raft-associated components: a role for
raft proteins in cell transformation and cancer progression
(Review). Oncol Rep 17:1279–1290

Patra SK, Szyf M (2008) DNA methylation mediated nucleosome
dynamics and oncogenic Ras signaling: insights from FAS, FASL
and RASSF1A. FEBS J 275:5217–5235

Patra SK, Patra A, Dahiya R (2001) Histone deacetylase and DNA-
methyltransferase in human prostate cancer. Biochem Biophys
Res Commun 287:705–713

Patra SK, Patra A, Zhao H, Dahiya R (2002) DNA-methyltransferase
and demethylase in human prostate cancer. Mol Carcinog
33:163–167

Patra SK, Patra A, Rizzi F, Ghosh TC, Bettuzzi S (2008) Demethylation
of (cytosine-5-C-methyl) DNA and regulation of transcription in the
epigenetic pathways of cancer development. Cancer Metast Rev
27:315–334

Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang
S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang
DG (2006) Highly purified CD44+ prostate cancer cells from
xenograft human tumors are enriched in tumorigenic and
metastatic progenitor cells. Oncogene 25(12):1696–1708

Pelengaris S, Khan M, Evan GI (2002) Suppression of Myc-induced
apoptosis in beta cells exposes multiple oncogenic properties of
Myc and triggers carcinogenic progression. Cell 109:321–334

Pereira L, Yi F, Merrill BJ (2006) Repression of Nanog gene
transcription by Tcf3 limits embryonic stem cell self-renewal.
Mol Cell Biol 26:7479–7491

Petruk S, Smith ST, Sedkov Y, Mazo A (2008) Association of trxG
and PcG proteins with the bxd maintenance element depends on
transcriptional activity. Development 135:2383–2390

Pfeifer GP, Rauch TA (2009) DNA methylation patterns in lung
carcinomas. Semin Cancer Biol 19:181–187

Potts MB, Wang DP, Cameron S (2009) Trithorax, Hox, and
TALE-class homeodomain proteins ensure cell survival
through repression of the BH3-only gene egl-1. Dev Biol
329:374–385

Probst AV, Dunleavy E, Almouzni G (2009) Epigenetic inheri-
tance during the cell cycle. Nat Rev Mol Cell Biol 10:192–
206

Pulukuri SM, Estes N, Patel J, Rao JS (2007) Demethylation-linked
activation of urokinase plasminogen activator is involved in
progression of prostate cancer. Cancer Res 67:930–939

Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV,
Whitelaw E (2003) Transgenerational inheritance of epigenetic
states at the murine Axin(Fu) allele occurs after maternal and
paternal transmission. Proc Natl Acad Sci USA 100:2538–2543

Rapp UR, Ceteci F, Schreck R (2008) Oncogene induced plasticity
and cancer stem cells. Cell Cycle 7:45–51

Rauhala HE, Porkka KP, Saramäki OR, Tammela TL, Visakorpi T
(2008) Clusterin is epigenetically regulated in prostate cancer. Int
J Cancer 123:1601–1609

Clin Epigenet (2011) 2:27–53 51



Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells,
cancer, and cancer stem cells. Nature 414:105–111

Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ,
Collins AT (2004) CD133, a novel marker for human prostatic
epithelial stem cells. J Cell Sci 117(16):3539–3545

Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory
by the Polycomb and Trithorax group proteins. Annu Rev Genet
38:413–443

Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe
AP (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1
and represses transcription from E2F-responsive promoters. Nat
Genet 25:338–342

Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P
(2005) Transcriptional regulation of nanog by OCT4 and SOX2.
J Biol Chem 280:24731–24737

Roose J, Clevers H (1999) TCF transcription factors: molecular switches
in carcinogenesis. Biochim Biophys Acta 1424:M23–M37

Ropero S, Esteller M (2007) The role of histone deacetylases
(HDACs) in human cancer. Mol Oncol 1:19–25

Rougier N, Bourc'his D, Gomes DM, Niveleau A, Plachot M, Paldi A,
Viegas-Pequignot E (1998) Chromosome methylation patterns
during mammalian preimplantation development. Genes Dev
12:2108–2113

Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds
HDAC2 and a new co-repressor, DMAP1, to form a complex
at replication foci. Nat Genet 25:269–277

Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C,
Pandolfi PP (2004) The translation factor eIF-4E promotes tumor
formation and cooperates with c-Myc in lymphomagenesis. Nat
Med 10:484–486

Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR,
Vass JK, Athineos D, Clevers H, Clarke AR (2007) Myc deletion
rescues Apc deficiency in the small intestine. Nature 446:676–679

Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogram-
ming of DNA methylation in the early mouse embryo. Dev Biol
241:172–182

Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell
development: reprogramming and beyond. Nat Rev Genet 9:129–
140

Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of
CpG dinucleotides in the human genome distinguishes two
distinct classes of promoters. Proc Natl Acad Sci USA
103:1412–1417

Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M (2007)
Polycomb-mediated methylation on Lys27 of histone H3 pre-
marks genes for de novo methylation in cancer. Nat Genet
39:232–236

Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G
(2007) Genome regulation by polycomb and trithorax proteins.
Cell 128:735–745

Schulz WA, Hatina J (2006) Epigenetics of prostate cancer: beyond
DNA methylation. J Cell Mol Med 10:100–125

Schulz WA, Hoffmann MJ (2009) Epigenetic mechanisms in the
biology of prostate cancer. Semin Cancer Biol 19:172–180

Schulz WA, Elo JP, Florl AR, Pennanen S, Santourlidis S, Engers
R, Buchardt M, Seifert HH, Visakorpi T (2002) Genomewide
DNA hypomethylation is associated with alterations on
chromosome 8 in prostate carcinoma. Genes Chromosom
Cancer 35:58–65

Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani
SK (2005) Global histone modification patterns predict risk of
prostate cancer recurrence. Nature 435(7046):1262–1266

Sen GL, Webster DE, Barragan DI, Chang HY, Khavari PA
(2008) Control of differentiation in a self-renewing mamma-
lian tissue by the histone demethylase JMJD3. Genes Dev
22:1865–1870

Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S,
Mandy S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff
RD, Yang Q, Bishop JM, Contag CH, Felsher DW (2004)
MYC inactivation uncovers pluripotent differentiation and
tumour dormancy in hepatocellular cancer. Nature 431:1112–
1117

Shackleton M (2010) Normal stem cells and cancer stem cells: similar
and different. Seminars in Cancer Biology 20(2):85–92

Shaw A, Bushman W (2007) Hedgehog signaling in the prostate. J
Urol 177:832–838

Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig
C, Lengyel E, Peter ME (2007) Let-7 expression defines two
differentiation stages of cancer. Proc Natl Acad Sci USA
104:11400–11405

Shen L, Toyota M, Kondo Y, Obata T, Daniel S, Pierce S, Imai K,
Kantarjian HM, Issa JP, Garcia-Manero G (2003) Aberrant DNA
methylation of p57KIP2 identifies a cell-cycle regulatory
pathway with prognostic impact in adult acute lymphocytic
leukemia. Blood 101(10):4131–4136

Signoretti S, Loda M (2006) Defining cell lineages in the prostate
epithelium. Cell Cycle 5:138–141

Smale ST (2003) The establishment and maintenance of lymphocyte
identity through gene silencing. Nat Immunol 4:607–615

Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM,
Karnezis AN, Swigart LB, Nasi S, Evan GI (2008) Modelling
Myc inhibition as a cancer therapy. Nature 455:679–683

Spivakov M, Fisher AG (2007) Epigenetic signatures of stem-cell
identity. Genetics 8:261–273

Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008)
Induced pluripotent stem cells generated without viral integra-
tion. Science 322:945–949

Suzuki A, Raya A, Kawakami Y, Morita M, Matsui T, Nakashima K,
Gage FH, And Rodriguez-Esteban C, Izpisua Belmonte JC
(2006) Nanog binds to Smad1 and blocks bone morphogenetic
protein-induced differentiation of embryonic stem cells. Proc
Natl Acad Sci USA 103:10294–10299

Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells
from mouse embryonic and adult fibroblast cultures by defined
factors. Cell 126:663–676

Takai D, Gonzales FA, Tsai YC, Thyer MJ, Jones PA (2001) Large
scale mapping of methylcytosines in CTCF-dinding sites in the
human H19 promoter and aberrant hypomethylation in human
bladder cancer. Hum Mol Genet 10(23):2619–26262

Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh
H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T,
Takahashi T (2004) Reduced expression of the let-7 microRNAs
in human lung cancers in association with shortened postopera-
tive survival. Cancer Res 64:3753–3756

Takeda J, Seino S, Bell GI (1992) Human Oct3 gene family: cDNA
sequences, alternative splicing, gene organization, chromosomal
location, and expression at low levels in adult tissues. Nucleic
Acids Res 20:4613–4620

Tang DG, Patrawala L, Calhoun T, Bhatia B, ChoyG, Schneider-Broussard
R, Jeter C (2007) Prostate cancer stem/progenitor cells: identification,
characterization, and implications. Mol Carcinog 46:1–14

Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008)
MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate
embryonic stem cell differentiation. Nature 455:1124–1128,
Erratum (2009) Nature 458:538

Thompson RF, Fazzari MJ, Greally JM (2010) Experimental
approaches to the study of epigenomic dysregulation in ageing.
Exp Gerontol 45(4):255–268

Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D,
Shapiro E, Lepor H, Sun TT, Wilson EL (2002) Proximal
location of mouse prostate epithelial stem cells: a model of
prostatic homeostasis. J Cell Biol 157(7):1257–1265

52 Clin Epigenet (2011) 2:27–53



Vaissiere T, Sawan C, Herceg Z (2008) Epigenetic interplay between
histone modifications and DNA methylation in gene silencing.
Mutat Res 659(1–2):40–48

van Leenders GJ, Schalken JA (2001) Stem cell differentiation within
the human prostate epithelium: implications for prostate carcino-
genesis. BJU Int 88(2):35–42, discussion 49–50

Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha
C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin
MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is
involved in progression of prostate cancer. Nature 419:624–629

Verhagen AP, Ramaekers FC, Aalders TW, Schaafsma HE, Debruyne
FM, Schalken JA (1992) Colocalization of basal and luminal
cell-type cytokeratins in human prostate cancer. Cancer Res
52:6182–6187

Vessey CJ, de la Hall PM (2001) Hepatic stem cells: a review.
Pathology 33(2):130–141

Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of
microRNA processing by Lin-28. Science 320:97–100

Wang J, Hannon GJ, Beach DH (2000) Risky immortalization by
telomerase. (Letter). Nature 405:755–756

Wang BE, Shou J, Ross S, Koeppen H, De Sauvage FJ, Gao WQ
(2003) Inhibition of epithelial ductal branching in the prostate by
sonic hedgehogis indirectly mediated by stromal cells. J Biol
Chem 278:18506–18513

Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, Orkin
SH (2006) A protein interaction network for pluripotency of
embryonic stem cells. Nature 444:364–368

Wang T, Zhang X, Obijuru L, Laser J, Aris V, Lee P, Mittal K,
Soteropoulos P, Wei JJ (2007) A micro-RNA signature associated
with race, tumor size, and target gene activity in human uterine
leiomyomas. Genes Chromosom Cancer 46:336–347

Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W,
Chang H, Xu G, Gaudet F, Li E, Chen T (2009a) The lysine
demethylase LSD1 (KDM1) is required for maintenance of
global DNA methylation. Nat Genet 41:125–129

Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, Liang J, Sun L,
Yang X, Shi L, Li R, Li Y, Zhang Y, Li Q, Yi X, Shang Y
(2009b) LSD1 is a subunit of the NuRD complex and targets the
metastasis programs in breast cancer. Cell 138:660–672

Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hoched-
linger K, Bernstein BE, Jaenisch R (2007) In vitro reprogram-

ming of fibroblasts into a pluripotent ES-cell-like state. Nature
448:318–324

Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G (2007)
Epigenetic stem cell signature in cancer. Nat Genet 39:157–158

Woerner SM, Kloor M, Schwitalle Y, Youmans H, Doeberitz MK
(2007) The putative tumor suppressor AIM2 is frequently
affected by different genetic alterations in microsatellite unstable
colon cancers. Genes Chromosom Cancer 46:1080–1089

Wu K-J, Grandori C, Amacker M, Simon-Vermot N, Polack A,
Lingner J, Dalla-Favera R (1999) Direct activation of TERT
transcription by c-MYC. Nat Genet 21:220–224

Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009)
MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and
represses pluripotency in human embryonic stem cells. Cell
137:647–658

Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL,
Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II,
Thomson JA (2007a) Induced pluripotent stem cell lines derived
from human somatic cells. Science 318:1917–1920

Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X,
Su F, Lieberman J, Song E (2007b) let-7 regulates self
renewal and tumorigenicity of breast cancer cells. Cell
131:1109–1123

Zeineddine D, Papadimou E, Chebli K, Gineste M, Liu J, Grey C,
Thurig S, Behfar A, Wallace VA, Skerjanc IS, Puceat M (2006)
Oct-3/4 dose dependently regulates specification of embryonic
stem cells toward a cardiac lineage and early heart development.
Dev Cell 11:535–546

Zhang W, Glockner SC, Guo M, Machida EO, Wang DH, Easwaran H,
Van Neste L, Herman JG, Schuebel KE, Watkins DN, Ahuja N,
Baylin SB (2008a) Epigenetic inactivation of the canonical Wnt
antagonist SRY-box containing gene 17 in colorectal cancer. Cancer
Res 68:2764–2772

Zhang HJ, Siu MK-Y, Wong ES-Y, Wong K-Y, Li AS-M, Chan KY-K,
Ngan HY-S, Cheung AN-Y (2008b) Oct4 is epigenetically
regulated by methylation in normal placenta and gestational
trophoblastic disease. Placenta 29:549–554

Zhang Y, Huang S, Dong W, Li L, Feng Y, Pan L, Han Z, Wang
X, Ren G, Su D, Huang B, Lu J (2009) SOX7, down-
regulated in colorectal cancer, induces apoptosis and inhibits
proliferation of colorectal cancer cells. Cancer Lett 277:29–37

Clin Epigenet (2011) 2:27–53 53


	Molecular marks for epigenetic identification of developmental and cancer stem cells
	Abstract
	Introduction
	Stem cells
	Epigenetics related to development and cancer biology
	Epigenetic regulation of genes by DNA methylation and histone modifications
	Molecular marks for identifying stem-cells
	Molecular marks for identifying cancer stem cells
	Signaling cascades from membrane to nucleus
	Embryonic signaling, programming, and re-derived pluripotency
	Role for OCT4
	Role for NANOG
	Role for MYC
	Role for hedgehog and wnt
	Conclusion and perspectives


	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


