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Abstract

We constructed a lung cancer-specific database housing expression data and clinical data from over 6700 patients in
56 studies. Expression data from 23 genome-wide platforms were carefully processed and quality controlled, whereas
clinical data were standardized and rigorously curated. Empowered by this lung cancer database, we created an open access
web resource—the Lung Cancer Explorer (LCE), which enables researchers and clinicians to explore these data and perform
analyses. Users can perform meta-analyses on LCE to gain a quick overview of the results on tumor vs non-malignant tissue
(normal) differential gene expression and expression-survival association. Individual dataset-based survival analysis,
comparative analysis, and correlation analysis are also provided with flexible options to allow for customized analyses from

the user.

Supplementary material The online version of this article (https://
doi.org/10.1038/s41388-018-0588-2) contains supplementary
material, which is available to authorized users.
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Introduction

Lung cancer is the leading cause of cancer-related death
worldwide. Despite tremendous efforts put toward diag-
nosis and treatment, the five-year survival rate of lung
cancer is still as low as 18% [1]. Over the past few decades,
advancements in genome profiling techniques have greatly
improved our understanding of cancer development at the
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Fig. 1 Summary of lung cancer database variable distribution. This
summary describes the datasets and features of the lung cancer data-
base that feeds into the Lung Cancer Explorer. Gene expression data
and clinical data were collected from 56 studies that include over 6700

molecular level, and have enabled the discovery of bio-
markers that facilitate individualized cancer treatments
including lung cancer [2]. Recent advances in immune-
oncology of lung cancer also show the great importance of
marker expression, the tumor mutation burden, and deter-
mination of the tumor microenvironment from deposited
molecular analyses of lung cancer datasets [3—7]. With the
advent of public data repositories of genome profiling data,
such as the Gene Expression Omnibus (GEO, [8]),
ArrayExpress [9, 10], and The Cancer Genomics Atlas
(TCGA), it has become increasingly important and bene-
ficial for researchers to mine the available datasets to dis-
cover potential biomarkers and test new biological
hypotheses.

Despite the wealth of information offered by such data,
utilization of public datasets is not easy, and often it can
be prohibitively challenging. There is a plethora of lung
cancer patient data published each year, but the data are
scattered around in different public data depositories or at
individual websites. There are often inconsistencies for
the same patient cohort among different websites, likely
due to differences in preprocessing approaches and the
versions of platform annotations. Moreover, clinical
records from different studies are often summarized using
different terminologies. Proper usage of publicly available
datasets requires specialized expertize in acquiring,

SPRINGER NATURE

patients. For each study and each variable, a pie chart is used to
summarize the data. The color scheme for the pie chart sectors are
provided below the gridded pie charts. Table S2 provides the specific
sample sizes under each category

processing, normalizing, and filtering of the data, which is
challenging for general researchers and clinicians. To
facilitate researchers’ use of public datasets for biomarker
discovery, a number of re-annotated database have been
developed, including OncoMine [11], GeneSapien [12],
Gemma [13], M2DB [14], CancerMA [15], cBioPortal
[16], KMPlot [17], PrognoScan [18], PROGgene [19] and
so forth.

In this study, we describe our development of a new data
commons, Lung Cancer Explorer (LCE) with a web appli-
cation (http://Ice.biohpc.swmed.edu/), populated by a cen-
tralized lung cancer database. Compared to other existing
databases, our database houses the largest collection of lung
tumor expression data from 56 studies for over 6700
patients enriched with rigorously curated clinical data
(Fig. 1, Tables S1 and S2). Of special note, tremendous
effort was made in manual curation and standardization of
the datasets so that they could be used for meta-analysis.
This “harmonization” is an important benefit of LCE.
Equally important, the user-friendly open web portal pro-
vides several easy but versatile analysis tools. These tools
include meta-analysis, which enables users to gain a quick
overview of the results from all datasets while combining
statistical power from multiple datasets, as well as indivi-
dual dataset-based analyses that allow for more flexibility
and customization from the user.


http://lce.biohpc.swmed.edu/
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Fig. 2 Histology classification of samples collected in the lung cancer
database. This tree diagram represents the hierarchical structure of the
2015 WHO classification system of lung tumors. Numbers on the red

Mixed invasive mucinous and nonmucinous adenocarcinoma
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nodes denote the number of samples from the lung cancer database
belonging to the corresponding histology type
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Fig. 3 Examples of survival analysis with more significant results
when cluster-based cutoff is used. a Bi-modal distribution of expres-
sion in Shedden_2008 dataset. The solid blue line marks the cutoff at
the median, whereas the solid red line marks the cutoff determined by
Gaussian mixture model. b Kaplan—Meier curves from the survival
analysis of Shedden_2008 using groups defined by SMARCA4 gene
expression with cutoff at median. P-value from the log-rank test is

Results
Construction of the lung cancer database

Over a span of 5 years, we have collected 56 datasets
generated by 23 genome-wide expression platforms (see
“Data collection”, “Clinical data curation”, and “Expression
data processing” sections in Supplementary Methods). The
overarching goal is to include datasets with large numbers
of samples, as well as datasets with more comprehensive
coverage of clinical information with an emphasis on sur-
vival data. The number of samples in the studies we have
collected has a median of 100, maximum of 576, and
minimum of 27.

The availability and distribution of clinical variables
across all studies are summarized in Fig. 1 and Table S2.
The clinical variables we collected include tumor histology
as defined by the 2015 WHO lung tumor classification
system (Fig. 2), as well as patient demographics, diagnosis,
adjuvant therapy status, smoking status, recurrence-free

SPRINGER NATURE

denoted at the bottom left corner of the plot. ¢ Survival analysis of
Shedden_2008 using groups defined by Gaussian mixture model of
SMARCA4 expression. d Bi-modal distribution of KYNU expression in
Schabath_2016 dataset. e Survival analysis of Schabath_2016 using
groups defined by SMARCA4 gene expression with cutoff at median. f
Survival analysis of Schabath_2016 using groups defined by Gaussian
mixture model of KYNU expression

and overall survival time and status, and mutation status of
some key cancer genes (Fig. 1 and Table S2). Extensive
quality control measures were taken for assessment of the
expression data and clinical data. Details of these measures
are described in the Supplementary Methods (also see
Figure S3).

Lung Cancer Explorer

Having established a high-quality lung cancer database, we
constructed the user-friendly website LCE (http://lce.
biohpc.swmed.edu), allowing the cancer research commu-
nity to gain easy access to our resources. Our dataset
inventory and sources are described on the DATA page of
LCE. Processed data are available for user download under
each study. The ANALYSIS page of LCE provides survival
analysis, comparative analysis and co-expression analysis
tools based on individual datasets, as well as meta-analysis
tools based on multiple datasets. The functionality of these
tools is described in detail in the following sections.


http://lce.biohpc.swmed.edu
http://lce.biohpc.swmed.edu
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a RORCTumor vs Normal Meta-analysis b RORCTumor vs Normal Meta-analysis
Adenocarcinoma Squamous Cell Carcinoma

Study/Source Observed SMD [95% Cl] Study/Source Observed SMD [95% Cl]
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Sanchez-Palencia_2011(T:14,N:45) r—-—c 0.53 [-0.07, 1.14] Rousseaux_2013(T:61,N:14) — -3.10 [-3.86, -2.33]
Su_2007(T:26,N:27) —s 1.01[0.44, 1.58] Bhattacharjee_2001(T:21,N:17) —e— -1.33 [-2.04, -0.63]
Jones_2004(T:16,N:19) —0.24 [-0.91, 0.43] Baty_2010(T:12,N:15) — -1.76 [-2.65, -0.86]
RE Model 5 5 0.35[0.10, 0.60] RE Model 2 5 -2.18 [-2.52, -1.83]
Heterogeneity : I° = 48%, t° = 0.05, p = 0.064 Heterogeneity : 1° = 58%, t° = 0.12, p = 0.038

Test for overall effect: z=2.73, p = 0.0063 Test for overall effect: z=-12.38, p = 3.2e-35

Standardized Mean Difference

(o CDCA2 Survival Meta-analysis
Adenocarcinoma
Study TE seTE Hazard Ratio HR 95%-Cl Weight
Tomida_2009 (117) 0.31 0.1390 —— 1.36 [1.04;1.79] 7.4%
Hou_2010 (40) 0.05 0.2777 —_— 1.06 [0.61;1.82] 1.9%
Staaf_2012 (38) 0.40 0.2243 e 1.50 [0.97;2.33] 2.8%
Kuner_2009 (34) 0.66 0.3113 ——— 1.94 [1.05;357] 15%
Rousseaux_2013 (85) 0.37 0.1682 —— 1.45 [1.04;2.02] 5.1%
Okayama_2012 (204) 0.45 0.1430 - 1.57 [1.19;2.08] 7.0%
Bild_2006 (58) 0.11 0.1614 - 1.12 [0.81;1.53] 5.5%
Girard_N_c (30) 0.16 0.2779 —_ 1.17 [0.68;2.02] 1.9%
Botling_2013 (106) 0.26 0.1259 — 1.30 [1.02;1.67] 9.0%
Jones_2004 (16) -0.63 0.7150 ————F—— 0.53 [0.13;2.17] 0.3%
Sato_2013 (182) 0.44 0.1250 = 1.55 [1.21;1.98] 9.2%
Tang_2013 (133) 0.51 0.1554 — 1.66 [1.22;2.25] 5.9%
Der_2014 (128) 0.36 0.1316 — 1.44 [1.11;1.86] 8.3%
Schabath_2016 (398) 0.28 0.0940 - 1.33 [1.11;1.60] 16.2%
TCGA_LUAD_2016 (484) 0.27 0.1007 L 1.32 [1.08;1.60] 14.1%
Takeuchi_2006 (90) 0.20 0.1900 T 1.22 [0.84;1.77] 4.0%
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Heterogeneity: 2 =0%, =0, p =0.80
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Fig. 4 High klotho expression has more significant association with
positive survival outcome in males. For each of the six selected stu-
dies, survival analysis assessing prognosis association of KL gene
expression was performed for male patients or female patients only. In

Survival analysis in LCE
Flexible group dichotomization

Survival analysis is commonly provided in online cancer
databases to allow users to assess the association between
gene expression and prognosis, and the median is routinely
used as the dichotomization cutoff for the continuous gene
expression. However, gene expression pattern is often a
result of heterogeneous oncogenotypes and the distribution
is often unbalanced. The LCE survival analysis module
offers four options for cutoff value, including “median”,
“mean”, “cluster”, and “custom”. In the Results panel, a
Kaplan—Meier plot, table of summary statistics and Kernel
density plot of the expression data are provided to the user.

[ T T T 1
-5 -3.5 -2 -0.5 1
Standardized Mean Difference

d CDCA2 Survival Meta-analysis
Squamous Cell Carcinoma

Study TE seTE Hazard Ratio HR 95%-Cl Weight
Hou_2010 (24) 0.31 0.3502 —_ 1.36 [0.69;2.71] 2.4%
Staaf_2012 (13) -0.07 0.3297 —_— 0.93 [0.49;1.78] 2.7%
Kuner_2009 (14) -0.17 0.7014 ~———— 0.85 [0.21;3.35] 0.6%
Rousseaux_2013 (61) -0.19 0.2136 — 0.83 [0.54;1.26] 6.4%
Bild_2006 (52) —-0.12 0.1980 — 0.89 [0.60;1.31] 7.4%
Botling_2013 (66) 0.12 0.1855 —— 1.13 [0.79;1.63] 8.4%
Sato_2013 (80) 0.11 0.1775 —— 1.11 [0.78;1.57] 9.2%
Tang_2013 (43) 0.07 0.2283 —— 1.07 [0.68;1.67] 5.6%
Der_2014 (43) 0.18 0.2576 —_ 1.20 [0.72;1.98] 4.4%
Noro_2017 (107) —0.05 0.1658 0.95 [0.69;1.32] 10.6%
Baty_2010 (12) 0.78 0.6081 2.17 [0.66;7.16] 0.8%

TCGA_LUSC_2016 (459) -0.14 0.0884
Takeuchi_2006 (35) 0.17 0.2534

0.87 [0.73;1.03] 37.1%
Random effects model

4
-
1.19 [0.72;1.95] 4.5%
0.97 [0.87; 1.08] 100.0%
Heterogeneity: P= 0%, 2= 0, p=0.79

Test for overall effect: z = -0.53 (p = 0.59) 0.2 05 1 2 5

each analysis, the median was used as a cutoff for dichotomizing
patients. In all six studies, a more significant association with better
prognosis was found in the male patients compared to the female
patients

The density plot visualizes the distribution of the gene
expression and facilitates the user in determining whether
they should modify their choice of cutoff. In particular, the
“cluster” option in cutoff selection would be a more rational
choice for bimodally distributed expression values, as it
separates the sample groups by a cutoff estimated from
Gaussian mixture modeling.

Survival analysis examples with cluster-based cutoff

In Fig. 3 we provide examples using the genes SMARCA4
and KYNU in two lung adenocarcinoma (ADC) studies. Bi-
modal distribution of gene expression was observed in both
cases (Fig. 3a, d). SMARCA4, a well-known tumor sup-
pressor gene [20] that can serve as prognostic indicators in
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Sato_2013 (182) 0.44 0.1250 = 1.55 [1.21;1.98] 9.2%
Tang_2013 (133) 0.51 0.1554 — 1.66 [1.22;2.25] 5.9%
Der_2014 (128) 0.36 0.1316 — 1.44 [1.11;1.86] 8.3%
Schabath_2016 (398) 0.28 0.0940 - 1.33 [1.11;1.60] 16.2%
TCGA_LUAD_2016 (484) 0.27 0.1007 L 1.32 [1.08;1.60] 14.1%
Takeuchi_2006 (90) 0.20 0.1900 T 1.22 [0.84;1.77] 4.0%
Random effects model ¢ 1.38 [1.28; 1.48] 100.0%
Heterogeneity: 2 =0%, =0, p =0.80
Test for overall effect: z = 8.45 (p < 0.01) 02 05 1 2 5

Fig. 5 Examples of different meta-analysis results in lung adeno-
carcinoma vs squamous cell carcinoma. a, b RORC tumor vs normal
meta-analyses in lung ADC studies (a) and lung SCC studies (b). ¢, d
CDCA?2 survival meta-analyses in lung ADC studies (a) and lung SCC
studies. Note that differential gene expression meta-analysis for RORC
is only significant in lung SCC patients, whereas survival meta-

non-small cell lung cancer [21] and breast cancer [22], was
under-expressed in a small fraction of samples from the
Shedden_2008 study [23], and the corresponding patients
had worse survival outcome (Fig. 3c). In contrast, KYNU
was over-expressed in a small proportion of samples in
dataset Schabath_2016 [24] and the corresponding patients
also had worse survival outcome. In both cases, results
from survival analysis were more significant when the
cutoff was selected by “cluster” as opposed to “median”
(Fig. 3b, c, e, f). With the built-in “cluster” option for
cutoff selection, users can easily generate figures like
Fig. 3c, f and compare them with the default “median”
options like Fig. 3b, e.
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Kuner_2009 (14) -0.17 0.7014 ~———— 0.85 [0.21;3.35] 0.6%
Rousseaux_2013 (61) -0.19 0.2136 — 0.83 [0.54;1.26] 6.4%
Bild_2006 (52) —-0.12 0.1980 — 0.89 [0.60;1.31] 7.4%
Botling_2013 (66) 0.12 0.1855 —— 1.13 [0.79;1.63] 8.4%
Sato_2013 (80) 0.11 0.1775 —— 1.11 [0.78;1.57] 9.2%
Tang_2013 (43) 0.07 0.2283 —— 1.07 [0.68;1.67] 5.6%
Der_2014 (43) 0.18 0.2576 —_ 1.20 [0.72;1.98] 4.4%
Noro_2017 (107) —0.05 0.1658 0.95 [0.69;1.32] 10.6%
Baty_2010 (12) 0.78 0.6081 2.17 [0.66;7.16] 0.8%

TCGA_LUSC_2016 (459) -0.14 0.0884
Takeuchi_2006 (35) 0.17 0.2534

0.87 [0.73;1.03] 37.1%
Random effects model
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-
1.19 [0.72;1.95] 4.5%
0.97 [0.87; 1.08] 100.0%
Heterogeneity: P= 0%, 2= 0, p=0.79
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analysis for CDCA?2 is only significant in lung ADC patients. In each
forest plot, the name of each study is followed by the number of tumor
and normal samples (tumor vs normal meta-analysis) or total tumor
samples (survival meta-analysis). SMD standardized mean difference,
TE estimated treatment effect, seTE standard error of treatment effect,
HR hazard ratio, CI confidence interval

Analysis stratification by additional clinical variables

In the LCE survival analysis module, options are provided
for users to select a group of patients by age, race, gender,
smoking status, and histology. This allows users to assess
the association between the expression of a user-selected
gene and patient survival (gene-survival association) within
a user-defined subpopulation of patients. An example in
Fig. 4 is provided to illustrate the advantage of this
approach in the identification of a gender-specific gene-
survival association. In Fig. 4, association of KL gene
expression and survival was tested separately in female and
in male patients. We show that for several studies, a
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stronger positive association between high klotho gene
expression and overall survival could be observed in male
patients as compared to female patients. Klotho, encoded by
gene KL, is a well characterized anti-aging gene [25]. It has
been observed that the extension of lifespan by klotho
overexpression is more pronounced in males than in
females [26], and only male but not female klotho mutant
mice responded to a phosphorus restriction diet to extend
lifespan [27]. In recent years, klotho has also been char-
acterized as a tumor suppressor gene [28]. From our ana-
lyses, it is interesting to see that the tumor suppressing
effect of klotho also seems to be higher in males than in
females (Fig. 4).

Meta-analysis in LCE
Types of meta-analysis

In LCE, meta-analysis tools are provided to allow users to
address two questions: (1) differential expression between
tumor and normal samples; and (2) survival association of
gene expression.

Cohort-specific meta-analysis and examples

Results from both types of meta-analyses are visualized as
forest plots. We provide three options, “All Cancers”,
“Adenocarcinoma” (ADC), or “Squamous Cell Carcinoma”
(SCC), to allow users to choose the lung cancer subtype(s)
they want to include in the meta-analysis since the survival
association and expression difference between tumor and
normal could be cancer-type specific.

For example, with lung cancer subtype-specific meta-
analysis, we found consistent downregulation of RAR
related orphan receptor C (RORC) in multiple lung SCC
studies (Fig. 5b) but not in lung ADC studies (Fig. 5a).
Interestingly, RORC was also previously found in a 3-gene
signature to distinguish lung ADC and lung SCC [29]. We
also found that in multiple lung ADC studies, expression of
cell division cycle-associated protein 2 (CDCA2) was
associated with worse overall survival outcome (Fig. 5c),
whereas this trend was not observed for lung SCC datasets
(Fig. 5d).

Validation of tumor versus normal gene expression
difference meta-analysis

With access to qPCR measurements of 46 nuclear hormone
receptor genes in 30 pairs of matched tumor and normal
lung cancer samples, we were able to compare the stan-
dardized mean difference between tumor and normal tissue
gene expression estimated from meta-analysis to the qPCR
measurement results. A strong agreement was observed

Standardized Mean Difference Tumor — Normal
of 48 Nuclear Hormone Receptor Genes

Meta—Analysis
0
|

PCR

Fig. 6 Meta-analysis estimates agree with qPCR measurements on
tumor vs normal expression differences for 46 nuclear hormone
receptor genes. Results from gPCR measurements of 30 tumor-normal
pairs (x-axis values) and meta-analysis estimates from 21 studies (y-
axis values) on gene expression differences between tumor and normal
tissues for 46 nuclear hormone receptor genes were used to evaluate
consistency between the two approaches. The values on the x-axis and
y-axis are the standardized mean difference estimated by Hedges’ G
method. The solid purple line represents a linear regression line,
whereas the dashed gray line identifies where x equals y

between the two results, supporting the validity of our meta-
analysis and the high quality of our datasets (Fig. 6, Table
S5).

Assessing reproducibility across different studies from
meta-analysis

Meta-analysis is a unique tool provided by LCE, as it not
only provides users with statistical estimates that are more
precise than using any single dataset, it also allows users to
recognize the extent of reproducibility of a specific analysis
across different datasets. In the forest plots generated by the
LCE meta-analysis module, we provide users with a het-
erogeneity test using the I’ statistic, which describes the
percentage of variation across studies that is due to het-
erogeneity [30]. It is important to note that inconsistency in
the results between different studies could arise from dif-
ferences in patient population or sample procurement, as
well as in data acquisition. In some cases, the results are
more consistent for specific genes than others (Fig. 7).
Hence, the meta-analysis tool provided by LCE allows users
to identify discrepancies among different datasets in order
to estimate the generalizability of the results.
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Fig. 7 Assessment of result consistency by I? statistics in meta-analysis
of survival-gene expression association. a Density estimation of I?
distribution. Three genes with different I* statistics were selected as
examples in (b), (¢), and (d). A larger I? value suggests a larger degree
of heterogeneity across studies, whereas a smaller I? value is reflective
of a higher degree of consistency among studies. b, ¢, d Example
forest plots of survival meta-analysis with different heterogeneity:
large (b), intermediate (c), and small (d)
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Comparative analysis in LCE

Comparative analysis was implemented for users to assess
the associations between a user-selected gene and clinical
factors such as gender, age, histology types, disease stages,
etc., within a specific dataset. The expression levels of the
selected gene in the user-defined patient groups are shown
in boxplots and p values of the expression differences are
reported. In addition to group assignment based on a single
clinical variable, a unique functionality of LCE is that users
can define patient groups based on a combination of clinical
factors. This provides a great extent of flexibility in
hypothesis testing to understand the interactions between
different clinical variables. For example, expression com-
parison of the hemoglobin subunit delta encoding gene
HBD in the TCGA_LUAD_2016 cohort shows that tumor
samples have decreased HBD expression compared to
normal samples (Fig. 8a), whereas samples from smokers
and non-smokers have similar expression levels (Fig. 8d).
However, by stratifying patient groups with two factors,
both tissue type (tumor vs normal) and smoking status, we
find the difference in HBD levels between normal and
tumor tissues is significant only in smokers but not in non-
smokers (Fig. 8b, c), and normal samples from smokers
have elevated HBD expression compared to normal samples
from non-smokers (Fig. 8f). In contrast, no difference in
HBD expression was observed for tumor tissues from
smokers vs non-smokers (Fig. 8b), nor do HBD expression
levels differ in the tumor and normal tissues of non-smokers
(Fig. 8f).

The results from these comparisons suggest that HBD
expression is upregulated in normal lung tissue by smoking
but is downregulated again when tumors form in smokers.
We also observed similar trends in the other hemoglobin
subunit encoding genes HBG1, HBG2, and HBM, which is
consistent with the previous finding that hemoglobin levels
increase in smokers [31].

Correlation analysis in LCE

The correlation analysis tool from LCE provides users a
heatmap to visualize the expression correlations among a
list of user-defined genes in user-selected datasets. A high
degree of expression correlation of genes often implies
functional association, as genes involved in the same
pathway or biological function are often subject to con-
certed regulation at transcription level [32]. Functional
partners of the same gene could differ in a tissue-specific
manner [33], and the gene network could also re-wire under
a different disease context. In LCE we provide three
options, “All”, “Lung Tumor” and “Normal”, to allow users
to calculate a gene expression correlation matrix based on a
specific sample type and subsequently generate a clustered
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Fig. 8 Interaction between sample tissue type and smoking status in
HBD gene expression. a, d Boxplots comparing HBD gene expression
between two groups dichotomized on a single clinical variable: tissue
type (a) or smoking status (d). b, c, e, f Boxplots comparing HBD gene

heatmap, which conveniently allows users to identify
changes in the co-expression patterns of the user-defined
gene list. One such example is provided in Fig. 9, where we
show that in tumor, there is a high degree of co-expression
between poly(ADP-ribose) polymerase-2 (PARP2) and 10
cell cycle genes (Fig. 9a) selected from MSigDB “REAC-
TOME_CELL_CYCLE” gene set [34, 35], whereas this co-
expression is diminished in normal tissues (Fig. 9b). This is
consistent with the role of PARP2 in DNA repair [36]; since
genomic instability and mutation is a hallmark of cancer,
the cancer-specific co-expression of PARP2 and cell cycle
genes may indicate that PARP?2 is actively engaged in DNA
repair while cancer cells divide. On the other hand, we
found PARP2 highly correlated with zinc fingers C2H2-
type genes (ZNF) [37] in normal but not cancer tissue (Fig.
9c, d). This normal-specific co-expression of PARP2 and
ZNF genes may suggest alternative roles of PARP2 in
transcriptional regulation independent of its DNA repair
function.

Discussion

In this paper, we described the construction of the LCE
database for lung cancer gene expression analysis. It was
carefully designed for lung cancer researchers to interrogate
gene expression association with patient clinical features.
As the collected datasets are highly heterogeneous,

Smoker Tumor Non-smoker Tumor

427 Samples

Non-smoker Normal
7 Samples

Smoker Normal

76 Samples 46 Samples

expression between two groups defined by a combination of two
clinical variables: different tissues in smoker (b), different tissues
in non-smoker (c), tumor from patients with different smoking status
(e), and normal tissues from patients with different smoking status (f)

extensive efforts were put forth to reprocess and normalize
expression data from 23 different expression profiling
platforms, and a large amount of manual curation work was
performed to standardize clinical terminology. Such manual
inspection, though time consuming, greatly improves the
data accuracy and usability, which sets our work apart from
other databases. The resulting database with high-quality
datasets enables versatile analysis tools in our LCE. We
provide meta-analysis tools that summarize results across
multiple datasets in the form of forest plots to allow users to
gain a summary view of the overall trend and heterogeneity
among studies. We also provide individual dataset-based
analysis tools to allow users the flexibility to intricately
formulate their analysis to best fit the research question.
Results and biological insights we obtained from examples
(Figs. 3-5 and 7-9) demonstrated the unique advantages of
our tools over the current publically available web tools, as
none of these results could have been produced with the
existing public tools.

We welcome users to contribute or suggest additional
datasets to be evaluated and added to our lung cancer
database. Suggestions can be made by leaving a comment at
the contact page of LCE. It is in our plan to add a func-
tionality to LCE to enable users to upload their own data to
our database and perform analysis with our web application.
In the future, we would also like to expand the lung cancer
database to include cell line data and patient-derived
xenograft (PDX) data. Besides gene expression data, other
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Fig. 9 Different co-expression
pattern between PARP2 and
cycle genes. a, b, ¢, d Heatmaps
of gene—gene correlation
matrices from
TCGA_LUAD_2016 for PARP2
and 10 selected cell cycle genes
from tumor sample expression
data (a) or normal sample
expression data (b), and for
PARP2 and 10 selected C2H2-
type zinc finger genes (ZNF)
from tumor sample expression
data (c¢) or normal sample
expression data (d). The highly
positive correlation between
PARP?2 and cell cycle genes was
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types of molecular profiling data (such as proteomic data,
mutation data, copy number variation data, epigenomics
data, microRNA data, etc.) and imaging data (such as H&E
pathological slide images) will also be added to the lung
cancer database. Separate data tables and supporting data
dictionaries will be created for the new molecular data types.
We will first identify studies within our collection that
possess such data and add them to our database, then look
for additional datasets that contain such molecular data as
well as clinical data to add to our database. We will also
expand the analysis tool repertoire on LCE to include mul-
tivariate analysis and other integrative analytical approaches.

Finally, we will conduct a variety of systematic analyses
with the lung cancer database to generate testable hypoth-
eses (for example, identification of genes associated with
different oncogenotypes, gender, smoking status, etc. fol-
lowed by gene set enrichment analysis). Results from such
systematic analyses will be provided to the lung cancer
research community to provoke hypothesis generation,
testing, and validation.
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Material and methods
Data collection and processing
Dataset selection

Datasets were collected from GEO, TCGA, and individual
literatures. The search of GEO was performed by GEO-
metadb [38]. For datasets that had not been deposited into
GEO, we made our selection through a literature search and
by referencing other commonly used databases.

Clinical data curation

Clinical data for datasets deposited into GEO were retrieved
from GEO by R package GEOquery; TCGA clinical data
were downloaded from Sage Bionetworks’ Synapse database
[39], and other datasets were downloaded from sources pro-
vided in the original publication. The clinical data obtained
directly from these public domains often contained non-
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standard terminology. To standardize the clinical variables
from different studies, codebooks were devised for each
variable in order to ensure the accuracy and compatibility of
the clinical annotation from different sources (Table S4.1-
S4.6). The patient histology codebook was created based on
the 2015 World Health Organization (WHO) Classification of
Lung Tumors [40] (Fig. 2 and Table S3). In order to facilitate
users in integrating our datasets with other cancer datasets, we
also provided the ICDO code [40] and the corresponding
SNOMED-CT code [41] for histological subtypes in the
processed data included on LCE for download. For the TCGA
lung cancer data in particular, instead of using the histology
classification provided by the patient information file, histol-
ogy was determined based on expression signature as devel-
oped by Girard et al. [42], as that study has shown improved
classification accuracy with the gene expression classifier on
the TCGA data. Consequently, the histology-misclassified
samples were excluded from the TCGA cohorts in cancer-
specific meta-analysis. For all datasets, programmatic and
manual data curations were carried out and the procedures
were repeated three times with scrutiny. For our records, all
the data handling steps were saved with detailed
documentation.

Quality control of clinical data

Manual data curation was performed to ensure consistency
between supplementary information associated with the
original publication and the clinical data downloaded from
GEO. Clinical information found only in the original pub-
lication but not in the GEO records was also extracted. Here
we describe a few examples of our manual curation from
numerous instances: we checked if there were exclusion
criteria in the paper that imposed restrictions on adjuvant
therapy, tumor stage, etc.; when calculating the survival
time we looked for surgical date, and if it was available we
used it as the start date for survival time instead of the initial
diagnosis date, since the gene expression data reflected the
tumor profile on the surgical date; when certain samples
were considered low quality and removed from analyses in
the associated publication, we followed the same discretion
to excl ude such samples from our collection; we removed
cell line samples to ensure our collection included exclu-
sively patient samples; when tumor percentage information
was available, we removed samples with <50% tumor
content.

Expression data processing

Expression data for datasets deposited into GEO were
retrieved from GEO by R package GEOquery. TCGA
expression data were downloaded from Broad GDAD fire-
hose [43], and other datasets were downloaded from the

sources provided in the original research papers. It is not
uncommon in the field of biomarker discovery for sig-
natures to have poor reproducibility in other datasets. Such
discrepancy could be at least partially attributed to the dif-
ferences in experimental settings, sample handling, mea-
surement platforms and, importantly, data processing
procedures. The datasets collected in this study were gen-
erated from 23 different platforms, with the majority being
microarrays. We adopted different strategies to process the
data (Figure S1) to convert the expression data from probe
level to gene level.

Quality control of gene expression data

To perform quality control of the expression data input for
meta-analysis, a method that checks for reproducibility
across studies based on the concept of the integrative cor-
relation coefficient (ICC) [44, 45] was implemented. The
premise of this approach is that most of the pairwise gene—
gene correlation should be preserved across different stu-
dies. The relationship of reproducibility between studies
could be visualized by ICC-based clustering, as shown in
Figure S3. Considering that some gene—gene correlation
could be tissue-type specific, samples of different tissue
types from the same study were separated into distinct
groups before we calculated the ICC. As expected, in
clusters defined by ICC, subgroups of different sample
types from the same study in many cases did not cluster
together; instead, samples of the same tissue type from
different studies tended to cluster together. A clade of four
studies with very little correlation with other sample groups
was identified. These four studies were removed from
subsequent meta-analyses. However, they were still avail-
able to use in the individual dataset-based analysis. More-
over, the two RNA-seq datasets from TCGA revealed high
correlation with datasets from microarray platforms, sup-
porting the compatibility of datasets from different plat-
forms based on our processing approach.

Database structure/web interface

Our web application LCE can be accessed through http://
Ice.biohpc.swmed.edu/. It was created using PHP (7.0.12-1)
in the R Programming environment (3.3.1) with MySQL
database (Ver 14.14 Distrib 5.5.49) in the backend. Our
MySQL database contains tables for samples, patients and
gene expression data with supporting data dictionaries
(Figure S2 and Table S4.1-S4.6).

Code availability

Data cleaning, processing, and analyses were performed
using R. R scripts are available upon request.
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Statistical analysis methods
Cluster-based cutoff for patient grouping

In many cases, gene expression follows a bi-modal dis-
tribution with unbalanced sample sizes in each group. A
cluster-based cutoff selection is provided to assist identifi-
cation of an optimal cutoff value for group dichotomization
in survival analysis. R package mclust [46] was used to
identify the gene expression cutoff based on Gaussian
mixture model clustering, assuming a bi-modal distribution
when users select the “cluster” option under the survival
analysis module of LCE.

Survival analysis

Survival curves were estimated using the product-limit
method of Kaplan—Meier [47] (survival, R package [48]). A
log-rank test was used to compare the survival differences
among different patient groups. A Cox proportional hazard
regression model was used to assess the survival association
and calculate the hazard ratio (HR) with continuous gene
expression in each individual dataset.

Meta-analysis

For survival meta-analysis, the R package meta [49] was
used to calculate the summary HR from the HRs of indi-
vidual datasets. For tumor vs normal differential expression
meta-analysis, R package metafor [50] was used to calculate
the summary standardized mean difference (tumor — nor-
mal) using Hedges” G as an effect size metric.

Comparative analysis

For comparative analysis, Welch’s two-sample t-test
assuming unequal variance was used to generate the p-
value. In the resulting box whisker plot, the lower whisker
extends from the lower quartile to the lowest smaller value
within 1.5 inter-quartile-range (IQR), whereas the upper
whisker extends from the upper quartile to the highest larger
value within 1.5 IQR. The red solid dot and the value beside
it represent the group mean.

Correlation analysis

For correlation analysis, the Pearson correlation was used to
calculate the correlation coefficients. The dendrogram for
the heatmap was generated based on complete-linkage
hierarchical clustering of the correlation coefficients based
on Euclidean distance.
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Data availability

All the datasets were downloaded from the public domain.
The processed and normalized data are available upon
request. The web-portal we developed in this study can be
accessed through the following link: http://Ice.biohpc.sw
med.edu/

Acknowledgements This work was partially supported by grants from
the National Institutes of Health [SRO1CA152301, PS0CA70907,
SP30CA142543, 1R01IGM115473, and 1RO1CA172211], and the
Cancer Prevention and Research Institute of Texas [RP120732,
RP180805, and RP150596]. We thank Jessie Norris for proofreading
the manuscript.

Author contributions YX, JM, and GX supervised the project. LC,
YX, and GX conceived the method. LC designed and performed the
analyses and interpreted the results. LC, YZ, LY, and BC curated the
data. With advice from GX, JM, and YX, SL, LC, BC, QZ, DL, JA,
and BY developed the web application. LY, KH, AG, JH, and IW
provided critical input. LC drafted the article. GX, YX, and JM cri-
tically edited the article. All co-authors have read and edited the
manuscript.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA
Cancer J Clin. 2018;68:7-30.

2. Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AJ,
Wistuba II, et al. Using multiplexed assays of oncogenic drivers in
lung cancers to select targeted drugs. JAMA. 2014;311:1998—
2006.

3. Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for
immune checkpoint blockade-based combination therapies. Can-
cer Cell. 2018;33:581-98.

4. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou
Yang TH, et al. The immune landscape of cancer. Immunity.
2018;48:812-30. el4

5. Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny
D, et al. Molecular determinants of response to anti-programmed
cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1)


http://lce.biohpc.swmed.edu/
http://lce.biohpc.swmed.edu/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

LCE: an open web portal to explore gene expression and clinical associations in

lung cancer 2563

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

blockade in patients with non-small-cell lung cancer profiled with
targeted next-generation sequencing. J Clin Oncol. 2018;36:633—
41.

. Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA,

Audigier-Valette C, et al. Nivolumab plus ipilimumab in lung
cancer with a high tumor mutational burden. N Engl J Med.
2018;378:2093-104.

. Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA,

Atmaca A, et al. Tumor mutational burden and efficacy of nivo-
lumab monotherapy and in combination with ipilimumab in small-
cell lung cancer. Cancer Cell. 2018;33:853-61. e4

. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus:

NCBI gene expression and hybridization array data repository.
Nucleic Acids Res. 2002;30:207-10.

. Parkinson H, Sarkans U, Shojatalab M, Abeygunawardena N,

Contrino S, Coulson R, et al. ArrayExpress—a public repository
for microarray gene expression data at the EBI. Nucleic Acids
Res. 2005;33(Database issue):D553-5.

Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J,
Abeygunawardena N, et al. ArrayExpress—a public repository for
microarray gene expression data at the EBI. Nucleic Acids Res.
2003;31:68-71.

Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R,
Yu J, Briggs BB, et al. Oncomine 3.0: genes, pathways, and
networks in a collection of 18,000 cancer gene expression profiles.
Neoplasia. 2007;9:166—-80.

Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, Sara H, et al.
Systematic bioinformatic analysis of expression levels of 17,330
human genes across 9,783 samples from 175 types of healthy and
pathological tissues. Genome Biol. 2008;9:R139.

Zoubarev A, Hamer KM, Keshav KD, McCarthy EL, Santos JR,
Van Rossum T, et al. Gemma: a resource for the reuse, sharing
and meta-analysis of expression profiling data. Bioinformatics.
2012;28:2272-3.

Cheng WC, Tsai ML, Chang CW, Huang CL, Chen CR, Shu
WY, et al. Microarray meta-analysis database (M(2)DB): a
uniformly pre-processed, quality controlled, and manually
curated human clinical microarray database. BMC Bioinforma.
2010;11:421.

Feichtinger J, McFarlane RJ, Larcombe LD. CancerMA: a web-
based tool for automatic meta-analysis of public cancer microarray
data. Database. 2012;2012:bas055.

Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO,
et al. Integrative analysis of complex cancer genomics and clinical
profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

Szasz AM, Lanczky A, Nagy A, Forster S, Hark K, Green JE,
et al. Cross-validation of survival associated biomarkers in gastric
cancer using transcriptomic data of 1,065 patients. Oncotarget.
2016;7:49322-33.

Mizuno H, Kitada K, Nakai K, Sarai A. PrognoScan: a new
database for meta-analysis of the prognostic value of genes. BMC
Med Genom. 2009;2:18.

Goswami CP, Nakshatri H. PROGgene: gene expression based
survival analysis web application for multiple cancers. J Clin
Bioinform. 2013;3:22.

Orvis T, Hepperla A, Walter V, Song S, Simon J, Parker J, et al.
BRG1/SMARCA4 inactivation promotes non-small cell lung
cancer aggressiveness by altering chromatin organization. Cancer
Res. 2014;74:6486-98.

Fukuoka J, Fujii T, Shih JH, Dracheva T, Meerzaman D, Player A,
et al. Chromatin remodeling factors and BRM/BRG1 expression
as prognostic indicators in non-small cell lung cancer. Clin Cancer
Res. 2004;10:4314-24.

Bai J, Mei P, Zhang C, Chen F, Li C, Pan Z, et al. BRG] is a
prognostic marker and potential therapeutic target in human breast
cancer. PLoS ONE. 2013;8:e59772.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Director’s Challenge Consortium for the Molecular Classification
of Lung A, Shedden K, Taylor JM, Enkemann SA, Tsao MS,
Yeatman TJ, et al. Gene expression-based survival prediction in
lung adenocarcinoma: a multi-site, blinded validation study. Nat
Med. 2008;14:822-7.

Schabath MB, Welsh EA, Fulp WJ, Chen L, Teer JK, Thompson
7], et al. Differential association of STK11 and TP53 with KRAS
mutation-associated gene expression, proliferation and immune
surveillance in lung adenocarcinoma. Oncogene. 2016;35:3209—
16.

Torres PU, Prie D, Molina-Bletry V, Beck L, Silve C, Friedlander
G. Klotho: an antiaging protein involved in mineral and vitamin D
metabolism. Kidney Int. 2007;71:730-7.

Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani
P, et al. Suppression of aging in mice by the hormone Klotho.
Science. 2005;309:1829-33.

Morishita K, Shirai A, Kubota M, Katakura Y, Nabeshima Y,
Takeshige K, et al. The progression of aging in klotho mutant
mice can be modified by dietary phosphorus and zinc. J Nutr.
2001;131:3182-8.

Xie B, Chen J, Liu B, Zhan J. Klotho acts as a tumor suppressor in
cancers. Pathol Oncol Res. 2013;19:611-7.

Zhang A, Wang C, Wang S, Li L, Liu Z, Tian S. Visualization-
aided classification ensembles discriminate lung adenocarcinoma
and squamous cell carcinoma samples using their gene expression
profiles. PLoS ONE. 2014;9:e110052.

Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-
analysis. Stat Med. 2002;21:1539-58.

Nordenberg D, Yip R, Binkin NJ. The effect of cigarette smoking
on hemoglobin levels and anemia screening. JAMA.
1990;264:1556-9.

Niehrs C, Pollet N. Synexpression groups in eukaryotes. Nature.
1999;402:483-7.

Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA,
Himmelstein DS, et al. Understanding multicellular function and
disease with human tissue-specific networks. Nat Genet.
2015;47:569-76.

Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M,
Garapati P, et al. The Reactome Pathway Knowledge base.
Nucleic Acids Res. 2018;46:D649-55.

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H,
Tamayo P, Mesirov JP. Molecular signatures database (MSigDB)
3.0. Bioinformatics. 2011;27:1739-40.

Ame JC, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P,
et al. PARP-2, A novel mammalian DNA damage-dependent poly
(ADP-ribose) polymerase. J Biol Chem. 1999;274:17860-8.
Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Gene-
names.org: the HGNC resources in 2015. Nucleic Acids Res.
2015;43(Database issue):D1079-85.

Zhu Y, Davis S, Stephens R, Meltzer PS, Chen Y. GEOmetadb:
powerful alternative search engine for the Gene Expression
Omnibus. Bioinformatics. 2008;24:2798-800.

Omberg L, Ellrott K, Yuan Y, Kandoth C, Wong C, Kellen MR,
et al. Enabling transparent and collaborative computational ana-
lysis of 12 tumor types within The Cancer Genome Atlas. Nat
Genet. 2013;45:1121-6.

Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JH,
Beasley MB, et al. The 2015 World Health Organization classi-
fication of lung tumors: impact of genetic, clinical and radiologic
advances since the 2004 classification. J Thorac Oncol.
2015;10:1243-60.

Andrew G Nicholson, Keith Kerr, John Gosney. G048 Dataset for
histopathological reporting of lung cancer. The Royal College of
Pathologists. 2018.

Girard L, Rodriguez-Canales J, Behrens C, Thompson DM,
Botros IW, Tang H, et al. An expression signature as an aid to the

SPRINGER NATURE



2564

L. Cai et al.

43.

44,

45.

histologic classification of non-small cell lung cancer. Clin Cancer
Res. 2016;22:4880-9.

Broad Institute TCGA Genome Data Analysis Center (2016):
Analysis-ready standardized TCGA data from Broad GDAC
Firehose 2016_01_28 run. Broad Institute of MIT and Harvard.
Dataset. https://doi.org/10.7908/C11GOKM9

Parmigiani G, Garrett-Mayer ES, Anbazhagan R, Gabrielson E. A
cross-study comparison of gene expression studies for the mole-
cular classification of lung cancer. Clin Cancer Res.
2004;10:2922-7.

Kang DD, Sibille E, Kaminski N, Tseng GC. MetaQC: objective
quality control and inclusion/exclusion criteria for genomic meta-
analysis. Nucleic Acids Res. 2012;40:e15.

SPRINGER NATURE

46.

47.

48.

49.

50.

Chris Fraley, Adrian E. Raftery. Model-based clustering, dis-
criminant analysis and density estimation. J Am Stat Assoc.
2002;97:611-31.

Kaplan EL, Meier P. Nonparametric estimation from incomplete
observations. J Am Stat Assoc; 1958;53:457-81.

Therneau, Terry M., Grambsch, Patricia M. Modeling survival
data: extending the Cox model: Springer; 2000.

Guido Schwarzer. meta: An R package for meta-analysis. R News.
2007;7:40-5.

Viechtbauer W. Conducting meta-analyses in R with the metafor
package. J Stat Softw. 2010;36:1-48.


https://doi.org/10.7908/C11G0KM9

	LCE: an open web portal to explore gene expression and clinical associations in lung cancer
	Abstract
	Introduction
	Results
	Construction of the lung cancer database
	Lung Cancer Explorer
	Survival analysis in LCE
	Flexible group dichotomization
	Survival analysis examples with cluster-based cutoff
	Analysis stratification by additional clinical variables
	Meta-analysis in LCE
	Types of meta-analysis
	Cohort-specific meta-analysis and examples
	Validation of tumor versus normal gene expression difference meta-analysis
	Assessing reproducibility across different studies from meta-analysis
	Comparative analysis in LCE
	Correlation analysis in LCE

	Discussion
	Material and methods
	Data collection and processing
	Dataset selection
	Clinical data curation
	Quality control of clinical data
	Expression data processing
	Quality control of gene expression data
	Database structure/web interface
	Code availability
	Statistical analysis methods
	Cluster-based cutoff for patient grouping
	Survival analysis
	Meta-analysis
	Comparative analysis
	Correlation analysis
	Supplementary material
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




