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a b s t r a c t

Whole genome bisulfite sequencing (WGBS) is an essential technique for methylome studies. Although a
series of tools have been developed to overcome the mapping challenges caused by bisulfite treatment,
the latest available tools have not been evaluated on the performance of reads mapping as well as on bio-
logical insights in multiple mammals. Herein, based on the real and simulated WGBS data of 14.77 billion
reads, we undertook 936 mappings to benchmark and evaluate 14 wildly utilized alignment algorithms
from reads mapping to biological interpretation in humans, cattle and pigs: Bwa-meth, BSBolt, BSMAP,
Walt, Abismal, Batmeth2, Hisat_3n, Hisat_3n_repeat, Bismark-bwt2-e2e, Bismark-his2, BSSeeker2-bwt,
BSSeeker2-soap2, BSSeeker2-bwt2-e2e and BSSeeker2-bwt2-local. Specifically, Bwa-meth, BSBolt,
BSMAP, Bismark-bwt2-e2e and Walt exhibited higher uniquely mapped reads, mapped precision, recall
and F1 score than other nine alignment algorithms, and the influences of distinct alignment algorithms
on the methylomes varied considerably at the numbers and methylation levels of CpG sites, the calling of
differentially methylated CpGs (DMCs) and regions (DMRs). Moreover, we reported that BSMAP showed
the highest accuracy at the detection of CpG coordinates and methylation levels, the calling of DMCs,
DMRs, DMR-related genes and signaling pathways. These results suggested that careful selection of algo-
rithms to profile the genome-wide DNA methylation is required, and our works provided investigators
with useful information on the choice of alignment algorithms to effectively improve the DNA methyla-
tion detection accuracy in mammals.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As the most widely studied epigenetic mechanism [1], DNA
methylation is a basic modification that adds a methyl group to
the fifth carbon of cytosine to form 5-methylcytosine [2], but does
not change the DNA sequence itself [3]. A series of studies have
demonstrated that DNA methylation regulates transcription activ-
ity [4,5], X chromosome inactivation [5], imprinting [5,6], and
chromosome stability [6]. Currently, based on the next-
generation sequencing, although several methods such as methy-
lated DNA immunoprecipitation sequencing (MeDIP-Seq) [7,8],
methyl-CpG binding domain sequencing (MBD-Seq) [8,9], methy-
lation capture sequencing (MethylCap-Seq) [8,10], reduced repre-
sentation bisulfite sequencing (RRBS) [11], bisulfite amplicon
sequencing [12] and SeqCap Epi CpGiant [8,13], are developed to
cover the preselected genomic regions of interest, the whole gen-
ome bisulfite sequencing (WGBS) has been developed to investi-
gate DNA methylation landscape at single-base resolution, which
is considered as the gold standard technology [14].

More recently, WGBS is at the forefront of epigenetic analysis
and popularly utilized to investigate the genome-wide DNA
methylation dynamics of mammalian developments [15,16] as
well as the epigenetic marks of diseases [17]. But the bisulfite
treatment converts unmethylated cytosine as thymine, reduces
the complexity of reads, and thus causes a mapping challenge to
aligners in WGBS [18]. To deal with this challenge, many specific
mapping tools have been developed based on three strategies,
namely wild-card, three-letter and two-letter [19,20]. Wild-card
strategy allows C or T to match with C of the reference genome
[19]; three-letter strategy converts both C on the reads and
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reference genome into T, namely holding A, G and T (three-letter
alphabet) in reads and reference genome [19]; two-letter strategy
simultaneously converts purines (As and Gs) to one letter and
pyrimidines (Cs and Ts) to another letter during the mapping
[20]. Furthermore, using wild-card, three-letter, or two-letter
strategy combining with in-house aligner [21–23] or popular align-
ers, e.g., Bowtie [24], Bowtie2 [25], BWA [26], HISAT2 [27], SOAP
[28], SOAP2 [29], and BatAlign [30], a number of mappers are
developed to overcome the mapping challenges caused by bisulfite
treatment, e.g., Bwa-meth [31], Bismark [32], BSSeeker2 [33], Walt
[23], Batmeth2 [34], BSMAP [35], Abismal [20], BSBolt [36], and
Hisat-3n [37]. Previous studies have recommended that the map-
pers wrapped with different aligners shows distinct mapping pre-
cision [38–40], uniquely mapped reads [39], recall [38] and
calculation efficiency [41], as well as the diverse sensibility of read
depth [38] in WGBS.

Recently, in humans, Tran et al. compare the uniquely mapped
reads and runtime of five alignment algorithms (BSMAP, Bismark,
BSSeeker, BRAT-BW, and BiSS), as well as the sensitive to read
length and sequencing error [42]; Tsuji et al. evaluate the mapping
sensitivity, mapping error, runtime, and memory consumption of
five alignment algorithms (Bismark, BSMAP, BRAT-BW, GSNAP
and LAST) [41]; Govindarajan et al. mainly focus on the genomic
coverage of five bisulfite mappers (Bismark, BSMAP, Pash, BatMeth,
and BSSeeker) [21]. Although these studies have assessed several
alignment algorithms on reads mapping in one mammalian gen-
ome, they have not evaluated and compared them comprehen-
sively in multiple mammals as well as on biological insight into
methylomes, such as the calling of methylation levels, differen-
tially methylated CpGs (DMCs), differentially methylated regions
(DMRs) as well as the signaling pathways.

Herein, 14 alignment algorithms, which were wildly used to
profile the genome-wide DNA methylation in mammalian investi-
gations, were collected in this study. These 14 algorithms were
well representative in the alignment algorithms of WGBS. We
aimed to comprehensively compare and evaluate the runtime,
memory consumption, uniquely mapped reads, unsatisfactory
aligned reads, mapped precision, recall as well as F1 score of 14
alignment algorithms in humans, cattle and pigs. Moreover, we
explored the accuracies of alignment algorithms on the detection
of CpG coordinates and methylation levels, as well as the calling
of DMCs, DMRs, DMR-related genes and signaling pathways. These
works provide investigators with useful information on the choice
of alignment algorithms in mammals.
2. Materials and methods

2.1. Generations of simulated data

In this study, the reference genomes of humans, cattle and pigs
were downloaded from UCSC (https://genome.ucsc.edu/), and they
varied in genome size, assembly qualities and gene numbers
(Table 1). Based on the reference genome of the three mammals,
the simulated WGBS data were generated by using Sherman
(https://www.bioinformatics.babraham.ac.uk/projects/sherman/),
which was a simulator of WGBS data developed by Babraham
[39,40,42], with the specific parameter (Table S1).
Table 1
Assembly statistics for Human, Cattle and Pig reference genome.

Species Genome Size (Mb) Scaffolds Sc

Human 3,209.29 473 6
Cattle 2,715.85 2,211 10
Pig 2,502.91 706 8
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In order to benchmark the runtime, memory consumption,
uniquely mapped reads, mapped precision, recall and F1 score,
we generated 45 simulated data samples (5 sequencing error
rates � 3 mammals � 3 replicates) by using Sherman, and named
it as Simulated Dataset A (Table S1). The 5 sequencing error rates
were 0, 0.25 %, 0.5 %, 0.75 % and 1.00 %; the 3 mammals were
human, cattle and pig; 3 replicates were generated for each
sequencing error rate of every mammal. In total, 45 simulated data
samples with 630 mapping actions were used to benchmark 14
alignment algorithms (Table S2). After considering the overwork
and computation efficiency of 630 mappings, two million reads
were generated for each of 45 simulated data samples. The Simu-
lated dataset A had a total of 90 million reads.

To further investigate the mapping performance and the influ-
ence of the repetitive sequence and CGIs on mapping efficiency
for alignment algorithms, the Simulated Dataset B (Table S1) was
generated, which contained 18 data samples (2 sequencing error
rates � 3 mammals � 3 replicates), and each sample harbored
�93.80 million reads. The 2 sequencing error rates were 0 and
1.00 %. The Simulated Dataset B had a total of 1.64 billion reads.
In this study, the Simulated Dataset A and B were not used to
benchmark the biological insights on methylomes, including the
calling of CpG coordinates, DMCs, DMRs, DMR-related genes and
signaling pathways.

2.2. Descriptions of Real WGBS data

The real WGBS data of humans [43], cattle [44] and pigs [45]
were downloaded from Sequence Read Archive of National Center
for Biotechnology Information (NCBI) (Table S3). The Real Dataset
A (Table S4) was sampled and extracted from Table S3, and con-
tained 9 data samples (3 mammals � 3 replicates). Each sample
had two million reads. The Real Dataset A had a total of 18 million
reads, and was used to evaluate the runtime, memory consump-
tion and uniquely mapped reads.

The Real Dataset B (Table S3) contained 18 data samples (3
mammals � 2 groups � 3 replicates). The 2 groups were group1
and group 2, and each group had 3 biological replicates. The data
of human came from brains of schizophrenia patients and normal
people [43]; the data of cattle came from 6 bull longissimus dorsi
muscle [44]; the data of pig came from the skeletal muscle of Lan-
drace pigs [45]. The sequencing depth of the samples in Real Data-
set B was > 30. The Real Dataset B had a total of 13.1 billion reads,
and was used to explore the impacts of alignment algorithms on
downstream analysis of biological interpretations, e.g., CpG coordi-
nates, DMCs, DMRs, DMR-genes and signaling pathways.

2.3. Quality control, mapping, and downstream analysis

In the analysis of real WGBS data, FastQC program (https://
www.bio informatics.babraham.ac.uk/p rojects/fastqc/) was used
to control the quality of reads, and Fastp [46] was used to trim
adaptor sequences and filter low-quality bases/reads with the
default parameters. For the mapping of reads, it was undertaken
by 14 alignment algorithms, including Bwa-meth, BSMAP, Walt,
Batmeht2, Bismark-bwt2-e2e, Bismark-his2, BSSeeker2-bwt,
BSSeeker2-soap2, BSSeeker2-bwt2-e2e, BSSeeker2-bwt2-local,
affold N50 (Mb) Gene numbers Genome version

7.79 64,252 hg38
3.31 27,607 bosTau9
8.23 31,908 susScr11
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Abismal, BSBolt, Hisat_3n, and Hisat_3n_repeat (Table S2). In this
study, the mapper was developed based on one certain mapping
strategy, including Bwa-meth, BSMAP, Bismark, Walt, BSSeeker2,
Batmeth2, Abismal, BSBolt, and Hisat-3n. The aligner was the core
alignment of mapper, e.g., Bowtie, Bowtie2, BWA, SOAP, SOAP2,
HISAT2, BatAlign, and in-house aligners. The alignment algorithms
defined as the mapper warped up with one kind of aligner
(Table S2).

In the Simulated Dataset A and Real Dataset A, the reads were
mapped to reference genome using 14 alignment algorithms to
record and investigate the runtime and memory consumption (res-
ident set size) with one thread. The uniquely mapped reads,
mapped precision, recall and F1 score of 14 alignment algorithms
were calculated in the Simulated Dataset A, and the uniquely
mapped reads were also calculated in the Real Dataset A. Since
Bwa-meth, BSMAP, Bismark-bwt2-e2e, Walt, and BSBolt exhibited
outstanding in uniquely mapped reads and F1 score, the subse-
quent analysis in Simulated Dataset B and Real Dataset B were
focused on these five alignment algorithms. The Simulated Dataset
B was used to count the number of the unsatisfactory aligned reads
to further investigate the mapping performance and the influence
of the repetitive sequence and CGIs on mapping efficiency.

After mapping, the bam files of the Real Dataset B were sorted
and indexed by Samtools [47]. To further evaluate the applications
of alignment algorithms in the downstream analysis of WGBS data,
the CpG sites, DMCs, DMRs, DMR-related genes and signaling path-
ways were detected based on these bam files. The CpGs with at
least 10 � coverage were retained for further analysis, and the
methylation level was calculated by using methyldackel (https://
github.com/dpryan79/Methyl Dackel). The R package ‘‘DSS” [2,48]
with a Wald test and the condition of P � 0.05 (corrected by the
false discovery rate) was used to identify the DMCs and DMRs.
The DMR-related genes were defined as genes whose coding
sequence overlapped with the DMRs by at least one base. The
Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment
analysis on DMR-related genes was performed on the R package
Fig. 1. The analysis protocol for benchmarking

4706
‘‘clusterProfiler” [49] (P � 0.01). In this study, all alignment algo-
rithms used the default parameters recommended by the original
developers, and the workflows were summarized in Fig. 1.

2.4. Calculation of uniquely mapped reads, mapped precision, recall
and F1 score

In the mapping results, the reads were divided into uniquely
mapped reads, multiple mapped reads and unmapped reads. The
uniquely mapped reads were defined as the reads that were only
mapped to one location of reference genome, and its proportion
was equal to the number of uniquely mapped reads divided by
the number of all reads. The multiple mapped reads were
described as the reads that were mapped to multiple locations of
reference genome. The unmapped reads were defined as the reads
that could not be mapped to reference genome. For simulated
reads generated from Sherman, the original positions of simulated
reads were recorded by Sherman (https://www.bioinformatics.
babraham.ac.uk/\projects/sherman/), and the predicted positions
were recorded by the alignment algorithms. Since the simulated
reads did not account for insertions and deletions, we considered
only the first base of the reads at its genome position when com-
pared the original position and the predicted position. Then the
uniquely mapped reads were further divided into the correct and
incorrect uniquely mapped reads by comparing the original posi-
tion and the predicted position. The incorrect uniquely mapped
reads, multiple mapped reads and unmapped reads have merged
as the unsatisfactory aligned reads.

The mapped precision, recall and F1 score of alignment algo-
rithms were calculated by the following formula [39]:

mapped precision ¼
PN

i¼1
TPi

TPiþFPi

� �

N

recall ¼
PN

i¼1
TPi

TPiþFNi

� �

N

of 14 alignment algorithms in mammals.
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F1score ¼ 2 �mapped precision � recall
mapped precisionþ recall

where i is a genomic fragment mapped by reads, N is the total num-
ber of genomic fragments, TPi is the number of true positive for the
reads mapped to the genomic fragment, FPi is the number of false
positive for the reads mapped to the genomic fragment, and FNi is
the number of false negative reads mapped to the genomic frag-
ment. Specially, all the multiple mapped reads were counted into
true negative reads mapped to the genomic fragment.
2.5. Statistics analysis

By calculating the accuracy of five algorithms on CpG sites
(Fig. S1a), BSBolt exhibited the lowest accuracy (Fig. 5c). Therefore,
the subsequent analysis of CpG coordinates, DMCs, DMRs, DMR-
related genes, signaling pathways were focused on Bwa-meth,
BSMAP, Bismark-bwt2-e2e, and Walt. In terms of these four algo-
rithms, we defined the results (i.e. CpG coordinates, DMCs, DMRs,
DMR-related genes, and signaling pathways) detected by at least
three alignment algorithms as accurate results (Fig. S1b). For
example, among the CpG sites detected by Walt in humans, A
CpG sites (13962703) were co-called by Bwa-meth, BSMAP,
Bismark-bwt2-e2e; B CpG sites (14697507) were co-called by
Bwa-meth and BSMAP; C CpG sites (14606328) were co-called by
BSMAP and Bismark-bwt2-e2e; D CpG sites (14295028) were co-
called Bwa-meth, and Bismark-bwt2-e2e. Then the number of
accurate CpG sites in Walt was calculated by: the number of accu-
rate CpG sites in Walt = (B + C + D)-2 * A = (14697507 + 146975
07 + 14295028) – 2 * 13962703 = 15764636. It was worth noting
that the CpG sites co-called by multiple algorithms refereed to
those CpG sites, which were detected by these algorithms and
the methylation differences of which were <5.00 % in these
algorithms.

Moreover, based on the studies of Sun X et al. [38], we defined
the concordant CpG sites as the CpGs which were consistently
detected by all four alignment algorithms (Bwa-meth, BSMAP,
Bismark-bwt2-e2e, and Walt) and the methylation differences of
which were <5.00 %. The remaining CpG sites detected by the four
alignment algorithms were regarded as the discordant CpG sites.
The DMCs were defined as the concordant DMCs if they were con-
sistently detected by the four alignment algorithms, and the
remaining DMCs were termed as the discordant DMCs. The DMRs
identified by the four alignment algorithms, which were over-
lapped genomic regions, were defined as the concordant DMRs,
and the remaining DMRs were regarded as the discordant DMRs.

The significant differences of runtime, memory consumption,
the number of uniquely mapped reads, mapped precision, recall,
the number of unsatisfactory aligned reads and the number of
CpG sites were tested by a Student’s t-test with the function of
‘‘t.test”. the Pearson’s correlation coefficient was tested using the
function of ‘‘cor.test”; the enrichment was tested by a two-tail
Fisher’s exact test with the function of ‘‘fisher.test”, and these
functions were utilized from the R ‘‘stats package” (https://www.
rdocumentation.org/packages/stats/). In order to investigate the
influences of the repetitive sequence and CGIs on the unsatisfac-
tory aligned reads, CpG sites, DMCs and DMRs, the locations of
repetitive sequences and CGIs was downloaded from UCSC
(Table S5). CGIs were defined as the regions >200 bp in length, with
a C and G percentage > 0.5, and a ratio of the observed CpG/ex-
pected CpG > 0.6. The distributions of unsatisfactory aligned reads,
CpG sites, DMCs and DMRs on the repetitive sequence and CGIs
were described using BedTools [50]. The visualizations of DNA
methylation profiles in genes were showed using the UCSC Gen-
ome Browser.
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3. Results

3.1. Data sets and analysis protocol

To comprehensively evaluate these 14 alignment algorithms,
we used simulated and real data from humans, cattle and pigs,
including four data sets: Simulated Dataset A, Simulated Dataset
B, Real Dataset A, and Real Dataset B (see Materials and methods).
The Simulated Dataset A, which was against at 0, 0.25 %, 0.50 %,
0.75 % and 1.00 % sequencing errors, consisted of 90 million reads
with 45 samples in total (Table S1); the Simulated Dataset B, which
was against at 0 and 1.00 % sequencing errors, consisted of 1.64 bil-
lion reads with 18 samples in total (Table S1); the Real Dataset A
was composed of 18 million reads with 9 samples (Table S4), and
the Real Dataset B included 18 samples with 13.1 billion reads
from humans, cattle, and pigs (Table S3). Among them, the Simu-
lated Dataset A and Real Dataset A was used to evaluate the basic
performance of the alignment algorithms, such as the runtime,
memory consumption, uniquely mapped reads, mapped precision,
recall and F1 score, while the Simulated Dataset B and Real Dataset
B were used to further investigate the biological interpretation (i.e.
CpG coordinates, DMC, DMR, DMR-related genes, and signaling
pathways).

The analysis protocol of this study was shown in Fig. 1. The
information of these alignment algorithms was listed in Table S2,
and each step of the protocol would be illustrated in the following
results.
3.2. Runtime and memory usage cost of alignment algorithms

To benchmark the computational efficiencies of these 14 align-
ment algorithms, the runtime and memory consumption were cal-
culated using the Simulated Dataset A (Table S1) and Real Dataset
A (Table S4). We found that Walt was the fastest, and BSSeeker2-
bwt2-local was the slowest algorithms at 0, 0.25 %, 0.50 %, 0.75 %
and 1.00 % sequencing errors (Fig. 2a). The runtimes of Bwa-
meth, Hisat_3n, Hisat_3n_repeat, BSBolt, BSMAP and Bismark-
his2 were positively correlated to the sequencing error rates of 0,
0.25 %, 0.50 %, 0.75 %, and 1.00 % in humans, cattle and pigs (Pear-
son’s correlation coefficients � 0.7, P < 0.05) (Fig. 2b and Fig. S2).
As shown in Fig. 2c, the average runtime of BSSeeker2-bwt2-e2e,
Batmeth2, BSSeeker2-bwt2-local, and Abismal were 5.38 (simu-
lated data) and 3.36 (real data) folds longer than the average run-
time of Walt, BSMAP, Bwa-meth, Bismark-his2, BSSeeker2-soap2,
BSSeeker2-bwt, Bismark-bwt2-e2e, BSBolt, Hisat_3n, and
Hisat_3n_repeat (Student’s t-test, P < 2.67e-12).

Moreover, the runtime of certain alignment algorithm did not
significantly change among the humans, cattle and pigs, except
for Batmeth2, BSSeeker2-bwt2-local, and Abismal (Fig. 2c). Averag-
ing the results of simulated and real data together (Fig. 2c),
BSSeeker2-soap2 was 2.72, 5.78 and 8.95 folds faster than
BSSeeker2-bwt, BSSeeker2-bwt2-e2e, and BSSeeker2-bwt2-local
(Student’s t-test, P < 3.7e-09), respectively; Bismark-his2 was
2.27 folds faster than Bismark-bwt2-e2e (Student’s t-test,
P < 9.5e-07); Bismark-bwt2-e2e was 2.04 folds faster than
BSSeeker2-bwt2-e2e (Student’s t-test, P < 2.3e-09), suggesting that
the mappers showed diverse runtime by using distinct aligners, as
well as that an aligner exhibited dissimilar runtime by wrapping
up with distinct mappers.

Besides, at 0, 0.25 %, 0.50 %, 0.75 % and 1.00 % sequencing errors,
Walt took up the most memory consumption, while BSSeeker2-
bwt2-local took up the lowest, which was contrary to the runtime
of Walt and BSSeeker2-bwt2-local (Fig. 2a). The memory consump-
tion of Bwa-meth and BSBolt was highly positively correlated with
the sequencing error rates of 0, 0.25 %, 0.50 %, 0.75 % and 1.00 % in

https://www.rdocumentation.org/packages/stats/
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Fig. 2. Runtimes and memory consumptions of 14 alignment algorithms based on the Simulated Dataset A and Real Dataset A. (a) Runtimes (left) and memory consumptions
(right) of 14 alignment algorithms with five sequencing error rates in Simulated Dataset A. (b) Pearson’s correlation coefficients between the sequencing error rate in
Simulated Dataset A and the performance (e.g., runtime, memory consumption, uniquely mapped reads, mapped precision and recall) of 14 alignment algorithms. (c) Average
runtimes of 14 alignment algorithms in Simulated Dataset A (left) and Real Dataset A (right). (d) Average memory consumptions of 14 alignment algorithms in Simulated
Dataset A (left) and Real Dataset A (right).
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humans, cattle and pigs (Pearson’s correlation coefficients � 0:7, P
< 0.05, Fig. 2b and Fig. S3). BSSeeker2-soap2, BSMAP, Bwa-meth,
Walt, Batmeth2, Hisat_3n, Hisat_3n_repeat, and BSBolt consumed
3.29 (simulated data) and 3.30 (real data) folds more memory than
BSSeeker2-bwt, Bismark-bwt2-e2e, BSSeeker2-bwt2-e2e,
BSSeeker2-bwt2-local, Bismark-his2, and Abismal in humans, cat-
tle and pigs (Student’s t-test, P < 2.2e-16, Fig. 2d). As shown in
Fig. 2d, the memory consumption of these alignment algorithms
was decreasing along with the genomic sizes of humans, cattle,
and pigs. Otherwise, averaging the results of simulated and real
data together (Fig. 2d), BSSeeker2-soap2 respectively consumed
2.19, 2.02 and 2.02 folds more memory than BSSeeker2-bwt,
BSSeeker2-bwt2-e2e and BSSeeker2-bwt2-local (Student’s t-test,
P < 1:08e� 06); Bismark-his2 consumed 1.33 folds more memory
than Bismark-bwt2-e2e (Student’s t-test, P < 7:37e� 06). These
results indicated that the aligner soap2 and his2 consumed more
memories than bwt, bwt2-e2e and bwt2-local.

3.3. Uniquely mapped reads, mapped precision, recall and F1 score of
alignment algorithms

To investigate mapping performances of the alignment algo-
rithms, the uniquely mapped reads, mapped precision, recall and
F1 score were counted using the Simulated Dataset A (Table S1).
We found that Bwa-meth exhibited the most, but BSSeeker2-
bwt2-e2e expressed the least uniquely mapped reads in three gen-
omes at 0, 0.25 %, 0.50 %, 0.75 % and 1.00 % sequencing errors
(Fig. 3a). The sequencing error rates were highly negative correla-
tion with the rates of uniquely mapped reads at Hisat_3n_repeat,
Hisat_3n, Walt, BSSeeker2-soap2, BSSeeker2-bwt2-local, Batmeth2
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and BSSeeker2-bwt2-e2e (Pearson correlation coefficients � �0:7,
P < 0.05, Fig. 2b and Fig. S4). As showed in Fig. 3b, the proportions
of uniquely mapped reads of Bwa-meth, BSBolt, BSMAP, Hisat_3n,
Hisat_3n_repeat, Abismal, Bismark-bwt2-e2e and Walt dominated
22.68 % higher than others (Student’s t-test, P < 2:2e� 16). Inter-
estingly, apart from Batmeth2, Hisat_3n_repeat, Bwa-meth, and
BSBolt, these alignment algorithms exhibited a higher proportion
of uniquely mapped reads in cattle and pigs, comparing to humans
(Fig. 3b). It was readable to point out that the four algorithms of
BSSeeker2 displayed the similar uniquely mapped reads, but
Bismark-bwt2-e2e exhibited 11.00 % more uniquely mapped reads
than Bismark-his2 (Fig. 3b). However, the appearances were not
observed in real data (Fig. 3c).

Moreover, Walt showed the highest mapped precision and
recall, while BSSeeker2-bwt2-local expressed the lowest mapped
precision and recall (Fig. 3d and Fig. S5a, b). The mapped precision
and recall of these alignment algorithms showed a highly and neg-
ative correlation with sequencing error rates (Pearson correlation
coefficients � �0:7, P < 0.05), except for BSSeeker2-bwt (Fig. 2b
and Fig. S6-7). Furthermore, we found that the average F1 score
of most alignment algorithms were >90 %, apart from BSSeeker2-
bwt2-local and Batmeth2 in three genomes (Fig. 3e). For F1 score,
BSSeeker2-bwt2-local showed at least 21.64 % lower than
BSSeeker2-soap2, BSSeeker2-bwt and BSSeeker2-bwt2-e2e
(Fig. 3e). Interestingly, Batmeth2 and BSSeeker2-bwt2-local per-
formed worse at F1 score in simulated data (Fig. 3e), but exhibited
the excellent performance on uniquely mapped reads in real data
(Fig. 3c). Averaging the results of uniquely mapped reads and F1
score (Fig. 3b and e) in three genomes, we found that the propor-
tion of uniquely mapped reads of Bwa-meth, BSBolt, BSMAP,



Fig. 3. Uniquely mapped reads, mapped precision, recall and F1 score benchmark of 14 alignment algorithms based on the Simulated Dataset A and Real Dataset A. (a)
Uniquely mapped reads with five sequencing error rates in Simulated Dataset A. The average proportions of uniquely mapped reads of these alignment algorithms in
Simulated Dataset A (b) and Real Dataset A (c). (d) The average mapped precision and recall for these alignment algorithms in Simulated Dataset A. (e) The average F1 score of
these alignment algorithms in Simulated Dataset A. (f) The average rates of uniquely mapped reads and F1 score in Simulated Dataset A.
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Bismark-bwt2-e2e, and Walt were >90 %, as well as the F1
score > 90 % (Fig. 3f). Therefore, for clarity and simplicity, we
focused subsequent analyses on Bwa-meth, BSBolt, BSMAP,
Bismark-bwt2-e2e and Walt to further investigate their perfor-
mance on biological interpretation of WGBS data.

3.4. Influence of the repetitive sequences and CGIs on the mapping
performance

Since Bwa-meth, BSBolt, BSMAP, Bismark-bwt2-e2e, and Walt
exhibited outstanding in uniquely mapped reads and F1 score,
we used the Simulated Dataset B (Table S1) to further investigate
the mapping performance of these five algorithms. We found that
Bwa-meth exhibited the least, and Walt displayed the most unsat-
isfactory aligned reads (Fig. 4a). Since the sequencing error rate
increased from 0 to 1.00 %, the unsatisfactory aligned reads of
BSMAP, BSBolt, Bwa-meth, Bismark-bwt2-e2e and Walt increased
by 0.053 %, 1.95 %, 0.144 %, 1.321 % and 5.651 %, respectively
(Fig. 4a). With the sequencing error rate 0 and 1.00 %, it was also
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found that the unsatisfactory aligned reads of Bwa-meth were only
composed of incorrect uniquely mapped reads (Fig. 4a). Further-
more, humans harbored more unsatisfactory aligned reads in the
five alignment algorithms than cattle and pigs (P < 0:0013,
Fig. 4a). Interestingly, we found that 9.2 %–53 % unsatisfactory
aligned reads were the same reads in these five algorithms
(Fig. S8). This results reflected different mapping performances of
these five alignment algorithms.

To investigate the influence of genomic features on unsatisfac-
tory aligned reads, we explored the representations of the unsatis-
factory aligned reads on the repetitive sequences and CGIs. More
unsatisfactory aligned reads were found in repetitive sequence
than in non-repetitive sequence (Student’s t-test, P < 2.68e-05,
Fig. 4b), and more unsatisfactory aligned reads were found in CGI
regions than non-CGI regions (Student’s t-test, P < 9.59e-05,
Fig. 4c). For Bwa-meth, BSBolt, BSMAP, Bismark-bwt2-e2e and
Walt, the enrichments of unsatisfactory aligned reads at repetitive
sequence were 1.43, 1.33, 1.41, 1.29, and 1.38 in humans (Fisher’s
exact test, P < 2.2e-16); 4.06, 4.29, 4.37, 2.82, and 3.03 in cattle



Fig. 4. The influence of repetitive sequence and CGI on mapping performance of five alignment algorithms in the Simulated Dataset B. (a) The proportion and class of
unsatisfactory aligned reads for Bwa-meth, BSBolt, BSMAP, Bismark-bwt2-e2e and Walt. (b) The proportion of unsatisfactory aligned reads in repetitive sequence and non-
repetitive sequence for these five alignment algorithms. (c) The proportion of unsatisfactory aligned reads in CGI and non-CGI for these five alignment algorithms.
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(Fisher’s exact test, P < 2.2e-16); 1.70, 1.69, 1.59, 1.50, and 1.55 in
pigs (Fisher’s exact test, P < 2.2e-16) (Fig. 4b), compared with non-
repetitive sequence. Also, compared with non-CGI (Fig. 4c), the
enrichments of unsatisfactory aligned reads at CGI were 1.67,
1.76, 1.64, 1.67, and 1.76 in humans (Fisher’s exact test, P <

2.2e-16); 3.18, 2.70, 2.23, 2.56, and 2.00 in cattle (Fisher’s exact
test, P < 2.2e-16); 1.99, 2.06,1.66, 1.65, and 1.69 in pigs (Fisher’s
exact test, P < 2.2e-16). These observations indicated that the
repetitive sequences and CGI regions were like to facilitate the
unsatisfactory aligned reads.

3.5. Influences of alignment algorithms on CpG coordinates and
methylation levels

The methylomic profiles of Real Dataset B (Table S3) were
evaluated by Bwa-meth, BSBolt, BSMAP, Bismark-bwt2-e2e and
Walt at the CpG sites covered with � 10 reads. We found BSBolt
called the most CpG sites in humans (28551216), cattle
(36661360) and pigs (31884976); Walt called the least CpG sties
in humans (17326301), cattle (20956144) and pigs (18884561)
(Fig. 5a and Fig. S9a). In humans (Fig. 5b), these five alignment
algorithms consistently detected 8182827 CpG sites, but the
CpG sites consistently detected by Bwa-meth, BSMAP, Bismark-
bwt2-e2e, and Walt increased by 170.63 % (13962703) after
removing BSBolt. This result suggested that BSBolt seems to be
responsible for the lack of concordant CpG sites in human, and
the similar phenomenon was observed in cattle and pigs
(Fig. 5b). Moreover, as shown in Fig. 5c and Fig. S9b, BSMAP
exhibited the highest accuracy at the detection of CpG coordi-
nates (human: 15411076, 99.37 %; cattle: 14252815, 98.99 %;
pig: 14272746, 99.03 %), while BSBolt obtained the lowest
accuracy (human: 9728719, 62.73 %; cattle: 6143665, 42.67 %;
pig: 6316216, 43.82 %). Since BSBolt showed a huge difference
in CpG sites with the other four algorithms, the following
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discussion would focus on the Bwa-meth, BSMAP,
Bismark-bwt2-e2e, and Walt.

In terms of Bwa-meth, BSMAP, Bismark-bwt2-e2e, andWalt, we
found that Walt likely contributed to the discordance of these four
alignment algorithms, since the most CpG sites were consistently
detected by the other three algorithms after removing Walt
(Fig. 5d and Fig. S10a). BSMAP showed higher accuracy than the
other three algorithms (Fig. 5e and Fig. S10b). In addition,
26586835, 29736425 and 28674654 CpG sites were respectively
detected in humans, cattle and pigs by the four alignment algo-
rithms, of which approximately 51.65 %, 42.02 % and 44.64 % were
detected as concordant CpG sites (Fig. 5f). Furthermore, CGIs and
repetitive sequences likely retained more discordant CpG sites
than non-CGIs and non-repetitive sequences in humans, cattle
and pigs (Student’s t-test, P < 6.38e-03, Fig. 5g). In humans, cattle,
and pigs, the concordant CpGs were likely to over representation at
the low (<1/3) and high methylation (>1/3), but the discordant
CpGs were likely to under representation at the intermediate
methylation (1/3 � 2/3) (Student’s t-test, P < 0.02, Fig. 5h).

3.6. Influences of alignment algorithms on DMCs and DMRs

The changes and dynamics of methylomes at the points of
DMCs and DMRs were evaluated among Bwa-meth, BSMAP,
Bismark-bwt2-e2e and Walt based on the CpG sites covered with
�10 reads in Real Dataset B (Table S3). In these four algorithms,
Bwa-meth called the most DMCs (human: 1366812; cattle:
2506659; pig: 1747539) and Walt called the least DMCs (human:
884427; cattle: 1702832; pig: 850291) (Fig. 6a and Fig. S11a).
For the DMCs co-recognized by four algorithms, 316048, 631985,
and 27238 DMCs respectively recognized in humans, cattle and
pigs. In terms of the DMCs consistently recognized by three algo-
rithms, Bwa-meth, BSMAP and Bismark-bwt2-e2e consistently rec-
ognized the most DMCs (human: 432724; cattle: 811088; pig:



Fig. 5. The influences of Bwa-meth, BSBolt, BSMAP, Bismark-bwt2-e2e andWalt on CpG coordinates and methylation levels in the Real Dataset B. (a) The total number of CpG
sites detected by Bwa-meth, BSBolt, BSMAP, Bismark-bwt2-e2e and Walt, respectively. (b) The number of shared CpG sites consistently detected by five or four alignment
algorithms. (c) The proportion of accurate CpG sites detected by Bwa-meth, BSBolt, BSMAP, Bismark-bwt2-e2e and Walt. (d) The number of shared CpG sites consistently
detected by four or three alignment algorithms. (e) The proportion of accurate CpG sites detected by Bwa-meth, BSMAP, Bismark-bwt2-e2e and Walt. (f) The proportion of
concordant and discordant CpG sites. (g) The proportion of concordant and discordant CpG sites in CGI, non-CGI, repetitive sequence and non-repetitive sequence. (h) The
proportion of concordant and discordant CpG sits in the methylation level of high, intermediate and low. Bwa: Bwa-meth; BSM: BSMAP; Bis: Bismark-bwt2-e2e; Wal: Walt:
BSB: BSBolt.

W. Gong, X. Pan, D. Xu et al. Computational and Structural Biotechnology Journal 20 (2022) 4704–4716
363085), and Bwa-meth, Bismark-bwt2-e2e and Walt consistently
recognized the least DMCs (human: 334856; cattle: 669034; pig:
289236). After the remove of Walt, the most DMCs consistently
recognized by three algorithms were obtained, indicating that Walt
appeared to be responsible for the lack of concordance of DMCs
(Fig. 6b). At the calling of DMCs, BSMAP showed the highest accu-
racy in humans (551145, 96.70 %), cattle (1101408, 96.74 %) and
pigs (502505, 96.75 %), while Walt showed the lowest accuracy
in humans (453277, 79.53 %), cattle (959354, 84.27 %) and pigs
(428656, 82.54 %) (Fig. 6c and Fig. S11b). Moreover, the enrich-
ments of concordant DMCs were 0.92, 0.87, and 0.83 in repetitive
sequence of humans, cattle and pigs, respectively (Fig. 6d, Fisher’s
exact test, P < 2.2e-16), showing that the concordant DMCs were
likely to under representation at repetitive sequence. Nonetheless,
the concordant DMCs has no clear preference for CGIs (Fig. 6d).

Among Bwa-meth, BSMAP, Bismark-bwt2-e2e and Walt, the
longest DMRs were called from the mapping results of Bwa-meth
(human: 109239519 bp, cattle: 123175355 bp, pig:
120202580 bp), and the shortest DMRs were called from the map-
ping results of Walt (human: 77387750 bp, cattle: 94239118 bp,
pig: 79180616 bp) (Fig. 6e, Fig. S11c). Moreover, Bwa-meth,
BSMAP, Bismark-bwt2-e2e and Walt consistently identified
30530480 bp, 33100297 bp and 25135110 bp DMRs in humans,
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cattle and pigs, respectively (Fig. 6f). In the DMRs co-identified
by three algorithms, we found that the DMRs co-identified by
Bwa-meth, BSMAP and Bismark-bwt2-e2e was the longest (hu-
man: 40957306 bp; cattle: 42379448 bp; pig: 33330430 bp) after
the remove of Walt, suggesting that the lack of concordance could
be attributed to Walt (Fig. 6f). As shown in Fig. 6g and Fig. S11d,
BSMAP exhibited the highest accuracy at the calling of DMRs in
humans (50708843 bp, 95.39 %), cattle (56868993 bp, 95.34 %)
and pigs (953420 bp, 94.86 %), but Walt showed the lowest accu-
racy in humans (42734834 bp, 80.39 %), cattle (50368187 bp,
84.44 %) and pigs (39014214 bp, 82.64 %).

The enrichments of these concordant DMRs were 0.74, 0.74, and
0.86 in repetitive sequence of humans, cattle and pigs, respectively
(Fig. 6h, Fisher’s exact test, P < 2.2e-16), showing that the concor-
dant DMRs were also likely to under representation at repetitive
sequence, and the concordant DMRs has no clear preference for
CGIs (Fig. 6h). In order to better describe the influences of the four
alignment algorithms on the genome-wide DNA methylation pro-
files, we visually observed the methylation profiles of SOX9 in
humans [43], MPZ in cattle [44] and IGF2BP3 in pigs [45] (Fig. 7a-
c), and these genes were reported to make sense in the original
papers of real WGBS data. The intuitive look showed that the align-
ment algorithms generated different methylation profiles, in terms



Fig. 6. Influence of Bwa-meth, BSMAP, Bismark-bwt2-e2e and Walt on dynamics of methylomes in the Real Dataset B. (a) The number of DMCs detected by Bwa-meth,
BSMAP, Bismark-bwt2-e2e and Walt. (b) The number of shared DMCs consistently detected by multiple alignment algorithms. (c) The proportions of accurate DMCs detected
by Bwa-meth, BSMAP, Bismark-bwt2-e2e and Walt. (d) The proportions of concordant and discordant DMCs in CGI, non-CGI, repetitive sequence and non-repetitive
sequence. (e) The length of DMRs detected by Bwa-meth, BSMAP, Bismark-bwt2-e2e and Walt. (f) The length of DMRs consistently detected by multiple alignment
algorithms. (g) The proportions of accurate DMRs detected by Bwa-meth, BSMAP, Bismark-bwt2-e2e andWalt. (d) The proportions of concordant and discordant DMRs in CGI,
non-CGI, repetitive sequence and non-repetitive sequence. Bwa: Bwa-meth; BSM: BSMAP; Bis: Bismark-bwt2-e2e; Wal: Walt.
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of the numbers and methylation level of CpG sites, the number of
DMCs, and the length of DMRs. These results suggested that the
selection of alignment algorithms had a dramatic effect on
methylomes.

3.7. Influence of alignment algorithms on the biological interpretation

The above results indicated these four alignment algorithms
had a dramatic effect on methylomes. To further explore the influ-
ence of algorithms on the biological interpretations of WGBS data,
the DMRs-related genes were extracted based on Real Dataset B
(Table S3), and the biological functions released by Bwa-meth,
BSMAP, Bismark-bwt2-e2e and Walt were interpreted and deter-
mined by KEGG enrichment analysis. Consistent with expectations
for four algorithms, the most DMR-related genes were detected by
Bwa-meth in humans (32055), cattle (17762) and pigs (22510),
while the least DMR-related genes were detected by Walt in
humans (28446), cattle (16841) and pigs (20444) (Fig. 8a,
Fig. S12a). Furthermore, Bwa-meth, BSMAP, Bismark-bwt2-e2e
and Walt consistently identified 25,161 DMR-related genes in
humans (25161), cattle (15409) and pigs (17967) (Fig. 8b). In the
DMR-related genes consistently identified by three algorithms,
Bwa-meth, BSMAP and Bismark-bwt2-e2e consistently identified
the most DMR-related genes after the remove of Walt in humans
(26638), cattle (15893) and pigs (18935) (Fig. 8b), showing that
the lack of concordance could be attributed to Walt in terms of
the calling of DMR-related genes. For the accuracy at the calling
of DMR-related genes, BSMAP was the highest in humans (27948,
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98.68 %) and cattle (16584, 99.00 %), and Bwa-meth was the high-
est in pigs (20011, 98.28 %), but Walt was the lowest in humans
(26846, 94.78 %), cattle (16267, 97.11 %) and pigs (19392,
95.24 %) (Fig. 8c and Fig. S12b).

In the analysis of KEGG based on the DMR-related genes, 140,
223 and 223 pathways were determined in humans, cattle and
pigs, respectively (Fig. 8d and Fig. S12c), of which approximately
67, 184 and 157 were consistently detected by these four align-
ment algorithms (Fig. 8e). For the consistent pathways determined
by three algorithms, Bwa-meth, Bismark-bwt2-e2e and Walt con-
sistently detected the most pathways in humans (75) and pigs
(167) after the remove of Walt; BSMAP, Bismark-bwt2-e2e and
Walt consistently detected the most pathways in cattle (189) after
the remove of Bwa-meth (Fig. 8e). The results suggested that for
the analysis of KEGG, Walt seems to be responsible for the lack
of concordant in four algorithms. Moreover, BSMAP showed the
highest accuracy at the calling of signaling pathways (human: 86,
95.56 %; cattle: 197, 99.49 %; pig: 181, 97.84 %), but Walt exhibited
the least accuracy at the calling of signaling pathways (human: 82,
91.11 %; cattle: 194, 97.98 %; pig: 175, 94.59 %) (Fig. 8f and
Fig. S12d).

The top 30 pathways with the highest enrichments of each of
four alignment algorithms were further explored and discussed.
In humans, 15 (50.00 %) signaling pathways (such as Focal adhe-
sion, Axon guidance and Thermogenesis) were consistently inter-
preted by all four algorithms, but the number of signaling
pathways consistently detected by two of four algorithms ranges
from 18 (60 %) to 22 (73.33 %) (Fig. S13a, Table S6-7). In cattle,



Fig. 7. DNA methylation profile of genes revealed by Bwa-meth, BSMAP, Bismark-bwt2-e2e and Walt. (a) SOX9 gene was the highest differentially expressed genes between
control and schizophrenia in humans (43). (b) MPZ gene was the hub gene related to Wnt signaling pathway of embryonic processes in cattle (44). (c) IGF2BP3 was the key
gene that regulated the development of skeletal muscle in pigs (45).

Fig. 8. Influence of Bwa-meth, BSMAP, Bismark-bwt2-e2e and Walt on biological interpretation in the Real Dataset B. (a) The number of DMR-related genes detected by Bwa-
meth, BSMAP, Bismark-bwt2-e2e and Walt. (b) The number of shared genes consistently detected by multiple alignment algorithms. (c) The proportions of accurate DMR-
related genes detected by Bwa-meth, BSMAP, Bismark-bwt2-e2e and Walt. (d) The number of signaling pathways detected by Bwa-meth, BSMAP, Bismark-bwt2-e2e and
Walt. (e) The number of shared pathways consistently detected by multiple alignment algorithms. (f) The proportions of accurate pathways detected by Bwa-meth, BSMAP,
Bismark-bwt2-e2e and Walt. Bwa: Bwa-meth; BSM: BSMAP; Bis: Bismark-bwt2-e2e; Wal: Walt.
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16 (53.33 %) signaling pathways (such as MAPK signaling pathway,
Hepatocellular carcinoma and Axon guidance) were interpreted by
all four algorithms, but the number of signaling pathways consis-
tently detected by two of four algorithms ranges from 21 (70 %)
to 24 (80.00 %) (Fig. S13b, Table S6-7). In pigs, 15 (50.00 %) signal-
ing pathways (such as Endocytosis, Focal adhesion and Axon guid-
ance) were interpreted by all four algorithms, but the number of
signaling pathways consistently detected by two of four algorithms
ranges from 19 (63.33 %) to 23 (76.67 %) (Fig. S13c, Table S6-7).
4. Discussion

It is well recognized that DNA methylation plays critical roles in
mammalian development [51] and diseases [52]. Compared with
other methods to profile the methylomes, WGBS has been accepted
as the gold standard at single base resolution [53]. Currently,
WGBS is at the forefront of epigenetic analysis and popularly uti-
lized to investigate the genome-wide DNA methylation of mam-
malian developments [54] and epigenetic marks of diseases [55].
A great number of mappers and aligners have been developed
and exploited to handle the mapping challenge caused by bisulfite
[18]. It is considered that the mapping efficiencies and perfor-
mances impress the precision of DNA methylation calculation as
well as the calling of candidate DMCs, DMRs, DMR-related genes
and signaling pathways. Therefore, it is essential to benchmark
the mapping efficiencies of the mappers warped up distinct align-
ers to provide investigators with useful information. In this study,
the runtime, memory consumption, uniquely mapped reads,
mapped precision, recall, F1 score, unsatisfactory aligned reads as
well as the accuracy at the biological interpretations were com-
pared and evaluated among 14 alignment algorithms in humans,
cattle and pigs (Fig. 1). As far as we were concerned, this study pro-
vided the most comprehensive information for the selection of
alignment algorithms for WGBS data in mammals.

As showed in Fig. 2a and c, Walt and BSMAP were the fastest,
and BSSeeker2-bwt2-local was the slowest, which was contrary
to the memory consumption. In plants, Grehl et al. [39] and Nunn
et al. [40] find that BSMAP is the fastest but consumes the most
memory, compared to Bismark-bwt2-e2e, Bwa-meth and
BSSeeker2-bwt. These results are in line with our study. It is gen-
erally accepted that the shorter runtime of the alignment algo-
rithms, the more memory it consumes. In addition, although the
thread of each algorithm was set to one, we found that Bismark-
bwt2-e2e, Bismark-his2, BSSeeker2-bwt2-e2e, BSSeeker2-bwt2-
local, BSSeeker2-bwt, and BSSeeker2-soap2 natively used 3, 3, 2,
2, 2, and 2 threads, respectively, while other eight algorithms
natively used one thread. However, Walt and BSMAP are still the
fastest. Previous studies have suggested that the sequencing errors
cause the challenge for aligners [56]. In this study, we found that
the runtime of Bwa-meth, Hisat_3n, Hisat_3n_repeat, BSBolt,
BSMAP and Bismark-his2 was positively correlated with the
sequencing error rates, and the memory consumption of Bwa-
meth and BSBolt is highly correlated with sequencing error rates
(Fig. 2b, Figs. S2-4 and S6-7). The possible explanation for this
observation is that the increase of sequencing errors on reads
causes aligners to find more candidate positions on the reference
genome, and thus cost more runtime and memory consumption.
We found that the memory consumption of 14 algorithms were
accord with the genome size of humans, cattle and pigs (Fig. 2d),
which was in line with the finding that the memory consumption
of Bismark-bwt2-e2e, BSMAP and Bwa-meth increased with the
increasing size of genomes [39].

In this study, at the alignment model of bwt2-e2e, we found
that Bismark was faster than BSSeeker2 with the equal memory
consumption (Fig. 2a), and the mapped precision, recall, F1 score
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and uniquely mapped reads of Bismark are significantly higher
than that of BSSeeker2 (Fig. 3b, d and e). Similarly, Grehl et al. find
that the uniquely mapped reads of Bismark is higher than BSSeek-
er2 in five plants, at the alignment model of bwt2-e2e [39]. In
terms of Bismark, although bwt2-e2e is slower than his2 (Fig. 2a
and c), the uniquely mapped reads of bwt2-e2e increased by
23.94 % than his2 (Fig. 3a and b), with the similar mapped preci-
sion, recall and F1 score (Fig. 3d and e, Fig. S5). Also, Keel et al. find
that bwt2 has more correctly mapped reads than his2 in cattle and
pigs [57]. In terms of BSSeeker2, bwt2-local was the slowest
(Fig. 2c) and showed the lowest mapped precision, recall and F1
score (Fig. 3d and e); soap2 was the fast (Fig. 2c) and exhibited
the highest uniquely mapped reads (Fig. 3b), but bwt2-e2e dis-
played the highest mapped precision, recall and F1 score (Fig. 3d
and e). In RRBS data, Sun et al. [38] also find that the mapped pre-
cision of BSSeeker2-bwt2-e2e is higher than BSSeeker2-bwt and
BSSeeker2-bwt2-local. These results demonstrated that the map-
ping performance of Bismark was better than BSSeeker2, and the
aligner bwt2-e2e was better than his2, soap2, bwt and bwt2-
local in term of mapped precision.

Moreover, we found that the mapped precision, recall, F1 score
and uniquely mapped reads of Bwa-meth, BSBolt, BSMAP, Bismark-
bwt2-e2e, andWalt were >90 % in humans, cattle and pigs (Fig. 3d-
f), which were more outstanding than other nine alignment algo-
rithms. Previous studies find that the mapped precision and
uniquely mapped reads of Bwa-meth, BSMAP, and Bismark-bwt2-
e2e exceeds 90 % in four crop plants [39] and three non-modul
plants [40]. In humans, Chen et al. [23] find that the mapped pre-
cision of Walt, BSMAP and Bismark-bwt2-e2e was > 93 %, and Far-
rell et al. [36] find that BSBolt aligned the majority of simulated
reads with high accuracy (>99 %). These results support that
Bwa-meth, BSBolt, BSMAP, Bismark-bwt2-e2e and Walt are likely
to be more favorable for the methylomes of mammals, with the
observations that these five alignment algorithms exhibit out-
standing in uniquely mapped reads, mapped precision, recall and
F1 score. Compared with simulated data, 14 alignment algorithms
contained less uniquely mapped reads in real data (Fig. 3b and c),
the reason of which might be that the real data was more compli-
cated and affected by more factors, such as sequencing quality and
structural variation of samples, while the simulated data was sim-
ple and only affected by sequencing error rate. Although Batmeth2,
BSSeeker2-bwt2-local, Hisat_3n, and Hisat_3n_repeat were excel-
lent at uniquely mapped reads in real data, they only had �80 %
uniquely mapped reads and exhibited lower mapped precision,
recall and F1score than other ten alignment algorithms in the sim-
ulated data.

Although Bwa-meth, BSBolt, BSMAP, Bismark-bwt2-e2e and
Walt were excellent at uniquely mapped reads, mapped precision,
recall and F1 score (Fig. 3b and d-f), the unsatisfactory aligned
reads of these five algorithms were markedly different (Fig. 4a).
Bwa-meth was only composed of incorrect uniquely mapped reads,
BSBolt mainly included incorrect uniquely mapped reads and
unmapped reads, and Walt mainly consisted of unmapped reads,
while BSMAP and Bismark-bwt2-e2e mainly consisted of multiple
mapped reads (Fig. 4a). We also found that the unsatisfactory
aligned reads were significantly over representation at repetitive
sequence (Fig. 4b) and CGI regions (Fig. 4c) in mammals. The
enrichment of these five algorithms on repetitive sequence and
CGI regions were obviously different in mammalian species
(Fig. 4b and c). Since CGI is rich in CG, the C base on the CGI will
be converted to T base in bisulfite conversion, which severely
reduces the complexity of the sequence and ultimately affects
the reads mapping on CGI. The repetitive sequence also made it
difficult to map reads accurately and uniquely to the reference gen-
ome. Previous studies found that the mapped precision was lower
in the repeat-rich regions [39], and the repetitive sequences led to



W. Gong, X. Pan, D. Xu et al. Computational and Structural Biotechnology Journal 20 (2022) 4704–4716
a significant reduction in the number of uniquely mapped reads
[58], which were consistent with our findings. These results sug-
gested that the repetitive sequences and CGIs might make a differ-
ence to the unsatisfactory aligned reads as well as mapping
performance.

The discussions for CpG sites, DMCs, DMRs, DMR-related genes,
and pathways were focused on Bwa-meth, BSMAP, Bismark-bwt2-
e2e, and Walt, because BSBolt exhibited a huge difference in CpG
sites with these four algorithms (Fig. 5b-c and Fig. S9b). We found
that the distinct alignment algorithms made a significant influence
on the methylomes of mammals, since most of CpG sites (Fig. 5d,
Fig. S10a), DMCs (Fig. 6b, Fig. S11a) and DMRs (Fig. 6f, Fig. S11c)
called by Bwa-meth, BSMAP, Bismark-bwt2-e2e and Walt were
discordant. Bwa-meth called the most, and Walt called the least
CpG sites (Fig. 5a), DMCs (Fig. 6a), DMRs (Fig. 6e) and genes
(Fig. 8a). Furthermore, we observed that repetitive sequences
retained more discordant CpG sites, discordant DMCs and discor-
dant DMRs than non-repetitive sequence in humans, cattle and
pigs (Fig. 5g, Fig 6d, Fig 6h). This observation may be due to the
influence of repetitive sequence on the mapping of the unsatisfac-
tory aligned reads (Fig. 4b). Meanwhile, it was found that more dis-
cordant CpG sites were distributed in intermediate methylation
than low and high methylation (Fig. 5h). This result was in accord
with one recent study that the least concordant calling was exhib-
ited on the CpG sites with intermediate methylation for seven
alignment algorithms [38]. The rigorous statistical approaches
should be developed based on the information of CpG sites, such
as coverage, mapping quality of reads and the number of samples,
to correct the CpG sites with intermediate methylation. Although
most of DMR-related genes (Fig. 8b and Fig. S12a) were detected
by all Bwa-meth, BSMAP, Bismark-bwt2-e2e and Walt, the number
of signaling pathways consistently detected by two algorithms
ranges from 18 (60.00 %) to 24 (80.00 %) in the top 30 pathway
with the highest enrichments (Fig. S13a-c, Table S6-7). These find-
ings indicated that the alignment algorithms had a dramatic effect
on the dynamics of methylomes, and right after impressed the
interpretations of biological functions.

Furthermore, the comparative methylomes are recently popular
to investigate the development patterns among multiple species.
For example, Zachary et al. present the comparative methylomes
of human and mouse in early development, and confirm that the
paternal genome demethylation is a general attribute of early
mammalian development [59]. Lvanoca et al. revealed species dif-
ferences in DNA methylation reprogramming by comparing the
methylomes of humans, cattle and pigs [60]. In this study, com-
pared with humans, 14 alignment algorithms exhibited higher
uniquely mapped reads, mapped precision, recall and F1 score in
cattle and pigs (Fig. 3b, d and e). The underlying cause may be
related to the complex feature of genomes, such as the number
of repetitive sequences, the length of CGIs, and the content of CG.
In summary, these results showed that the performance of the
alignment algorithms in multiple mammals should be considered
in the study of comparative methylomes.

In the Simulated Dataset A, we found that Bwa-meth, BSBolt,
BSMAP, Bismark-bwt2-e2e and Walt exhibited higher uniquely
mapped reads, mapped precision, recall and F1 score than other
nine alignment algorithms (Fig. 3b, d, e and f). In terms of Real
Dataset B, we found that comparison to Bwa-meth, BSBolt,
Bismark-bwt2-e2e and Walt, BSMAP exhibited the highest accu-
racy at the detection of CpG coordinates and methylation levels
(Fig. 5c and Fig. S10b), the calling of DMCs (Fig. 6c and
Fig. S11b), DMRs (Fig. 6g and Fig. S11d), DMR-related genes
(Fig. 8c and Fig. S12b) and signaling pathways (Fig. 8f and
Fig. S12d). Collectively, BSMAP was recommended to undertake
the analysis of methylome, especially for the comparative methy-
lomes of multiple mammalian species, not only because it was
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excellent at uniquely mapped reads, mapped precision, recall and
F1 score, but also because it captured more accurate methylation
information than Bwa-meth, BSBolt, Bismark-bwt2-e2e and Walt.

5. Conclusions

Based on the real and simulated WGBS data of 14.77 billion
reads, we undertook 936 mappings to benchmark and evaluate
14 popularly utilized alignment algorithms in methylomic studies
of humans, cattle and pigs, in terms of runtime, memory consump-
tion, uniquely mapped reads, unsatisfactory aligned reads, mapped
precision, recall, and F1 score, as well as the accuracies of biological
interpretation at the detection of CpG coordinates and methylation
levels, the calling of DMCs, DMRs, DMR-related genes and signaling
pathways.

It was documented that Bwa-meth, BSBolt, BSMAP, Bismark-
bwt2-e2e and Walt exhibited higher uniquely mapped reads,
mapped precision, recall and F1 score than other nine alignment
algorithms in simulated WGBS data. Comparison to Bwa-meth,
BSBolt, Bismark-bwt2-e2e and Walt, BSMAP showed the highest
accuracy at the detection of CpG coordinates and methylation
levels, the calling of DMCs, DMRs, DMR-related genes and signaling
pathways in real WGBS data. These results can provide investiga-
tors with useful information on the choice of alignment algorithms,
and help to improve the accuracy of mammalian DNA methylation
detection.
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Appendix A. Supplementary data

All scripts used for the benchmarking of alignment algorithms
are available online at github (https://github.com/Wentao-Gong/

https://github.com/Wentao-Gong/BenchWGBSanimal
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BenchWGBSanimal). The detailed results for Real Dataset B were
provided in figshare with DOI (10.6084/m9.figshare.20342715),
including the positions, methylation levels, and coverages of CpG
sites, as well as the positions of DMCs and DMRs. Supplementary
data to this article can be found online at https://doi.org/10.
1016/j.csbj.2022.08.051.
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