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Pakistan is still one of the five countries contributing to half of the child deaths worldwide and holds a low ratio of infant survival.
A high rate of poverty, low level of education, limited health facilities, rural-urban inequalities, and political uncertainty are the
main reasons for this condition. Survival models that evaluate the performance of models over simulated and real data set may
serve as an effective technique to determine accurate complex systems. The present study proposed an efficient extension of the
recent parametric technique for risk assessment of infant mortality to address complex survival systems in the presence of
extreme observations. This extended method integrated four distributions with the basic algorithm using a real data set of
infant survival without extreme observations. The proposed models are compared with the standard partial least squares-Cox
regression (PLS-CoxR), and higher efficiency of these proposed algorithms is observed for handling complex survival time
systems for risk assessment. The algorithm is also used to analyze simulated data set for further verification of results. The
optimal model revealed that the mother’s age, type of residence, wealth index, permission to go to a medical facility, distance
to a health facility, and awareness about tuberculosis significantly affected the survival time of infants. The flexibility and
continuity of extended parametric methods support the implementation of public health surveillance data effectively for data-
oriented evaluation. The findings may support projecting targeted interventions, producing awareness, and implementing

policies planned to reduce infant mortality.

1. Introduction

Strong statistical survival techniques are the demand of the
era for authentic and reliable results for deeply examining
complex survival and mortality patterns. Nonparametric
survival techniques including the Kaplan-Meier product-
limit method [1], the Gehan’s generalized Wilcoxon test
[2], and the log-rank test [3] were extensively used in older
times. The Cox’s regression model remained the most popu-
lar and widely used semiparametric survival technique if the
proportional hazards assumption is fulfilled [4]. In recent
times, flexible parametric models (FPM) are considered as
a better alternative to nonparametric and semiparametric
methods as they produce estimates with higher efficiency
and lower standard errors [5]. In addition, these models
consider full likelihood to draw more precise inferences

and easily interpretable results. So far, the FPM has been
employed various probability distributions to estimate sur-
vival functions. The exponential probability distribution
supports as the baseline to handle survival time. The Wei-
bull, Gompertz, generalized gamma, and generalized F-
distribution are commonly practiced too. The FPM is also
able to efficiently investigate the relationship of covariates
with survival response [5]. The partial least squares-Cox
regression (PLS-CoxR) integrates PLS with the Cox model
to address survival time response with collinear covariates
[6] since the Cox regression is restricted with inflexible esti-
mates of the cumulative hazard and survival functions as
being incomplete. Hence, the PLS-CoxR model is restricted
in the long-term estimation with unsmooth functions.

The flexible parametric models (FPMs) are recom-
mended to compute hazard and cumulative hazard
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functions for covariates to extrapolate the survival model.
The FPM can estimate continuous survival and hazard func-
tions instead of a step representation due to its flexibility [7].

Despite considerable improvement towards increasing
infant survival, nearly six million child deaths are recorded
every year, before attaining their fifth birthday [8]. By the
end of 2015, a minor proportion of developing countries
have met the fourth target of Millennium Development Goal
(MDG) which is intended to increase the child survival rate
by two-thirds [9]. The recently described Sustainable Devel-
opment Goals (SDG) seek to forward the objectives origi-
nated by the MDG. The third SDG is to reduce the under-
five mortality rate (USMR) to 25 deaths per 1000 live births
by 2030 [10]. Previous literature evidenced that five coun-
tries including China, Congo, Nigeria, India, and Pakistan
possess nearly half of under-five mortality in the world
[11]. Pakistan has the sixth largest population in the world
with 188 million people [12]. In 2018, Pakistan’s infant mor-
tality rate (IMR) was 61 deaths per 1000 live births. Due to
political instability, civil conflicts, poverty, lower educational
level, unavailability of health facilities, and disparities
regarding the area in Pakistan, 70% MDG targets were not
achieved [13]. Understanding the factors affecting infant
mortality is significantly informative to health professionals,
practitioners, and health policymakers for the improvement
of population health status through effective interventions.

Within this line, the partial least squares flexible paramet-
ric model (PLS-FPM) is developed to analyze the complex sur-
vival systems in the presence of extreme observations for risk
and hazard assessment [14]. The present study extended the
PLS-FPM to collinear predictors having moderate trend
observations using four alternative probability distributions.

The results exposed the flexible dynamics of the
extended method to obtain smooth survival and hazards
estimates in the presence of multicollinearity. This model
can be implemented in the field of genetics, biology, engi-
neering, medicine, social sciences, or behavioral sciences
for system reliability and risk assessment. The formal state-
ments of the problem are the following:

(i) Selection of optimum model by execution of four
distribution integrated with the PLS-FPM oversimu-
lated and real data set having collinear predictors
and moderate observation

(ii) Identification of significant risk factors of infant
mortality in Pakistani

2. Methodology

The PLS-CoxR model is considered as the benchmark
method in the present study, and the PLS-FP model with
four different distributions is the proposed technique.

2.1. The Cox Regression Model. The Cox model has the form

Mt = Ay (D)exp (BX, + X+ +B,X, ) =, (exp| B'X],
M
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where A, () represents the baseline hazard function, f3 is the
vector of regression estimates, and X denotes a (n # p)
matrix of predictors.

2.2. The Partial Least Squares-Cox Regression Model. The
PLS-CoxR model is employed as the reference method in
the present study. Suppose the survival time is represented
by t and x;=x,;,x,j, -+, x,; be the vector of p correlated
covariates with n samples. The model estimates k compo-
nents for p correlated predictors and assumes the hazard
estimate as

M) =Ao(t)exp (B8, + BySyt--+B,S¢ ) = Ao()exp [ B'S]
(2)

where S represents a (# * k) matrix of components.

2.3. Flexible Parametric Survival Model (FPSM). Let T repre-
sent a nonnegative continuous survival response and let X is
the vector of predictors x,, -, x, over a sample of size n.
The survival function is the probability of being alive at
time ¢ and is represented by S(¢)=Pr(T >t) for a vector
of covariates at time ¢ with the cumulative distribution func-
tion F(t) =Pr(T <t). Then the cumulative hazard or risk
function is

A(t) =J Ax)dx. (3)

Any distribution ranges over ¢ € [0,00], and it may serve as
survival distribution. The survival distributions included in
this study as FPSM are as follows:

2.3.1. The Gompertz Distribution. A survival response T fol-
lowing a Gompertz distribution with parameters (b > 0,7 >0
) exhibits the survival function

S(t) =exp (—Z (" - 1)) , (4)
and the cumulative hazard function as

A(t)== (" -1). (5)

I

The Gompertz distribution is also an extreme value dis-
tribution with increasing hazard function.

2.3.2. The Generalized Gamma Distribution. The generalized
gamma distribution with parameters (3,0, «) has survival
function as

S(t)=1-Tx* (e_ﬁt"/" ; K_z} . (6)

The hazard function of the generalized gamma function
is increasing, decreasing, bathtub, and arc-shaped [15].
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2.3.3. The Generalized F-Distribution. The density function
of generalized F-distribution with 2v; and 2v, is

f(t) = (vlet/vz)v1 (1+ vlet/vz)f(v‘WZ)ﬁ(vl, v,)(7)

where f(v;,v,) is the beta function and then the survival
function is

v, (v2+v1e‘)7
S(6) j X1 =) By vy ldr, (8)

0

where y denotes the chi-square distribution. This distribu-
tion is useful for testing different parametric forms as it
includes other distributions as limiting or special cases.

2.3.4. The Exponential Distribution. The survival time T has
an exponential distribution with rate parameter A having
density function

£(£) = Aexp(-At), ©)
then the survival function is
S(£) = exp(~Ar), (10)
and the cumulative hazard function is
A(t) = At. (11)

Several other probability distributions can be employed
in FPM. The interpretation for regression coefficients of
FPM is the same as for semiparametric models. The FPM
provides a more stabilized cumulative hazard function than
the semiparametric model. For instance, the Weibull models
produce the hazard function as a continuous straight trend.
The PLSR model integrated with FPM addressing general-
ized gamma (GG), generalized F (GF), exponential, and
Gompertz distribution is included in the present study for
improved model performance for multicollinear covariates.

2.4. The Partial Least Squares Flexible Parametric (FP)
Model. The proposed model assumes the occurrence of an
event e at time ¢ in the presence of censoring, and let X be
the matrix of p correlated predictors x;, -+, x,, for a sample of
size n. The method computes the FP model for S components
(as S < p) computed from PLSR for survival response and X as
a matrix of predictors. The PLS-FP model assumes that some A
is equal to the number of components to be predicted (where
A<p),thenfora=1,2, -, A, the algorithm runs:

(1) Loading weights are computed by

w, :X/a—lta—l' (12)

Loading weights are normalized to have length equal to 1
by

3
X, t
w, —alal (13)
I Xa-rto |
(2) Score vector s, is computed by
Sa= Xa—lwa' (14)

(3) If a < A return to 1

The PLS-FP model is a two-stage procedure. At the first
stage, the PLS-FP regression model computes components of
PLS regression with time as response outcome and correlated
covariates as predictors. Then, it executes the FP model with
survival time as response and components of PLSR as explana-
tory factors at the later stage. This method produces efficient
estimates with increased accuracy for collinear predictors.
Hence, it is recommended to use in the case of collinear data
as it is a conjugate of PLS and FP models. The PLSR model is
also coupled with a filter-based factor selection method, namely,
“loading weights” to identify the significant factors [16, 17].

2.5. Simulated Survival Data Generated from Gompertz
Distributions. The R-package namely “simsurv” is used for
the generation of simulated survival data [18] with moderate
observation and collinear predictors. The data follows Gom-
pertz distribution with 0.1 and 0.1 scale and shape parame-
ters, respectively. The correlation among predictors is
established as (0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0) for
100 samples with 30 predictors.

2.6. Infant Survival Times Data. This study used secondary
data, obtained from the Demographic and Health Surveys
(DHS), gathered during 2012-2013 from Pakistan. Hence,
no ethical concerns are required to conduct this study [19].
The present analysis used data set of infants aged 1-
12months in Pakistan. Due to missing and incomplete
information, infants dead within one month of birth are
excluded from the analysis. A total of 697 infants belonging
to Pakistan and 83 predictor variables are included.

3. Results

The PLS-FPM parameterized with generalized gamma, gener-
alized F, exponential, and Gompertz distribution are modeled
on simulated data generated from Gompertz distribution to
observe the variation in efficiency for multicollinear data.
The left panel of Figure 1 showed the efficiency of models
established by AIC and indicated that coupled with PLSR,
the FPM models showed the higher efficiency over simulated
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FIGURE 1: The comparison of the PLS-Cox model with the PLS-FPM parameterized over generalized gamma (GG), generalized F (GF),
exponential, and Gompertz distribution for simulating survival response generated from Gompertz distribution based on AIC and BIC.
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FIGURE 2: A biplot visualizing the correlations between the covariates on the first two principal components for infant survival data set.

data having known correlation structure. Similar results based
on BIC, as shown in Figure 1(b), are observed. The simulation
analysis demonstrated that the proposed models are efficient
and reliable in terms of performance for the corresponding
distributions. The analysis over simulation recommended
the practical application of proposed models to examine sur-

vival response along with correlated covariates in a more flex-

ible manner.
Before analyzing the real data set, multicollinearity
among covariates is verified to justify the application of
PLS. For this purpose, correlations structure for infant sur-
vival data is examined. The biplot for infant survival data
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FiGure 3: The comparison of reference model with the PLS-FPM parameterized over generalized gamma (GG), generalized F (GF),
exponential, and Gompertz distribution on the basis of AIC and BIC for infant survival are presented.

presented in Figure 2 clearly portrayed the correlation
between covariates showing close points of occurrence.

Real data set of infant survival with 12 months of censor-
ing is considered in this analysis. Discarding outliers, 83
covariates measured over 577 observations (infants) were
included in the final sample to compare survival models.
The data set is randomly split into testing (30%) and training
data (70%) for reliable results. After verification of multicol-
linearity among covariates, the PLS-FPM parameterized
over Gompertz, generalized gamma, generalized F, and
exponential distribution are analyzed. The PLS-Cox model
for survival time is considered as the reference method.
Figure 3 showed the efliciency of models measured by AIC
and BIC which demonstrated the higher performance of
modified models compared to the PLS-Cox over infant sur-
vival data. The proposed models based on the parametric
approach performed better due to their additional flexibility.
Flexible parametric models integrated with PLSR parameter-
ized with generalized gamma (GG), generalized F (GF),
exponential, and Gompertz distribution showed increased
accuracy compared to the Cox model integrated with PLS.

The Gompertz distribution is modeled into the
innovation-imitation paradigm, and its hazard function works
as a convex function. These properties develop their flexibility
to use as flexible parametric distribution in survival models.
Hence, it increased the performance of the model incorpo-
rated with PLS compared to the semiparametric model, due
to its flexible nature. Based on AIC and BIC, it is concluded
that the PLS-FPM parameterized over generalized F (GF) is
the best-fitted model and hence further executed for influen-
tial factor selection. PLS-FP model based on generalized F-
distribution with location parameter y is found to be the most

TaBLE 1: A description of corresponding parameter of each
distribution used in the PLS-FPM for infant survival data set is
presented.

Parameter
Model Location Scale Shape Rate
FPM _pls_gomp — — 0.231 -7.20
FPM pls_gg 432 -0.32 0.56 —
FPM _pls_gf 437 144 -0.11,296 —
FPM_pls_g — — 0.77 -3.56

efficient model over infant survival times data. In this model,
covariates on the corresponding parameter represent the
accelerated failure time (AFT) model which speeds up or slows
down the passage of time. A detailed illustration of PLS-FP
model parameterization is presented in Table 1 to describe
the corresponding location, scale, shape, and rate parameter
of the associated distribution.

Figure 4 showed the cumulative hazards regression esti-
mates for the reference method and the PLS-FPM integrated
with generalized gamma (GG), generalized F (GF), exponen-
tial, and Gompertz distribution for infant mortality data.
The proposed PLS-FPM delivered smooth regression coeffi-
cients of the hazard functions extrapolated to a time of
12months showing consistent estimates. The reference
model showed unsmooth hazard trends with odd fluctua-
tions for certain time intervals shown in Figure 4.

For modeling the survival time data, the PLS-FPM
parameterized over generalized F (GF) is applied, and a
well-known factor selection method of PLS, namely, loading
weights, is used to estimate the regression coeflicients of
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TaBLE 2: The coefficient estimates of influential factors for infant survival obtained by the PLS-FPM coupled with GF-distribution.

Factor Coefficient
Mother’s age -0.2599634
Province 0.1152137
Type of place of residence -0.2259600
Selected for domestic violence module -0.1314814
Mother’s educational level 0.1150733
Type of toilet facility 0.1306607
Household has: television 0.1123271
Main roof material -0.1824950
Relationship to household head -0.1462302
Sex of household head 0.1263040
Toilet facilities shared with other households 0.1128781
Wealth index -0.2221866
Total children ever born 0.1440127
Sons died 0.1444297
Daughters died 0.1380171
Used contraceptive methods 0.1255910
Have mosquito bed net for sleeping -0.1472814
Getting medical help for self: getting permission to go 0.2765390
Getting medical help for self: getting money needed for treatment 0.1091858
Getting medical help for self: distance to health facility 0.2711795
Getting medical help for self: having to take transport 0.1405939
Getting medical help for self: not wanting to go alone 0.1932727
Heard of tuberculosis or TB -0.2165038
Person who usually decides on visits to family or relatives -0.1273039
Preceding birth interval (in months) -0.1647803
Duration of breastfeeding -0.1697750
Blood relation with husband -0.1285042

Total pregnancy outcomes -0.1926369
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significant factors. The estimates of important predictors
associated with infant mortality are presented in Table 2.

After analysis, 28 influential factors out of 80 which sig-
nificantly affect infant survival in Pakistan are observed. A
negative relationship of mother’s age, region, selection for
domestic violence, main roof material, relationship to house-
hold head, wealth index, availability of mosquito bed net,
awareness about tuberculosis (TB), decision power to visit
family, preceding birth interval, duration of breastfeeding,
blood relation with husband, and total pregnancy outcomes
are found for infant survival. Furthermore, positive associa-
tion of province, mother’s education, toilet facility, availabil-
ity of television, sex of household head, shared toilet,
number of total children, number of dead son and daugh-
ters, use of contraception, availability of permission, money,
transport, and attendant for medical facility and distance to
a medical facility was observed.

4. Discussion

Estimating the hazard and survival functions that flexibly
explain complex systems remained a hard and computation-
ally challenging task. Hence, the candidate models are usually
limited in studies to allow for evaluations and comparisons.
However, nonparametric and semiparametric survival
methods can peculate model structures as unsmooth estimates
are evaluated. The present study extended the PLS-FPM [14]
to correlated predictors having moderate trend observations
using four alternative probability distributions. The PLS-
FPM extends previous survival approaches that either perform
semiparametric analyses or use nonparametric methods, while
analysis of all previous methods was limited due to their
inflexible nature. To administrate all four shaped hazard func-
tions, distribution fitting is implemented over defined simu-
lated survival data set.

Most previous literature used the Cox regression model
for infant survival analysis [20]. Very few recent studies used
FPM to examine infant survival analysis [21]. The PLS-FPM
is compared with the reference method for both simulated
and a real data set for collinear covariates. A previous study
proposed the PLS-FPM integrated with Gamma, Weibull,
log-logistic, and log-normal distributions for data with
extreme observations to examine four real data sets of breast
cancer survival time and identify the significantly associated
gene signatures for each data set. The study found that the
PLS-FPM has higher performance than the traditional
PLS-Cox model [14]. Consistent with the previous study,
the present study found the higher efficiency of the PLS-
FPM compared to the PLS-Cox regression method for data
sets with moderate observations. The PLS-FPM coupled
with Gompertz distribution is found to be the optimum
model to estimate hazard functions using AIC for simulated
survival data following Gompertz distribution. The effi-
ciency of the algorithms flexibly increases the model accu-
racy to a greater extent even considering correlated
predictors. This accuracy suggested that hazard, as well as
survival functions, can be accurately computed by smooth
trends for the survival response. A recent study proposed
the partial least squares spline modeling approach by inte-

grating PLS with restricted cubic spline model and com-
pared it with the PLS-Cox model [22]. The study estimated
the risk factors of infant mortality in Pakistan by using the
PLS-spline model based on the odds scale with one knot.
This study also examine the important factors of infant mor-
tality by executing the optimal model, namely, the PLS-FPM
parameterized over generalized F (GF), and identified the
influential factors which are also determined by various pre-
vious studies. Consistent with the recent literature, the pres-
ent study evidenced that mother’s age, region, selection for
domestic violence, relationship to household head, wealth
index, awareness about tuberculosis (TB), decision power
to visit family, preceding birth interval, and blood relation
with husband [22] are significantly associated with infant
mortality. Some other previous literature also supported
the association of main roof material [23, 24], availability
of mosquito bed net [25], duration of breastfeeding [26],
and total pregnancy outcomes [27] with infant survival sim-
ilar to the present study.

Various previous studies also observed the positive asso-
ciation of province [28], mother’s educational level [29],
type of toilet facility [30], availability of television [31], sex
of household head [32], shared toilet [33], number of total
children [34], number of died son and daughters [35], use
of contraception [36], and availability of permission, money,
transport, distance and attendant for medical facility [37, 38]
with infant survival which is consistent with the current
study. Last but not least, the PLS-FPM not only can extrap-
olate survival response besides the availability of follow-up
information but also sponsors variant hazard shapes. The
PLS-FPM is suggested as a helpful parametric addition for
the estimation and prediction of survival response. This
model is recommended to use in reliability theory for risk
assessment.

Data Availability

Data is freely available at https://dhsprogram.com/.
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