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SUMMARY

The emergence of the optically pumped magnetometer (OPM)-based magneto-
encephalography (MEG) has led to new developments in MEG technology. The
source imaging results of different magnetic source imaging (MSI) methods
show considerable differences, which makes it difficult for researchers to choose
an appropriate method. This study assessed time-domain MSI methods imple-
mented in the Brainstorm, FieldTrip, and SPM12 toolboxes using simulations.
We proposed using a metric, variational free energy under the Bayesian frame-
work, as an indicator to evaluate source imaging results because it does not
require the ground truth of sources but uses the fitness of the measurement
data. Our simulations demonstrated the effectiveness of the variational free en-
ergy in indicating the quality of the source reconstruction results. We then
applied each MSI method to the real OPM-MEG experimental data. We aimed
to highlight the characteristics of each method and provide references for re-
searchers choosing an appropriate MSI method.
Hangzhou Innovation
Institute, Beihang University,
Hangzhou 310051, China

2Key Laboratory of Ultra-
Weak Magnetic Field
Measurement Technology,
Ministry of Education, School
of Instrumentation and
Optoelectronic Engineering,
Beihang University, Beijing
100191, China

3Research Institute of Frontier
Science, Beihang University,
Beijing 100191, China

4School of Physics, Beihang
University, Beijing 100191,
China

5Beijing Tiantan Hospital,
Capital Medical University,
Beijing 100050, China

6Department of Radiology,
Qilu Hospital of Shandong
University, Jinan 250012,
China

7Shandong Key Laboratory:
Magnetic Field-freeMedicine
and Functional Imaging,
Jinan 250012, China

8Research Institute of
Shandong University:
Magnetic Field-freeMedicine
and Functional Imaging,
Jinan 250012, China

9Lead contact

*Correspondence:
ningxiaolin@buaa.edu.cn

https://doi.org/10.1016/j.isci.
2022.105177
INTRODUCTION

Magnetoencephalography (MEG) is a noninvasive technology used in basic and clinical neuroscience

research (Iwasaki and Nakasato, 2019). In recent years, newer emerging sensors, such as high-temperature

SQUIDs (Faley et al., 2012) and optically pumped magnetometers (OPMs) (Knappe et al., 2014), have

brought vitality to the development of MEG. The new sensors do not require an additional cryogenic cool-

ing system and can be as close to the scalp as possible to obtain higher signals (Chesca et al., 2015; Boto

et al., 2016). In particular, OPM-MEG makes new measurement scenarios possible, such as wearable and

movable measurements (Iivanainen et al., 2020; Boto et al., 2018), and even in a virtual reality environment

(Roberts et al., 2019), which has attracted tremendous enthusiasm among researchers.

MEG measures the magnetic fields directly related to the underlying brain electrical activity with excellent

temporal resolution. Unfortunately, its spatial resolution relies heavily on solving an ill-posed problem:

inferring the source signals of tens of thousands of sources from a limited number of sensors (hundreds)

of measured data. To solve this highly underdetermined problem, multiple magnetic source imaging

(MSI) approaches based on different constraints of the solution space have been developed to provide

a better estimation of source activities, such as the minimum norm estimate (MNE) (Hämäläinen and Ilmo-

niemi, 1994) and its variants (Dale et al., 2000; Pascual-Marqui et al., 2002; Pascual-Marqui et al., 2011),

beam formers (Van Veen et al., 1997), dipole scanningmethods (Mosher et al., 1992), and sparse algorithms

(Friston et al., 2008a; Zerouali et al., 2011). These inverse approaches have been implemented and inte-

grated into several open-source toolboxes, such as Brainstorm (Tadel et al., 2011), FieldTrip (Oostenveld

et al., 2011), and SPM12 (Henson et al., 2019). These toolboxes offer great convenience to neuroscience

investigators for source analysis. However, each approach yields different imaging results (Hincapié

et al., 2017; Hedrich et al., 2017; Tait et al., 2021). Even for the same approach, differences in toolbox im-

plementation provide different results (Jaiswal et al., 2020; Westner et al., 2022). A challenge for re-

searchers is to choose an appropriate imaging approach from several available source reconstruction stra-

tegies. Therefore, it is necessary to evaluate different source imaging methods, which was the focus of our

study. The MSI methods implemented in the three toolboxes were compared, including the MNE, dSPM,

sLORETA, LCMV, DipModel, and cMEMmethods in Brainstorm, mne, sloreta, eloreta, lcmv, and rv (dipole

scanning) methods in Fieldtrip, and IID, COH, EBB, and MSP methods in SPM12.
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Table 1. A brief statistics of the source imaging methods for analyzing the time-domain data provided in three

toolboxes: Brainstorm, FieldTrip, and SPM12

Software

Source imaging methods for analyzing the time-domain data

MNE-like solutions Beamformer Scanning methods Sparse algorithms

Brainstorm MNE/dSPM/sLORETA LCMV DipModel cMEM

FieldTrip mne/sloreta/eloreta lcmv rv –

SPM12 IID/COH/EBB – – MSP

See also Table S1.

*Methods under a similar theoretical framework are listed in the same column and denoted using different names or case

sensitivities.
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Researchers have evaluated imaging methods by using various metrics. The commonly used metrics are

the dipole localization error (DLE) and spatial dispersion (SD) (Hauk et al., 2011), which are used to

describe the distance between the reconstructed source peak and the simulated one and how the recon-

structed source area is extended, respectively. Grova et al. (2006) proposed using the area under the

receiver operating characteristic curve, which considers the imaging threshold, to assess source detec-

tion accuracy. Liu et al. (2002) defined crosstalk and point spread metrics to quantify the spatial resolu-

tion of the inverse operator, which was also summarized as an analytical resolution matrix (Hedrich et al.,

2017). Samuelsson et al. (2021) developed a resolution matrix to make it possible to evaluate linear and

nonlinear estimates. The aforementioned metrics can be used to compare different source estimates

based on simulations in which the simulated sources are known. However, the ‘‘ground truth’’ is unknown

in practical applications, meaning that the metrics mentioned earlier cannot be used to evaluate the im-

aging results of different methods in this situation. One possible strategy is to perform Monte Carlo sim-

ulations using real experimental conditions to compare the imaging results and choose a suitable one.

However, this is complicated and inconvenient. Fortunately, under the Bayesian framework, model evi-

dence allows for comparing and evaluating different imaging methods (Mattout et al., 2006; Wipf and

Nagarajan, 2009). It does not need to know the ‘‘ground truth’’ of the sources but instead uses an indi-

cator of how well the measured data fit. We proposed using variational free energy (Friston et al., 2007),

an approximation of the model evidence, as a metric for evaluating source imaging methods. Our

comprehensive simulation experiments demonstrated its validity in indicating the quality of the source

reconstruction results.

Our study compared the performances of all time-domain source estimationmethods available in the three

toolboxes, Brainstorm, FieldTrip, and SPM12. The spatial fidelities of all the methods were evaluated using

the proposed metric and general metrics, including the DLE, SD, and resolution matrix. Finally, we applied

all the source imaging methods to real median nerve stimulation data measured by OPM-MEG to demon-

strate the functional performance of each imaging method.
RESULTS

Simulations

In this study, we attempted to evaluate all source imaging methods provided in the Brainstorm, FieldTrip,

and SPM12 toolboxes to analyze the time-domain data. Table 1 summarizes the MSI methods being

compared. A series of simulations were performed to assess different methods. The main parameter set-

tings for each MSI method are summarized in Table S1. The simulation protocol is shown in Figure 1.

Effectiveness of variational free energy

Figure 2 illustrates an example of the free energy trends under the estimated source patch with changing

spatial sizes and locations relative to the real simulated source. A source patch with an initial extent at the

initial position was used to generate datasets. Source patches of different sizes and positions were

assumed to simulate the source power distributions estimated using different MSI methods. The presumed

source patch was encoded in source covariance bQJ to calculate the corresponding free energy. The calcu-

lated free energy was normalized by its maximum value in each group (groups of extent-change and po-

sition-change). Figure 2 shows that free energy is at its maximum when the estimated source is at its exact

location and has an accurate spatial size.
2 iScience 25, 105177, October 21, 2022



Figure 1. Simulation protocol

The 85-channel optically pumped magnetometer-based MEG sensor configuration and a three-layer boundary element

method (BEM) head model are used to calculate lead fields. Each patch/dipole source is activated to generate datasets.

The cortex mesh with 15,002 vertices is used as the distributed source model. The source imaging methods provided in

Brainstorm, FieldTrip, and SPM12 are evaluated.
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To illustrate the relationship between the source imaging results of each method and the calculated metrics,

including the DLE, SD, and variational free energy F, a typical patch source located in the post central cortex

was activated. Its source imaging results are shown in Figure 3. The corresponding DLE, SD, and Fmetric values

are also displayed. The variational free energy of each method was normalized using the minimum and

maximum F values of all 15 inversion methods on the same dataset. For convenience, the toolboxes referred

to are abbreviated as Bs, Ft, and SPM. It can be observed that Bs: cMEM shows the best spatial fidelity and

has the highest F value in this simulation. Overall, when both DLE and SD were relatively small, the F value

was relatively high (the results of the Bs: cMEM, Ft: lcmv, and SPMmethods are shown in Figure 3). These results

illustrate the effectiveness of the variational free energy in indicating the quality of the source imaging results.

Figure 3 provides an intuitive understanding of each imaging method. For example, sLORETA, LCMV, and

DipModel in Brainstorm, mne, sloreta, eloreta, and rv in FieldTrip overestimate the source extent.

To further evaluate each method, we activated each patch source provided by the Lausanne parcellation

and calculated the metrics for each method. The spatial distributions of DLE, SD, and normalized F metrics

are shown in Figure 4. The spatial maps display the metrics as a function of the source locations. The lower

the DLE and SD, and the higher the F values, the better the performance of each method. It can be seen

that the insula and cingulate gyrus showed higher DLE for Bs: MNE, and cMEM, SPM: IID, COH, and EBB

methods. Correspondingly, the F values of the relevant locations were small. Among the methods with

similar DLE distributions, such as Bs: LCMV, DipModel, and sLORETA, themethod with a higher SD showed

smaller F values. To this extent, the F values integrate the characteristics of DLE and SD In addition, we

calculated a metric called the Wasserstein distance (Janati et al., 2019; Niklas, 2022), which also shows

the ability to incorporate the characteristics of DLE and SD, as shown in Figure S1.

Evaluation of different methods

Comparison. As shown in Figure 4, among all the comparisonmethods, Bs: sLORETA and Ft: eloreta had

the best performance for imaging patch sources over the whole cortex, as indicated by the combination of

low DLE and SD and high F values relative to others. The LCMV method implementations in different tool-

boxes showed significant discrepancies, which were indicated by the large differences in their F distribu-

tions. This discrepancy was also validated by the DLE and SD distributions. Although Bs: LCMV and Ft:

lcmv had low source localization accuracies, Bs: LCMV significantly overestimated the source extent,

whereas Ft: lcmv showed smaller SD values, except for some outliers. For the dipole scanning methods

(Bs: DipModel and Ft: rv), the low F values were due to their high SD values over the entire cortex. F dis-

tributions were uneven for the two types of sparse algorithms Bs: cMEM and Ft: MSP. Although the SD

values for the two sparse algorithms were the smallest, they had significant source localization errors for

some patch sources.
iScience 25, 105177, October 21, 2022 3
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Figure 2. Example of the normalized free energy trajectories under the change of the source spatial size and

location

(A) The spatial size varies relative to the real simulated source. The source patch (labeled 0) with the initial extent at the

initial position was used to generate datasets. The source patches (labeled 0 and �0) simulated the source power

distribution estimated by MSI methods. The larger the label number, the larger size of the ‘‘estimated’’ source patch.

(B) The source location varies relative to the real simulated source. The larger the label number, the far the ‘‘estimated’’

source patch locations are from the simulated source patch location.
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There were similarities between the different methods. To further evaluate the similarities, we calculated

the average correlation between the spatial distribution of the source power estimated by pairs of

algorithms for all 1,000 source patches and plotted a hierarchical clustering tree to show the similarity,

as shown in Figure 5. Bs: LCMV and DipModel; Ft: sloreta and eloreta; and SPM: IID and EBB are

strongly correlated, with a correlation greater than 0.9. Similarities also exist in the different tool-

boxes. For example, Bs: MNE is correlated with SPM: IID, COH, and EBB methods with a correlation

of at least 0.7.

The empirical resolution matrix provides an intuitive understanding of spatial fidelity. In an ideal situation,

the empirical resolution matrix should be diagonal, indicating that the source can be estimated accurately.

However, in practical situations, the crosstalk and point spread between sources cannot be avoided

because of the uncertainty of the inverse problem. Therefore, the actual resolution matrix was not an ideal

diagonal matrix. The closer the resolution matrix is to the diagonal matrix, the better the performance of

the correspondingMSI method. Figure 6 shows the ideal and empirical resolutionmatrices of the represen-

tative source imaging methods and the similarity of each resolution matrix to the diagonal matrix. The sim-

ilarity was defined as the weights of diagonal elements and calculated by gbR = trðbRÞ=sumðbRÞ, where
sumðbRÞ was the sum of all elements in bR. The closer gbR is to 1, the closer bR is to the diagonal matrix. It

can be seen that the resolution matrices of Bs: LCMV, Ft: mne, and rv showed strong crosstalks and point

spreads between sources, indicated when each source patch was activated, a large number of source

patches were reconstructed. The situation was better for Bs: sLORETA and Ft: eloreta because the diagonal
4 iScience 25, 105177, October 21, 2022



Figure 3. Typical imaging results of different methods

The source is located in the postcentral cortex. The imaging results below 20% of the maximum estimated source power

are not displayed. The signal-to-noise ratio of the data was 20 dB.
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elements could be clearly distinguished from the background. For Bs: MNE and cMEM, and SPM: MSP,

although they had few crosstalks between sources, the diagonal elements were not clear enough, indi-

cating that several incorrect source patches were reconstructed.

Effects of source size and SNR. We tested the performance of all source imaging methods by simu-

lating two types of sources, patch and dipole, at different signal-to-noise ratios (SNRs). Histograms of

the three metrics for the patch and dipole sources at an SNR of 20 dB are shown in Figure 7. The metrics

distributions were obtained by calculating the metrics across different locations of the patch or dipole

sources. The SD histogram shows that each method estimates similar source extents for dipole and focal

sources, except for the Ft: lcmv method. The Ft: lcmv method showed the lowest DLE and SD and the

highest F values. In other words, Ft: lcmv exhibited the best performance for imaging the focal sources.

For Bs: sLORETA, LCMV, and DipModel, and Ft: sloreta, eloreta, lcmv, and rv, their DLE values were

almost zero, indicating that they had better accuracies for localizing focal sources than patch sources.

To further investigate the effects of source size on the DLE among the MNE-type and dipole scanning

methods in Brainstorm and FieldTrip, we regressed the DLE values of the typical algorithm Ft: eloreta

against the patch source size, and the results are shown in Figure 8. It can be seen that the DLE and

the patch source size had a positive correlation, indicating that the ability of these methods to localize

the center of the patch source worsens as the source size increases. Other methods seem to be insen-

sitive to the source size.

We reduced the SNR from 20 to �20 dB and calculated the DLE and SD metrics. The F values were not

calculated because F is more suitable for comparing methods under the same measurement scenario. In

other words, comparing F values under different SNRs makes no sense. The effect of SNR on each method

is shown in Figure 9. It can be seen that with a decrease in the SNR, the performance of each method grad-

ually degrades, as indicated by the growing DLE and SD values. The performance of each method

decreased sharply when the SNR decreased from �10 to �20 dB. In particular, the DLE values of the Bs:

MNE, sLORETA and cMEM, and Ft: eloreta approaches were even greater than 30 mm at an SNR of �20

dB, far exceeding those of the others.
iScience 25, 105177, October 21, 2022 5



Figure 4. Spatial distributions of metrics when simulating patch sources

Topographic plots of dipole localization error (DLE), spatial dispersion (SD), and normalized variational free energy (F) metrics are shown. Because the results

are similar in both hemispheres, only the left hemisphere’s cortex results are shown. See also Figure S1.
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Figure 5. Correlation between different source imaging methods

(A) Pearson correlation coefficient is calculated between each pair of methods. The color bar shows the

correspondence between the color and the correlation coefficient. Darker blues indicate a stronger correlation between

the two methods.

(B) Hierarchical clustering tree of correlation linkage between source imaging methods. The links between methods are

represented as upside-down U-shaped lines. The height of the U indicates the degree of uncorrelation between the

methods. The lower the height, the more similar the source imaging results between the two methods.
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Real OPM-MEG data

Cortical responses to median nerve stimulation have been widely studied using MEG, electroencephalog-

raphy, and functional magnetic resonance imaging, and the approximate source location of the

somatosensory cortex is well known (Molins et al., 2008). Therefore, we applied each method to a real

31-channel OPM-MEG dataset that recorded the cortical responses stimulated by the left median nerve.

In the OPM-MEG experiment, the OPM sensors (QZFM Gen-2, QuSpin Inc., USA) measured the

radial components of the magnetic fields and operated in a single-axis mode. The experiment was re-

viewed and approved by the Ethics Committee of Beihang University. Data were collected from the

same subject as in the simulations, and the subject provided written informed consent. A detailed descrip-

tion of the dataset and preprocessing analysis is available in An et al. (2022).

The source imaging results of the measured OPM-MEG data are shown in Figure 10. For each method, the

source activation area was mainly in the right hemisphere, contrary to the stimulus side. The center of the

reconstructed sources was near the postcentral gyrus, consistent with previous findings (Zetter et al., 2019;

Hari and Puce, 2017; Backes et al., 2000). However, the estimated source extents of all methods showed

significant differences. It is no surprise that the sparse algorithms Bs: cMEM and SPM: MSP showed

more focal reconstruction results, whereas the MNE-type methods showed more blurred source results.

The source results of SPM: IID, COH, and EBB were very similar because of the approximate source priors

used to solve the inverse problem. The calculated variational free energy provided evidence for choosing

the better one from all source imaging results. SPM: MSP had the highest F value in this experiment. It is

reasonable to infer that the SPM: MSP imaging results can better explain the measurement data.

DISCUSSION

The current study has two main objectives. We showed that the variational free energy under the Bayesian

framework could be used to evaluate different source imaging results without knowing the ground truth of

the brain sources, making it convenient to compare different source reconstruction results in practical ap-

plications. We also systemically assessed the spatial fidelity of all time-domain source imaging methods

provided in three toolboxes–Brainstorm, FieldTrip, and SPM12–on an 85-channel OPM-MEG system. We

attempt to provide users with an intuitive understanding of the characteristics of each method.

Variational free energy as a metric to evaluate source imaging results

Source reconstruction of MEG is used to make neuroanatomical inferences and has a direct and significant

impact on source-level connectivity estimation (Tait et al., 2021; Hincapié et al., 2017). Many source recon-

struction methods are available (Becker et al., 2015; Baillet et al., 2001). However, there is no perfect

approach to adapt to every situation because methods based on different assumptions about the source

prior tend to have different trade-offs to solve the highly underdetermined inverse problem. In practical

applications, there is no ground truth for brain sources. Therefore, the assessment of various source
iScience 25, 105177, October 21, 2022 7
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Figure 6. Illustration of resolution matrices

(A) Ideal and empirical resolution matrices bR of typical source imaging methods. The color bar is shown. For the actual

empirical resolution matrix of the MSI method, the i-th row of represents that the i-th estimated source is originated from

many sources (non-zero elements in the i-th row). The j-th column of bR represents that when the j-th source is activated,

many other sources are estimated to be active.

(B) The similarity of each resolution matrix to the diagonal matrix.
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imaging results cannot be performed using general metrics, such as DLE and SD. Our results demonstrated

the effectiveness of variational free energy as an indicator for assessing different source imaging results

(Figures 2, 3, and 4). The variational free energy incorporates the characteristics of DLE and SDmetrics. Un-

der the Bayesian framework and Laplace approximation, the variational free energy is an approximation of

model evidence (Friston et al., 2007, 2008b). TheMSPmethod combines variational free energy with the GS

or ARD algorithm to search for and compare patch sources with different spatial priors (Friston et al.,

2008a). In this study, the source distributions estimated by each MSI method were decoded into source

covariance components, and the variational free energy was used to compare different models. The role

of the variational free energy was further investigated.
Characteristics of each source imaging method

Our results show differences in the source estimation results obtained using the same method but imple-

mented in different toolboxes, such as the results of the MNE, sLORETA, and LCMV methods. In our study,

we used the same generated datasets, head model, source model, and forward solutions across different
8 iScience 25, 105177, October 21, 2022
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Figure 7. Metrics histogram for each comparison method

(A) Histogram of the dipole localization error (DLE). The results of patch sources are shown in blue, and those of dipole sources are shown in red.

(B) Histogram of the spatial dispersion (SD). (C) Histogram of the variational free energy (F).
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toolboxes to avoid differences in the source estimation results caused by these factors. Therefore, these

differences arise mainly when solving the inverse problem. Before calculating the inverse operator, it

was necessary to prepare the data. The preparation involves processes such as estimating data and noise

covariance, data whitening, data regularization, depth weighting, and spatial or temporal projection. The

inconsistency in these process implementations causes differences in the source estimation results. Addi-

tionally, discrepancies exist in the core calculation of the inverse operator for the same method. Therefore,

a comparison of methods across different toolboxes is required.

In this study, we evaluated MSI methods provided in three commonly used toolboxes: Brainstorm,

FieldTrip, and SPM12. The characteristics of all the methods are summarized in Table 2. Similar to the con-

clusions of other studies, there is no perfect algorithm (Tait et al., 2021). Here, we highlight the character-

istics of each type of method and aim to assist researchers in choosing an appropriate source imaging

method. For the MNE-like methods, the variant LORETA-type methods showed better performance

than the MNE method in each toolbox. For example, there was improved source localization accuracy of

Bs: sLORETA in the insula and cingulate gyrus compared with that of Bs: MNE (Figure 4). Bs: LCMV tended

to overestimate the source extent, whereas Ft: lcmv was more suitable for reconstructing the focal sources.

The performance of Bs: LCMV was closer to the Bs: DipModel method. Dipole scanning methods always

exhibit a larger activation area than other methods. The sparse algorithms Bs: cMEM and Ft: MSP exhibited

excellent performance in reconstructing the source extent. However, it should be noted that they also had

the risk of mispredicting the patch source location compared with the other methods. That is, researchers

need to balance two situations: blurred estimation results covering the real source activation area and a

more precise source range, but the source location may be biased.
Figure 8. Regression results between the dipole

localization error (DLE) values of Ft: eloreta and the

patch source size

The patch source size is the surface area of all triangle

mesh in each patch source. The linear regression is

performed using the least absolute residual method.

The correlation coefficient R-square is shown. The

results are obtained in the datasets with the signal-to-

noise (SNR) of 20 dB.

iScience 25, 105177, October 21, 2022 9
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Figure 9. Effect of the signal-to-noise ratio (SNR) on each source imaging method

(A) SNR effect on the dipole localization error (DLE) metric.

(B) SNR effect on the SD metric.
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Limitations of the study

Plenty of MSI methods have been proposed to solve the inverse problem in MEG. In this study, we only

focused on evaluating MSI methods implemented in Brainstorm, FieldTrip, and SPM12. For MSI

methods, several aspects should be considered in source estimation, such as spatial fidelity, source

amplitude reconstruction, and source estimation results, when multiple sources are activated. Our

work focused only on the spatial accuracy evaluation of different MSI methods in three commonly

used toolboxes for detecting a single source. Comparing the estimated source amplitudes is challenging

because the source amplitude units vary among toolboxes. If the estimated source amplitudes are

normalized for comparison, they seem to lose their practical value in indicating the intensity of brain

sources. A comparison of MSI methods for temporal reconstruction should be conducted within each

toolbox. In addition, evaluating situations in which multiple sources are activated is significant. The

source reconstruction results may be affected by several factors such as coherency, inconsistent intensity,

and distance from each other.
Figure 10. OPM-MEG sensor configuration and source imaging results of the optically pumped magnetometer

(OPM)-based MEG data under left median nerve stimulation

The variational free energy of each method was normalized using the minimum and maximum F values of all 15 inversion

methods on this dataset. The normalized variational free energy is shown.

10 iScience 25, 105177, October 21, 2022



Table 2. Characteristics summary of each time-domain source imaging method in Brainstorm, FieldTrip, and SPM12

Software Method

Accuracy of

source localization

Accuracy of source

extent estimation

Better for focus source

than extended source?

Robustness to

high sensor noise

Additional

remark

Brainstorm

v3.211107

MNE *** *** Equal *** Note 1

dSPM **** **** Equal **** –

sLORETA ***** **** Better *** –

LCMV ***** ** Better ***** Note 2-1

DipModel ***** ** Better ***** Note 2-1

cMEM *** ***** Equal *** Note 1

FieldTrip

v20201023

mne **** ** Slightly better **** –

sloreta ***** *** Better ***** Note 2-2

eloreta ***** *** Better *** Note 2-2

lcmv ***** *** Better ***** –

rv ***** ** Better **** –

SPM12

v7771

IID *** **** Equal **** Note 1; note 2-3

COH *** **** Equal **** Note 1

EBB *** **** Equal **** Note 1; note 2-3

MSP **** ***** Equal **** –

*Rate of performance of each method. A higer * indicates better performance. Note 1: worse in imaging sources in the insula and cingulate gyrus; Note 2-i: the

source imaging results of ith group of methods are strongly correlated.
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Each MSI method has its unique parameters. In our study, the parameters of each method, except for the

SNR, used their default or recommended settings in each toolbox. It should be noted that changes in pa-

rameters may affect the imaging results. Therefore, when using MSI methods with different parameter set-

tings, it is necessary to consider the differences in the imaging results. Using the variational free energy to

compare different imaging results is recommended. In addition, it is possible to use free energy as the

objective function to optimize the parameters for each MSI method. When different parameters are set,

the estimated source power distribution corresponding to each parameter can be encoded into the source

prior, and the free energy can be calculated. The parameters with maximum free energy can be used as the

final parameter values.
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d All original code has been deposited at Zenodo and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this article is available from the

lead contact on request
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects

One healthy right-handed subject (male, 27-year-old) participated in this study. This study was reviewed

and approved by the Ethics Committee of Beihang University and the subject provided written informed

consent for the experimental procedure in accordance with the Declaration of Helsinki.

METHOD DETAILS

Inverse problem

For MEG, there is a common assumption that the sources of brain activity can be modeled as a large num-

ber of equivalent current dipoles, with their locations fixed and distributed on the cortex and their orien-

tation perpendicular to the local cortex mesh (Liu et al., 2002). Under this assumption, the relationship be-

tween the measured MEG data Y and the distributed source J can be described by a linear model:

Y = LJ+ ε ; (Equation 1)

where Y is an nc3nt data matrix measured at nc channels and nt time samples and J is an nd3 nt matrix

representing the source amplitudes of the nd dipoles. L (nc 3 nd ) is the forward solution, also known as

the lead field matrix, and each column describes the sensitivity of the sensor array to a source with unit
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amplitude at a given location and orientation. This lead field matrix can be obtained from the solutions of

the forward problem in quasi-static approximation (Mosher et al., 1999). ε (nc 3 nt ) is the additive measure-

ment noise.

The inverse problem for the distributed source model involves estimating the source amplitude J based on

the measured MEG data and the obtained lead field. The solution to this inverse problem can be derived in

various ways, such as the Tikhonov regularization, minimization of expected error, and Bayesian formula-

tion (Liu et al., 2002). These methods yield a similar expression for the solution, as follows:

bJ = QJL
T
�
LQJL

T +R
�� 1

Y; (Equation 2)

where bJ is the estimated source amplitude and R is the covariance matrix of the noise ε. QJ is the source

covariance matrix that can be regarded as the prior of the sources. The superscript ‘‘T’’ denotes transpose.

QJL
T ðLQJL

T +RÞ� 1 is usually denoted asW, and is called the inverse operator. The inverse problem of MEG

is ill-posed, meaning the solution is not unique. Therefore, additional constraints should be added to the

sources, that is, the assumption regarding the source prior QJ.
Source imaging methods to be evaluated

In this study, we evaluated MNE-like solutions, beamformer, dipole scanning, and two types of sparse al-

gorithms. In this section, we briefly review these source imaging methods and clarify their implementation

details.

MNE-like solutions

The most widely used solution for the MEG inverse problem is the MNE method. If there is no available

sourceprior, theMNEmethodusually assumes that the sourceprior covarianceQJ = I and thenoise covariance

R = l2C, where Ind3nd is the identity matrix, and C is the estimated noise covariance. l2 is a regularization

parameter estimated from the noise covariance (Linet al., 2004). The MNE solution is expressed as follows:

bJMNE = WMNEY = LT
�
LLT + l2C

��1
Y: (Equation 3)

However, the MNE approach has been shown that it tends to prefer superficial dipoles. Various methods

have been developed to eliminate this tendency, such as dSPM (Dale et al., 2000), sLORETA (Pascual-Mar-

qui et al., 2002), and eLORETA (Pascual-Marqui et al., 2011). These variants attempt to standardize the

values of the estimated current density using its expected SD and use the normalized results to generate

source mapping. This standardization can be defined as follows:

Pi =
bJMNEðiÞbJTMNEðiÞ

Si
; (Equation 4)

where bJMNEðiÞ is the estimated time courses of the i-th dipole and Si is its estimated variance. Pi is the stan-

dardized value of the source power. dSPM regards the variance originated exclusively by the measurement

noise, which gives Si = WiCW
T
i , whereWi is the i-th row ofWMNE . sLORETA takes the variance of the actual

sources into account, not only noise, that is, Si = WiðLLT + l2CÞWT
i . For eLORETA, it estimates the source

variance iteratively. It uses the estimated source variances of the previous iteration to compose the source

covariance, that is, QJ = diagð1 =S1;1 =S2; :::;1 =SNd
Þ, and then updates the inverse operator to calculate a

new source variance S0
i where

S0
i = Wi

�
LQJL

T + l2C
�� 1

WT
i : (Equation 5)

The inverse operator continues to update until it converges, and the final source variance is obtained.

Some methods directly assume a prior on the source covariance, such as the SPM-COH and SPM-EBB

methods, and then solve the inverse problem using (Equation 2). SPM-COH defines a spatial smoothing

before the source covariance, that is QJ = expðsGLÞ where s is the smoothness level and

GL = A � diagðPNs

k = 1AikÞ is a graph Laplacian matrix (López et al., 2014). A is the adjacent matrix and

Ai, is its i-th row. For SPM-EBB, it assumes the source covariance as a diagonal matrix with its diagonal el-

ements qi = ðLTi Q� 1
Y LiÞ� 1

=ðLTi LiÞ
� 1

, where Li is the lead field of the i-th dipole and QY is the data covari-

ance (Belardinelli et al., 2012; O’Neill et al., 2021).
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Beamformer

The LCMV method is a widely used beamformer for imaging time-domain data (Van Veen et al., 1997). It

defines a spatial filterW, similar to the inverse operator. In contrast, it takesQJ = LTQ� 1
Y L inW and provides

W = ðLTQ� 1
Y LÞ� 1

LTQ� 1
Y . The spatial filter is used to reconstruct the time course of each dipole. For source

localization, the LCMV estimates the variance or strength of each dipole and normalizes it using the esti-

mated noise covariance. The pseudo-statistics of each dipole can be expressed as:

Pi =
tr
�
LTi Q

� 1
Y Li

�
tr
�
LTi R

� 1Li
� ; (Equation 6)

where tr½ ,� is the trace of a matrix and tr½LTi Q� 1
Y Li� is the estimated source power. This normalization esti-

mate is known as the Neural Activity Index (Van Veen et al., 1997).

Dipole scanning

The dipole scanning method is the simplest model for solving the inverse problem. It scans the source

space with a single dipole and computes the goodness of fit (GOF) (Baillet et al., 2001). The GOF of the

i-th dipole is calculated as follows:

GOFi =
jY � WiYjF

jYjF
; (Equation 7)

where
��,jF is the Frobenius norm of a matrix, andWi = LiLi

� 1. The calculated GOFs at all dipole locations

were used to produce a dipole scanning map, which could be viewed as the source imaging results.

MEM: The maximum entropy on the mean (MEM) method (Chowdhury et al., 2013) is a sparse algorithm

used for source imaging. Similar to the aim of other sparse algorithms, MEM is not only to estimate source

locations but also to limit the spatial extent of sources. The inactive brain region is set to zero. It models

brain activity using non-overlapping cortical parcels with specific local spatial smoothness; that is, the

spatial priors are constrained by QJ. The MEM uses entropy maximization as the criterion to estimate

the contrast of the current density within each active parcel. The estimated bJ is described as an nd-dimen-

sional continuous random variable with a probability density dpðJÞ. Kullback’s m-entropy is defined as fol-

lows (Amblard et al., 2004):

Sm

�
dp

�
= �

Z
log

dp

dm
dp; (Equation 8)

where dm is prior knowledge about J. The solution under the MEM framework can be described as follows:

d bp = arg max
dp˛QJ

Su

�
dp

�
: (Equation 9)

The estimated contrast among parcels can be regarded as the source imaging results.

MSP

TheMSPmethod (Fristion et al., 2008a) is similar toMEMbut under the Bayesian framework. It also assumes

spatial priors on the source prior QJ. The source patches distributed in the source space comprise source

components. The estimated source bJ can be considered a specific combination of these source compo-

nents, denoted as D. There are several combinations of source components. Bayesian model comparison

was introduced to compare different combinations using evidence (Fristion et al., 2008a). The model evi-

dence can be approximated by the variational free energy F (Friston et al., 2007). Thus, the inverse solution

in MSP can be expressed as follows:

bD = argmax
Di ˛QJ

FDi ; (Equation 10)

where bD is the set of patches with maximum free energy and can be regarded as the source imaging results.
Implementations of source imaging methods

The implementations of the source imaging methods mentioned earlier are based on three widely used

toolboxes: Brainstorm, FieldTrip, and SPM12. There are differences in the implementations of the same
16 iScience 25, 105177, October 21, 2022
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method on different toolboxes, for example, differences in the aspects of data whitening, regularization,

and estimation of the SNR of data.

MRI

Weacquired T1-weightedMRI scans of one subject using anMPRAGE sequence of a SiemensMAGNETOM

Prisma 3TMR system (TR, 2,300ms; TE, 3.03ms; TI, 1,100ms; FA, 8�; field of view, 2563 2563 192mm; voxel

size, 13 13 1 mm3). MRI data were preprocessed and segmented using FreeSurfer software (Fischl, 2012).

The data obtained in FreeSurfer were then imported into Brainstorm to register the subject’s T1 MRI to the

subject coordinate system, and the scalp surface and cortex were automatically downsampled and recon-

structed. In addition, the registered MRI was segmented by SPM12 to generate the head, innerskull, and

outerskull surfaces which were used when solving the forward problem.

OPM-MEG sensor configuration

Our evaluation was performed using the OPM-MEG sensor configuration. We designed and 3D-printed a

helmet for the OPM-MEG system, which had 85 slots for inserting OPM sensors. The simulations were per-

formed with all 85 slots. The sensors were modeled as single-axis sensors with their orientations radial to

the head. We co-registered the helmet with the scalp surface extracted from MRI to obtain the relative po-

sitions and orientations between theOPM sensors andMRI. The average distance between the sensors and

the scalp was 7.7 G 4.1 mm.

Head model

We used a three-layer piecewise homogeneous head model and the boundary element method (BEM) to

compute the lead field matrix (Mosher et al., 1999; Cao et al., 2022). The BEM computation was performed

using OpenMEEG software (Gramfort et al., 2010). Although Brainstorm, FieldTrip, and SPM12 can all call

theOpenMEEGprogram, there are some differences among the computed lead fields owing to the default

settings of the parameters. To avoid discrepancies in source imaging results caused by different forward

solutions, we used the same segmented head model and the corresponding lead field matrix computed

in Brainstorm to solve the inverse problem in our study. Each BEM head model surface consisted of

4,322 vertices. The electrical conductivities of the scalp, skull, and brain were set to 0.33, 0.0042, and

0.33 S/m, respectively (Stenroos et al., 2014).

Source and source model

We simulated two types of sources, patch source and dipole source, to evaluate the performance of MSI

methods. The Lausanne parcellation provided in the Easy Lausanne software (Daducci et al., 2012) was

used to subdivide the cortex into 1,000 nonoverlapping parcels covering the brain region, excluding the

corpus callosum and the deep brain. Each segmented Lausanne parcel was regarded as the patch source,

and the point closest to the center of each parcel was regarded as the dipole source. Therefore, there were

1,000 patch sources and 1,000 dipole sources. We simulated a single source in each dataset, and all sources

were activated in turn to generate the datasets. The source signals were bandpass orthogonal Gaussian

signals (10–30 Hz). The source was activated within 0–300 ms following 200 ms of baseline data. Note

that the activities of the vertices in a patch source were highly coherent because they were generated

by simulating identical time series. The cortex segmented from FreeSurfer was down-sampled to a mesh

with 15,002 vertices and used as the distributed sourcemodel to solve the inverse problem. The orientation

of each source was restricted to perpendicular to the local cortical surface.

SNR settings of the simulated data

For the simulated data, Gaussian noise was added to each group of generated sensor data and the noise

was independent across sensors. The intensity of the Gaussian noise was set to scale to obtain the SNR of

the data at the desired level. SNR was defined as SNR = 20log 10½rmsðYsignalÞ =rmsðYnoiseÞ�.

Parameter settings of MSI methods

In our study, most parameters followed the default or recommended settings of each method in each

toolbox. The main settings are summarized in Table S1. Among them, the parameters related to reg-

ularization were set according to the estimated noise level (ENL) of the data to bring the regularization

to a reasonable scale (Samuelsson et al., 2021). The noise levels of the simulated data and the real

OPM-MEG data were all estimated by the ratio of the root-mean-square of the baseline data and
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post-stimulus data, that is, ENL = rmsðdatabaselineÞ=rmsðdatapost� stimulusÞ. The source imaging results of all

methods were thresholded at 20% of the maximum power value of the estimated sources.

Evaluation metrics

Variational free energy

Under the Bayesian framework, the inverse problem is to maximize the posterior distribution of the source am-

plitudes, that is, pðJjYÞ. The source imaging results estimated by an MSI method can be regarded as a specific

model. The Bayes rule gives an expression for the posterior distribution condition on the given model m,

pðJjY;mÞ =
pðYjJ;mÞPðJjmÞ

pðYjmÞ ; (Equation 11)

wherepðYjmÞ represents themodel evidence that can be used as a criterion to compare differentmodels for

model selection (Trujillo-Barreto et al., 2004; Friston et al., 2008b). The more reliable the model, the greater

the value of the model evidence. Generally, it is difficult to give a direct expression of the model evidence.

Fortunately, the variational free energy under Laplace approximation provides an approximation to the log

evidence of the model (Friston et al., 2007), which can be expressed as follows (Friston et al., 2008a):

ln
�
pðYjmÞ�yF = � nt

2
tr
�
QYS

� 1
� � nt

2
lnjSj � ntnc

2
ln 2p+

1

2
ln
��SlP

� 1
�� � 1

2
ðml � hÞTP� 1ðml � hÞ

(Equation 12)

where S = elmLQJL
T +elεR is the sensor-level covariance, and the hyperparameters fljlm; lεg with the

Gaussian hyperpriors Nðh;PÞ and Gaussian posteriors Nðml;SlÞ can be estimated by maximizing free en-

ergy using the expectation maximization algorithm (Friston et al., 2008b; López et al., 2014).

Free energy reflects a trade-off between the simplicity of the model and its capability for data fitting

(MacKay, 1992). In addition, the computation of model evidence does not require the ground truth of J.

Therefore, evaluating the source imaging results in practical applications where the real source distribution

is unknown is more helpful. In this study, we introduced it to evaluate different source imaging results.

Each MSI method estimates a spatial distribution of the source power bP, which can be directly obtained by

calculating bPi = bJðiÞbJT ðiÞ or using pseudo-statistics such as in Equations (6) and (7). The source amplitude

units vary among toolboxes. Therefore, to compare source estimation results in different toolboxes, the

estimated source power was then normalized by its maximum value, Pmax. The normalized source power

can be regarded as model m to be compared. A simpler way to model the estimated source power as a

source imagingmodel is to give more weight to the sources with larger power. The estimated source power

is used as weight and encoded into the model:

bQJ = diag
�
P1 =Pmax; P2 =Pmax; :::; PNd

�
Pmax

�
: (Equation 13)

where the sources are assumed to be independent. Among the comparison of different MSI methods,

(Equation 13) is substituted into (Equation 12) to calculate the corresponding free energy. Under the

Bayesian framework, the estimated spatial distributionwithmaximum free energy was regarded as the best.

Validation metrics

DLE. DLE is defined as the Euclidean distance between the location of the maximum amplitude of the

estimated source power map and the center of the true simulated source. A near-zero DLE value indicates

a better localization accuracy.

SD. SD evaluates the degree of the spatial extent of the estimated source. SD is defined as the sum of the

distances from the dipole with the maximum amplitude of the estimated source power to other dipoles in

the source space. The distances are weighted by the estimated source power (Hedrich et al., 2017). SD can

be expressed as follows:

SD =

Pnd
i = 1

pidi

Pnd
i = 1

pi

; (Equation 14)
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where di is the distance between the location of the peak reconstructed power and the location of the i-th

dipole in the source space. p is the source power estimated by each method, normalized to a scale of [0,1],

and pi is the power value corresponding to the i-th dipole.

Resolution matrix. The conventional resolution matrixR is defined asR = WL. However, this expression

is only suitable for the linear inverse solver. Among the MSI methods to be evaluated, there are several

nonlinear estimates. Therefore, we introduced an empirical resolution matrix bR proposed in the study

by Samuelsson et al. (2021) to quantify the performance of each source imaging method. The element

of the i-th row and j-th column of the empirical resolution matrix can be expressed as follows:

bR ij =

PnDi
k = 1

pðDjÞ;k
nDi

; (Equation 15)

where pðDjÞ is the estimated source power normalized to 0–1 when the j-th source patch is activated, and

pðDjÞ;k is its k-th power value and k ˛Di . nDi
is the number of dipoles in patch Di. In other words, the i-th

row of bR reflects the i-th source patch response to each patch or dipole activated. The j-th column of bR
reflects the j-th activated source patch or dipole motivation for each patch or dipole.
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