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SUMMARY

Similarities in the immunobiology of different parasitic worm infections indicate that co-evolution of humans and
helminths has shaped a common anti-helminth immune response. However, recent in vitro and immuno-epidemiological
studies highlight fundamental differences and plasticity within host-helminth interactions. The ‘trade-off’ between
immunity and immunopathology inherent in host immune responses occurs on a background of genetic polymorphism,
variable exposure patterns and infection history. For the parasite, variation in life-cycle and antigen expression can influence
the effector responses directed against them. This is particularly apparent when comparing gastrointestinal and tissue-
dwelling helminths. Furthermore, insights into the impact of anti-helminthic treatment and co-infection on acquired
immunity suggest that immune heterogeneity arises not from hosts and parasites in isolation, but also from the environment
in which immune responses develop. Large-scale differences observed in the epidemiology of human helminthiases are a
product of complex host-parasite-environment interactions which, given potential for exposure to parasite antigens in utero,
can arise even before a parasite interacts with its human host. This review summarizes key differences identified in human
acquired immune responses to nematode and trematode infections of public health importance and explores the factors
contributing to these variations.
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INTRODUCTION

Over a third of the human population is currently
infected by one or more species of parasitic helminth
(Hotez et al. 2008). Chronically-infected hosts must
strike a balance between anti-parasite protective
responses and limiting immune-mediated pathology
(Hoffmann et al. 2002), whilst parasites have devel-
oped strategies to prolong intra-host survival and
fecundity. Throughout their co-evolutionary history
these forces, as often in concert as in opposition, have
driven diversity in both parasites (Maizels et al. 2001)
and the genetics of the host immune response
(Fumagalli et al. 2009; Maizels, 2009), the latter es-
pecially evident in the human population. Experi-
mental models are invaluable in mechanistic studies
of helminth-induced immune responses in vivo;
however, reductionist laboratory models inevitably
seek to minimize variation in the host, the context of
infection and polymorphism in the parasite itself.
Moreover, integral differences in the immune

systems of different host species (Mestas andHughes,
2004) and the inability of many anthropophilic hel-
minths to naturally infect laboratory animals mean
that current experimental models do not reflect the
complexity of human helminth immunobiology.
Most importantly, models cannot easily replicate the
major sources of human immune heterogeneity such
as parasite transmission dynamics (Mutapi et al.
1997), distribution of intermediate hosts (Gryseels
et al. 2006), distinct intra-population exposure pat-
terns (Rudge et al. 2008), therapeutic interventions
(Mutapi et al. 2005) and concurrent or previous infec-
tions with other pathogen species (Correa-Oliveira
et al. 2002).
This review highlights differences in the human

acquired immune response to a variety of nematode
and trematode infections of public health importance
and explores some of the factors contributing to these
variations, particularly differences arising from hel-
minth life-history traits.

COMMON FEATURES OF THE ACQUIRED

IMMUNE RESPONSE

The most prevalent human helminthiases are caused
by nematode species including filarial worms (Brugia
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malayi, Onchocerca volvulus and Wuchereria bancrof-
ti) and soil-transmitted helminths (Hotez et al. 2008):
Ascaris lumbricoides, Trichuris trichiura, hookworm
(Ancyclostoma duodenale and Necator americanus),
Strongyloides spp., and Enterobius vermicularis. Of
the trematodes, Schistosoma spp. are of greatest pub-
lic health importance, with the 3 predominant species
(S. haematobium, S. japonicum and S. mansoni) ac-
counting for over 200 million current infections
worldwide (Gryseels et al. 2006). In addition, and
beyond the scope of this article, there are many
important human cestode parasites which have been
expertly discussed elsewhere (Zhang et al. 2008).

The principal cellular mediators of human-
helminth interactions are CD4+ T cells, which can
differentiate into alternative lineages once activated;
Th1, Th2, Th17 and T regulatory (Treg), as sum-
marized in Fig. 1. Selective differentiation is first
driven by innate antigen-presenting cells (APC) but,
as responses mature during the course of chronic in-
fection, cytokine-mediated cross-regulation between
Tcell subsetsbecomes increasingly important.Differ-
ences in acquired immune responses to helminth
infection can arise via heterogeneity in how parasites
initially interact with host cells, polarize local and sys-
temic responses and/or modulate effector responses
in chronic infection. There are two principal

immunological features believed to be common
amongst helminth infections. (1) Polarization of
CD4+ T cells towards a Th2 phenotype. In humans,
this phenotype is associated with production of inter-
leukins (IL-)4, 5, 9, 10 and 13 (Turner et al. 2003;
Jackson et al. 2004b; Quinnell et al. 2004), secretion
of IgE and IgG4 isotypes by plasma cells (Hagan
et al. 1991) and activation of downstream effector
cells such as eosinophils (reviewed by (Klion and
Nutman, 2004)). (2) Immunosuppression of both
worm-specific and generalized immune responses.
Inducible mechanisms include secretion of suppres-
sive cytokines, such as IL-10 and TGF-β, and
expansion of regulatory cell populations, particularly
Tregs (Doetze et al. 2000;Watanabe et al. 2007; Babu
et al. 2009). The progression of host responses from
effector Th2 to a so-called ‘modified Th2’ phenotype
associated with elevated levels of Treg-associated
molecules and reduced Th2 effector cytokine re-
sponses (Maizels and Yazdanbakhsh, 2003), suggests
that both features play a functional, and potentially
cross-regulatory, role in helminth immunobiology.

Despite similarities in the immune responses eli-
cited by different helminths, immunological studies
often yield contradictory results in different human
populations and different species of helminth infec-
tion, which are discussed below. To an extent this is

Fig. 1. Summary of the major CD4+ T cell differentiation pathways following activation in the periphery. Cytokines
and transcription factors involved in T cell polarization are shown in boxes and within cells respectively. Effector cell
types and cytokines associated with each CD4+ T cell phenotype are given adjacent to relevant cells. Th0 – naïve T cell,
* RORγt –murine transcription factor, the human orthologue is RORC2. Figure adapted from Deenick and Tangyne
(2007) and Diaz and Allen (2007).
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unsurprising as expanding research into human
helminthiases has inevitably led to a greater appreci-
ation of the intricacies of their immunobiology.
The discovery of new cell populations including
Treg and Th17 and the more recent description of
IL-5 and IL-9 producing CD4+ T cells, which
differentiate from Th2 cells in an IL-33 or TGF-β/
IL-4-dependent manner respectively, has led to a
re-evaluation of the classical Th1-Th2 paradigm
(Dardalhon et al. 2008; Kurowska-Stolarska et al.
2008; Veldhoen et al. 2008). Furthermore the CD4+
T cell axis can be regulated both by effector cytokines
from CD4+ T cell populations themselves (IFNγ,
IL-4 and IL-21 (Wilson et al. 2008; Babu et al. 2009))
and innate and adaptive non-T cell populations,
which both present antigen to activate T cells and
contribute significant levels of these same cytokines.
Helminth-induced alternatively activated macro-
phages exhibit particular plasticity in this respect
(Jenkins and Allen, 2010). Studies showing that Th2
IL-4 and IL-5 responses can be dissociated in human
nematode (Sartono et al. 1997) and trematode (Scott
et al. 2000) infections indicate that even established
immune phenotypes involve heterogeneous effector
responses to helminth infection. As more data
become available on human anti-helminth responses,
particularly in terms of the more recently described
cytokines (e.g. IL-17, IL-21, IL-23, IL-33), com-
parative studies between helminth groups will be
better able to identify similarities and differences in
these responses.

HETEROGENEITY IN PROTECTIVE IMMUNE

RESPONSES

Protective immunity in human helminthiases en-
compasses a range of overlapping mechanisms: (a)
complete elimination of parasites (sterile immunity),
(b) resistance to de novo infection (non-sterile im-
munity, also called ‘concomitant immunity’) and
(c) reduction of immunopathology (tolerance). The
former two processes can be grouped as anti-parasite
immunity, whilst the latter involves immune-medi-
ated regulation of pathological effector responses.
The high prevalence of chronic helminth infection in
endemic populations suggests that sterile immunity
is rarely generated (Hotez et al. 2008). However, the
decline in infection intensity at an earlier age in popu-
lations with high infection intensity (Woolhouse,
1998) and more rapid development of resistance to
re-infection post-treatment in individuals with long-
term exposure to infection (Black et al. 2010) indi-
cates that non-sterile immunity, though slow to
develop, does occur with cumulative exposure. Con-
versely, since the majority of helminth infections are
asymptomatic, it is clear that tolerance of low-level
infection can be readily elicited to limit immuno-
pathology (Dessein et al. 2004). The balance be-
tween anti-parasite and anti-pathology responses is

inevitably shaped by the specific immunopatho-
genesis of different helminth species. Contrary to
phylogenetic distinctions between nematodes and
trematodes, one of the main functional delineations
between helminth infections is that between species
where adult worms reside in the gastrointestinal (GI)
tract and those that inhabit host tissues.

Anti-parasite immune responses

Expulsion of GI nematodes is dependent on highly
polarised Th2 responses (reviewed by (Jackson et al.
2009; Jenkins and Allen, 2010)) and elevated titres of
systemic andparasite-specificTh2 cytokines arenega-
tively associated with infection intensity in untreated
populations (Turner et al. 2003). Th2-induced
smooth muscle hypercontractility and mucus secre-
tion by goblet cells are known to facilitate clearance of
murine GI nematode infections (Finkelman et al.
2004), but these physical means of worm expulsion
are absent in the tissues. The immunological rel-
evance of these differences has not been tested in
humans.
Resistance to re-infection by GI nematodes

post-treatment also tends to be unequivocally Th2-
mediated (Jackson et al. 2004a,b; Quinnell et al.
2004). Post-treatment resistance to hookworm and
T. trichiura infection is associated with pre-treatment
levels of IL-5 (Jackson et al. 2004a; Quinnell et al.
2004) and negative associations have also been shown
between IL-5/IL-13 and re-infection with A. lum-
bricoides and T. trichiura (Jackson et al. 2004b).
However, even between GI nematode species the
relationship between Th2 cytokines and resistance to
re-infection has been shown to vary according to
parasite life-history. For example despite multiple
shared risk factors for co-infection with A. lumbri-
coides and T. trichiura, pre-treatment Th2 cytokine
titres were only associated with post-treatment resis-
tance to the latter (Jackson et al. 2004a). Further-
more, parasite-specific IL-10 was found to be an
indicator of species-specific susceptibility, being
negatively associated with T. trichiura but positively
associated with A. lumbricoides egg counts (Jackson
et al. 2004a).
Th2-type responses are also involved in protective

immunity in tissue-dwelling helminths; however,
chronically infected individuals tend to mount
Th1-Th2 mixed responses (Joseph et al. 2004;
Mutapi et al. 2007), thought to be involved in limit-
ing infection intensity (Turaga et al. 2000). In an
O. volvulus-endemic population in Cameroon, de-
spite a predominant Th2 bias, putative immunity
correlated with elevated titres of parasite-specific
Th1 (IFNγ), Th2 (IL-5) and innate (granulocyte-
macrophage colony-stimulating factor (GM-CSF))
effector cytokines (Turaga et al. 2000). Similarly,
schistosome-specific IFNγ production by peripheral
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blood mononuclear cells (PBMC) correlates with im-
munity to schistosomiasis (Viana et al. 1994). Mixed
Th1-Th2 cytokine responses are observed in chronic
trichuriasis in the gut but have not been significantly
associated with infection intensity (Faulkner et al.
2002).

Antibody-mediated protection from helminths
is typically attributed to elevated titres of parasite-
specific IgE (Faulkner et al. 2002; Pearce and
MacDonald, 2002), whilst a low IgE:IgG4 is as-
sociated with susceptibility to schistosome (Hagan
et al. 1991) andGI infections (Figueiredo et al. 2010).
However, positive correlations between parasite-
specific IgE and other isotypes (Viana et al. 1995)
and studies identifying more pronounced associa-
tions between infection intensity and non-IgE iso-
types (Webster et al. 1997) suggest that there is
redundancy in antibody-mediated protective im-
munity. In addition, given the potentially im-
munopathogenic outcomes of IgE-mediated cellular
effector responses (Nutman and Kumaraswami,
2001; Cooper et al. 2004), it is unsurprising that
propagation of alternate antibody isotypes in chroni-
cally infected hosts may be favourable. A variety
of studies investigating other antibody isotypes in
schistosomiasis provide conflicting evidence for their
role in resistance to infection with different species.
For example, whilst polyclonal adult worm-specific
IgA titres decline with age and infection intensity
in S. haematobium endemic areas (Mutapi et al.
1997), the opposite pattern has been observed for
S. japonicum-specific IgA in the Philippines (Acosta
et al. 2004). Similarly, whilst the former study found
that S. haematobium adult worm-specific IgG1
increased with age and peaked in individuals with
low infection intensity (Mutapi et al. 1997), IgG1
titres were significantly positively associated with
intensity of S. mansoni infection in Brazil (de Jesus
et al. 2000) and Kenya (Naus et al. 1999). The role of
IgM in anti-schistosome responses is also controver-
sial as adult worm and egg-specific IgM increase with
S. haematobium and S. japonicum infection intensity
in some populations (Mutapi et al. 1997; Acosta et al.
2004), but adult-worm-specific titres were lowest in
individuals patently infected with S. mansoni else-
where (Viana et al. 1995; Caldas et al. 2000). Potential
sources of variation in protective immunity within
and between schistosome-infected populations are
discussed in the following sections.

For filarial infections larvae-specific antibodies ac-
quired with age have been shown to confer resistance
to re-infection post-treatment (Day et al. 1991b);
however, the immunogenic epitopes within the larval
proteome could not be identified (Day et al. 1991a).
Few studies have directly compared schistosome
and nematode-specific antibody responses; however,
studies to date suggest that differences do exist.
W.bancroftimicrofilaria and circulating antigen nega-
tive individuals were found to have the lowest

parasite-specific IgG4:IgE (Jaoko et al. 2006) as has
been observed in schistosome studies (Hagan et al.
1991). However, unlike in chronic schistosomiasis,
the ratios did not differ between communities with
high and low intensity infection indicating that rela-
tive changes in these isotypes may be less depen-
dent on host exposure history (Jaoko et al. 2006).
IgG2 also appears to limit infection intensity when
directed againstW. bancroftimicrofilaria (Jaoko et al.
2006), but is ineffective against schistosome larvae
(Demeure et al. 1993).

The specific target of antibody responses is par-
ticularly important for development of protective
immunity, although the majority of field studies
focus on crude antigen preparations. Early schisto-
some studies identified isotype-specific antibody re-
sponses to different antigen types within the parasite
proteome (Langley et al. 1994), but it was not until
the advent of mass spectrometric analysis that para-
site peptides recognized by different antibody iso-
types could be identified within crude preparations
(Mutapi et al. 2005, 2008). Relative exposure of im-
munogenic peptides clearly plays a role in cumulative
development of protective antibodies. For example,
antibodies against the larval surface are associated
with protection against W. bancrofti (Day et al.
1991a) and antibodies targeting cryptic antigens
released by dying adult worms may influence the
course of schistosome infection (Woolhouse and
Hagan, 1999). It remains unclear whether there is a
single antibody isotype that uniformly protects
against helminth infection and it seems likely that
redundancy within host antibody responses, vari-
ation between parasite species and/or host popu-
lations have all contributed to isotype-specific
variations observed in the field.

Anti-pathology immune responses

Limiting immunopathology inpatent helminth infec-
tion is a combination of parasite and host-mediated
processes that synergize to limit aberrant immune
reactivity and damage to the host. This is necessarily
a compromise as dampening immune responses to
infection also limits their efficacy at clearing infection
(Maizels and Yazdanbakhsh, 2003). For tissue-
dwelling helminths close association with host tissues
throughout their life-cycle means that effector
responses to adult worms and migrating larvae in
these loci must be tightly regulated (Montenegro
et al. 1999). In chronic schistosomiasis, for example,
Th2-polarized responses account for the majority of
host pathologies including hepatic fibrosis (Coutinho
et al. 2007) and egg-specific responses promote granu-
loma formation (ElRidi et al. 1997), whilst Th2-
mediated damage is mitigated by Th1-type (Henri
et al. 2002; Dessein et al. 2004) and innate inflam-
matory cytokines (TNFα and IL-6 (Booth et al.
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2004a; Wilson et al. 2008)). The importance of Tregs
in balancing Th1 and Th17 responses in human
filarial infections has been recently highlighted by
Babu and colleagues who identified a positive cor-
relation between lymphoedema and Th1/Th17 cyto-
kine and Toll-like receptor expression in individuals
with low expression of Treg-associated molecules
(Babu et al. 2009).
Ubiquitous exposure to commensal bacteria and

food antigens means that antigen-presentation and
inflammatory responses are highly regulated in the
gut to maintain a physical barrier between the lumen
and host tissues (Mayer, 2000). GI nematodes are
also able to actively down-regulate effector responses
in the gut to maintain this regulatory environment
(reviewed by Maizels and Yazdanbakhsh, 2003).
Both Ascaris spp. and Trichuris spp. infections are
also associated with reduced cellular responsiveness
to both non-specific agonists and parasite-specific
antigens in humans (Figueiredo et al. 2010). The
rebound in N. americanus-specific IFNγ observed
after anti-helminthic treatment to clear infection sug-
gests that Th1 responses may be particularly regu-
lated in chronic hookworm infection (Quinnell et al.
2004).
However, GI nematodes are not homogeneous in

the immune responses that they induce and thus pose
distinct immunopathological risks. T. trichiura in-
fection induces a mixed Th1-Th2 cytokine profile
(Faulkner et al. 2002), whilst Ascaris lumbricoides
infection leads to a highly Th2 environment (Cooper
et al. 2000). It has been postulated that murine
Trichuris spp. are distinct from other GI infections in
specifically up-regulating Th1 cytokines as a means
of evading Th2-mediated clearance (refer to review
by Else, 2005); however, fostering a more mixed
cytokine response may also limit pathology. IL-10
secretion is highly prevalent in T. trichiura endemic
populations with 97% of a Cameroonian cohort
secreting parasite-specific IL-10 and older individ-
uals producing the highest titres of non-specific
IL-10 (Faulkner et al. 2002), suggesting that systemic
immunoregulation coincides with cumulative ex-
posure to infection.

SOURCES OF ACQUIRED IMMUNE

HETEROGENEITY

Helminth life history

Helminths undergo complex life cycles leading to
both physical and molecular variations during the
course of an infection. Table 1 summarizes the key
differences in helminth life histories that can intro-
duce heterogeneity in the development of the host
immune response to infection. Furthermore, the
range of molecules and mechanisms that underlie
helminth-mediated immunomodulation have been
reviewed elsewhere (Maizels and Yazdanbakhsh,

2003; Maizels et al. 2009) and present a potential
source of immune heterogeneity in themselves.

Parasite transmission route

Transmission route impacts upon where and how
infection is initially detected by the immune system.
Immature helminths face site-specific challenges as
they invade their host, for example species that are
transmitted through the skin tend to suffer immune
attrition in this organ (He et al. 2005). Amongst the
schistosome species, which invade by active pene-
tration, S. japonicum cercariae migrate most rapidly
to the dermis and this species also elicits the most
pro-inflammatory response in human skin (He et al.
2002). In contrast S. haematobium and S. mansoni
cercariae promote up-regulation of immunoregu-
latory proteins including IL-10 and IL-1 receptor
antagonist (He et al. 2002), highlighting heterogen-
eity in the effector and regulatory immune mechan-
isms elicited even by closely-related species.
Arthropod-borne larvae are also exposed to im-

mune attrition in human cutaneous tissue when they
enter during blood-feeding by the vector. However,
unlike actively penetrating parasites, antigens, en-
zymes and immunosuppressive molecules in arthro-
pod saliva may skew the host immune response in
favour of vector-transmitted larvae (Demeure et al.
2005). Furthermore, where a single helminth species
(such asW. bancrofti) can be transmitted by multiple
mosquito species of 4 different genera (Aedes,
Anopheles, Culex and Mansonia) (Maizels and
Kurniawan-Atmadja, 2002), there is potential for
the human immune response to be differently shaped
in each instance. The presence of Wolbachia spp.
bacterial endosymbionts in mosquito vectors and
almost all filarial helminth species has also been
suggested to influence host T-cell responsiveness
(Brattig, 2004), but this is yet to be verified.
On a broader scale transmission route can deter-

mine distribution of immune-mediated morbidities
within host populations. One example is the lower
prevalence of Sowda in O. volvulus-infected men
relative towomen inhabiting the same area, which has
been attributed to development of immune tolerance
after repeated exposure to O. volvulus vectors during
agricultural work (Brattig, 2004; Trpis, 2006).
Following initial infection, larval migration may

also contribute to immune heterogeneity between
GI nematodes, particularly with respect to anti-
pathology immunity. Clinical measures of atopic re-
activity suggest that hookworm with lung-migratory
stages effectively suppress asthma and wheeze in
the lung (Scrivener et al. 2001; Leonardi-Bee et al.
2006). TherapeuticN. americanus infection is able to
dampen inflammation both in the lung and in the gut,
where adult worms reside (Falcone and Pritchard,
2005; Croese et al. 2006). On the other hand,
Trichuris spp. which inhabit the lower intestine and
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Table 1. Summary of parasite-factors that may influence the host acquired immune response to helminth infection (Anderson and May, 1992; Maizels et al.
1993; Maizels and Kurniawan-Atmadja, 2002; Gryseels et al. 2006; Hotez et al. 2008).

Gastrointestinal (GI) nematodes Filarial nematodes Schostosoma spp. trematodes

A. lum E. ver N. ame Stro. spp. T. tri B. mal O. vol W. ban S. hae S. jap S. man

Distribution Af, As,
LAm

– Af, As,
LAm

Af, As,
LAm

Af, As,
LAm

SEAs SSAf,
LAm

As, SSAf,
LAm

SSAf China,
SEAs

SSAf,
Brazil

Human
infections
(millions)

807 – 576* 30–100** 604 – 37 120 207*** 207*** 207***

Intermediate
host

None None None None None Ano spp. Sim spp. Ano, Cul
Aed spp.

Bul spp. Onc spp. B. gla

Transmission
route

Faeco-oral Faeco-oral Skin
penetration

Skin
penetration

Faeco-oral Vector Vector Vector Skin
penetration

Skin
penetration

Skin
penetration

Maturation
delay

50–80 days 15–43 days 40–50 days − 50–84 days – 365 days – 21–28 days 25–30 days 25–30 days

Adult worm
life-span

1–2 years <1 year 2–3 years – 1–2 years – 8–10 years 3–5 years 3–5 years 3–5 years 6–11 years^

Adult worm
length

15–35 cm 2–13mm 7–11mm – *4 cm 13–55mm 19–50mm 40–100mm 7–20mm 7–20mm 7–20mm

Adult worm
niche

Ileum Caecum Ileum Caecum Caecum Lymph Skin Lymph Venous blood
(bladder)

Venous
blood (gut)

Venous
blood (gut)

Fecundity per
female

200,000
eggs/day

– 3000–6000
eggs/day

– 50–84
eggs/day

– 1000–2000
mf/day

– 3000 eggs/day 100–300
eggs/day

100–300
eggs/day

* All hookworm species.
** Strongyloides stercoralis only.
*** All S. haematobium, S. japonicum and S. mansoni infections.
^ Life-span of S. mansoni estimated using maximum likelihood techniques to assess pre- and post-treatment field data (Fulford et al. 1995).
Abbreviations: A. lum –Ascaris lumbricoides, E. ver –Enterobis vermicularis, N. ame –Necator americanus, Stro spp. –Strongyloides spp., T. tri –Trichuris trichiura, B. mal –Brugia
malayi, O. vol –Onchocerca volvulus, W. ban –Wuchereria bancrofti, S. hae –Schistosoma haematobium, S. jap –Schistosoma japonicum, S. man –Schistosoma mansoni, Af –Africa,
As –Asia, LAm –Latin America, SEAs – South East Asia, SSAf – Sub-Saharan Africa, Ano spp. –Anopheles spp. mosquito, Aed spp. –Aedes spp. mosquito, Cul spp. –Culex spp.
mosquito, B. gla –Biomphalaria glabrata (aquatic snail), Bul spp. –Bulinus spp. (aquatic snail), mf –microfilariae.
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do not migrate through the lung, can dampen inflam-
matory pathologies in the gut (Reddy and Fried,
2007) but are less effective at regulating clinical
allergy elsewhere (Bager et al. 2010). Interestingly
A. lumbricoides infection, which has a lung migratory
phase, does not reduce asthmatic responses and is
associated with elevated atopy (Flohr et al. 2009).
There are many potential reasons for variation in the
effect of GI helminth infection on clinical allergy
(reviewed elsewhere (Flohr et al. 2009)) and conflict-
ing results in existing literature (Leonardi-Bee et al.
2006) and a lack of studies which directly compareGI
nematode infections with distinct migratory path-
ways make it difficult to conclude on the source of
observed variations.

Life-cycle stages

Chronically infected individuals are simultaneously
exposed to 3 helminth life-cycle stages; infective
larvae, adult worms and transmission stage parasites
(eggs, immature larvae or microfilariae). Both pro-
teomic (Moreno and Geary, 2008) and DNA micro-
array studies (Jolly et al. 2007; Fitzpatrick et al. 2009)
have shown that these life-cycle stages are molecu-
larly different and thus elicit stage-specific immune
responses that change over time.
In experimental murine studies where the course

of infection can be tracked from its acute phase, there
is a clear link between the onset of egg production
(week 5–6 post-infection) and a Th1-to-Th2 shift in
the cellular response to schistosomiasis (Pearce and
MacDonald, 2002). Although the Th1-to-Th2 shift
is less clear in human infections, defined egg peptides
can specifically induce Th2 responses in human baso-
phils, DCs and T cells in vitro (Schramm et al. 2003;
Everts et al. 2009). Th2 polarization by schistosome
eggs also induces granuloma formation (ElRidi et al.
1997), which facilitates passage of eggs from venous
blood into the gut/bladder and subsequent trans-
mission to the environment (Karanja et al. 1997;
Pearce and MacDonald, 2002). Carbohydrate anti-
gens on the schistosome egg surface also promote
IgM secretion, which lacks immunological memory
(Mutapi et al. 2003), whilst responses associated with
protective immunity, such as IgE, IgG1 and IgG3,
tend to emerge later in infection in response antigens
released from dying adult worms (Woolhouse and
Hagan, 1999).
There are notable distinctions between the type

and magnitude of the cytokine response to egg-
specific antigens and those directed against adult
worm antigens (Joseph et al. 2004; Silveira et al.
2004). Adult S. mansoni worms tend to elicit a mixed
Th1-Th2 cytokine profile (Williams et al. 1994) and
are less effective at stimulating in vitro granuloma
formation (IVGF) than egg antigens (ElRidi et al.
1997). Cross-sectional data from an S. haematobium

endemic cohort suggests that adult worm-specific
effector Th2 cytokines increase whilst IL-10 titres
decline with age/exposure to infection (Mutapi et al.
2007) and thus effector responses to adult worms are
higher in putatively resistant individuals.
In contrast to the Th2 cytokine responses induced

by schistosome eggs and infective larvae of most
nematodes, schistosome cercariae stimulate Th1/
inflammatory mRNA expression in mice and re-
sistance to larval invasion post-vaccination is depen-
dent on IFNγ (Wynn et al. 1994). Although few
studies have directly compared immune responses
to the three schistosome life-cycle stages in humans,
cercariae-specific IgM, IgG1 and IgG4 titres are
higher than those directed against adult worm anti-
gens (Viana et al. 1995). The distinct immune re-
sponses elicited by different helminth life-cycle
stages underpin the development of so-called con-
comitant immunity, whereby de novo larval infection
is blocked by adult worm-induced immunity but resi-
dent adult parasites are tolerated, a theory originally
formulated for schistosome infections (Smithers and
Terry, 1967). Studies have found evidence for devel-
opment of PBMC-mediated resistance to L3 invasion
in O. volvulus infection in an endemic area of
Cameroon (MacDonald et al. 2002) and development
of peripheral antibody-dependent immunity to
W. bancrofti larvae with age in Papua New Guinea
(Day et al. 1991a,b). There is little evidence for
development of concomitant immunity to GI nema-
tode infections; however, there is a distinct paucity of
data in this area.
In addition to influencing anti-parasite immunity,

helminth life-cycle stage contributes to heterogeneity
in anti-pathology immune responses. Immunomodu-
latory processes can be life cycle stage-specific as
characterized by distinct cytokine and proliferative
responses to their respective antigens (Geiger et al.
2007). In vitro microfilariae are able to impair cyto-
kine expression and maturation of human dendritic
cells (DCs) (Semnani et al. 2001, 2004) and schisto-
some egg antigens can inhibit co-stimulatory mol-
ecule expression and skew APC cytokine secretion
from an inflammatory to regulatory profile (Correale
and Farez, 2009), with potential implications for
the systemic CD4+ T cell phenotype. A variety of
studies have also shown that cercariae excretory/
secretory products actively modulate the host im-
mune response during migration and maturation
independent of egg or adult-worm-mediated pro-
cesses (reviewed by Jenkins et al. 2005). However,
whilst eggs, cercariae and microfilariae can impair
and polarize host responses, the ability of parasites to
evade and modulate immune recognition seems to
increase as they mature (Nutman and Kumaraswami,
2001) and corresponds to large-scale switches in
many suites of genes (Jolly et al. 2007) and active
secretion of immunomodulatory molecules (Geiger
et al. 2007). Thus, despite being exposed to the host
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immune system for the longest of all life-cycle stages,
it is unsurprising that adult worms are so resistant
to immune-mediated clearance (Maizels and
Yazdanbakhsh, 2003), while immature parasites
tend to be immunogenic, more readily killed by ef-
fector immune responses (Viana et al. 1995; Semnani
et al. 2001; Medeiros et al. 2003) and are responsible
for the majority of morbidity in helminth infections
(Maizels and Yazdanbakhsh, 2003).

Parasite life-span

Unlike microbial infections which multiply expo-
nentially in their hosts, helminths have evolved to
invest in immune-evasive mechanisms to prolong
intra-host survival and long-term fecundity (Jackson
et al. 2009). Effective immune evasion and suppres-
sion by adult worms mean that reactivity to the
antigens of live worms is limited (Geiger et al. 2007).
Thus, hosts may only experience an immunogenic
‘threshold’ stimulus of parasite antigens once adult

worms die (Mutapi et al. 2008) and resistance might
be predicted to develop more slowly against long-
lived worms than against shorter-lived species. The
rapid switch to a protective immune profile follow-
ing anti-helminthic drug treatment that kills adult
worms is consistent with this hypothesis (Mutapi
et al. 2003; Watanabe et al. 2007). If adult helminth
life-span does cause a lag in the development of
protective immunity then this may contribute to
the variation in the age at which peak prevalence
(Brooker et al. 2000) and infection intensity (Fig. 2)
occurs in host populations exposed to different
helminths.

Additionally, whilst some helminths have been
known to survive for extremely long periods
(Vermund et al. 1983), most die before reaching
their maximum longevity. It is possible that the
relatively short average helminth life-span in im-
munocompetent individuals reaps the maximal re-
productive success relative to the physiological cost
to the parasite of evading and modulating the host
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Fig. 2. The relationship between age and infection intensity in natural human helminthiases. (A) Mean W. bancrofti
microfilaria (mf) count by age group (n=156, study area: Papua New Guinea, method: microscopy of 2ml
Giemsa-stained blood). Reprinted from the American Journal of Tropical Medicine and Hygiene (Day et al. 1991b), with
permission from the managing editor. (B) Mean hookworm (A. duodenale and N. americanus) egg counts per gram faeces
(EPG) by age group (n=631, study area: China, method: Kato-Katz thick smear). Reprinted from the Journal of
Parasitology (Gandhi et al. 2001), with permission from Allen Press Publishing Services. (C) Mean T. trichiuris eggs per
gram of faeces by age group (n=96, study area: Cameroon, method: Kato-Katz thick smear). Reprinted from the
Journal of Infectious Diseases (Faulkner et al. 2002), with permission from the University of Chicago Press.
(D) Age-infection intensity profiles of S. haematobium egg counts per 10ml of urine from an area of low infection
prevalence (dashed line) and an area of high infection prevalence (solid line) group (n=133 and 147, study area:
Zimbabwe, method: filtration of 10ml of urine) (re-drawn from Mutapi et al. 1997). Reprinted from Parasitology Today
(Woolhouse, 1998), with permission from Elsevier and John Wiley and Sons Ltd.
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immune response. In opposition to this, studies in
hookworm suggest that the immune response has
only a limited impact on parasite longevity (reviewed
by Loukas and Prociv, 2001). Species with indirect
life cycles, such as Schistosoma spp. and vector-borne
helminths, tend to be long-lived (Table 1). Thus,
once adult worms have adapted to their optimal host
niche, they can produce offspring over a long period
and, whilst they are immunogenic, adult worms do
not appear to be the primary targets of the anti-
helminth immune response in humans or in animal
models (Smithers and Terry, 1967). This may be
particularly true of O. volvulus, which has an average
adult life-span of 8–10 years, but can have a
maturation delay in the human host of over a year
(Anderson and May, 1985). For short-lived worms,
such as E. vermicularis, maturation and oviposition
occurs much earlier, with an associated shift in stage-
specific immune responses (Anderson and May,
1985).

GENETIC HETEROGENEITIES IN HELMINTH

INFECTION

Host genetics

The human immune system has evolved in the con-
text of helminth infection and this relationship
has led to significant changes in our immune genes
(Fumagalli et al. 2009; Maizels, 2009). A recent com-
prehensive study of 91 interleukin genes in 52 human
populations found evidence for balancing selection in
the evolution of the human immune response driven
by helminth ‘species richness’, i.e. the greater diver-
sity of helminths to which a population has been
exposed, the greater diversity observed in interleukin
alleles (Fumagalli et al. 2009). These findings are
consistent with helminths differentially affecting
the human acquired immune response at all levels
of the CD4+ T cell axis, including gene families
involved in inflammation in the skin, mucosal immu-
nity, cell proliferation and survival and Th2 cyto-
kines (Fumagalli et al. 2009). This is compounded by
earlier studies indicating that many of the key genetic
loci controlling the balance of effector and regulatory
responses are polymorphic in the human population
(Quinnell, 2003) and that certain human genes are
associatedwith predisposition to infection with speci-
fic helminth parasites (Hoerauf et al. 2002; Peisong
et al. 2004; Kouriba et al. 2005).
Additive genetic effects (heritability) significantly

influence human infections with A. lumbricoides
(Williams-Blangero et al. 2002b), T. trichiura
(Williams-Blangero et al. 2002a), and S. mansoni
(Bethony et al. 2002), whilst other studies have found
host genetics to be less influential relative to exposure
history (King et al. 2004). This conflicting evidence
suggests that helminth distribution, allele frequency
and host behaviour in each localitymay determine the

relative importance of heritable factors in patterns of
infection and immunity (Ellis et al. 2007). Familial
clustering of infection can further confound identi-
fication of genetic factors associated with helminth
infection since in utero sensitization via transfer of
helminth antigens and soluble immune factors from
infected mothers to their offspring is independent of
genotype (Eloi-Santos et al. 1989; Lammie et al.
1991; Novato-Silva et al. 1992) and co-habiting
families often have similar exposure patterns (Smith
et al. 2001). T. trichiura and A. lumbricoides for
example were found to be significantly associated
with shared living conditions; however, when infec-
tion distributionwas investigated inmore depth, only
T. trichiura infection intensity was heritable (Ellis
et al. 2007). In addition, populations in historically
stable endemic areas may exhibit less heritable
variation in host susceptibility if long-term selection
against genotypes less favourable for a specific infec-
tion has occurred (King et al. 2004), particularly
where other species of helminth infection are un-
common (Fumagalli et al. 2009).
Multiple gene loci have now been implicated in

determining the degree of resistance to helminthiases
and while many appear to relate to individual hel-
minth species (reviewed by Quinnell, 2003), there are
also loci controlling multiple susceptibilities, as is the
case for IL-13 polymorphisms associated with pre-
disposition to S. haematobium (Kouriba et al. 2005)
and O. volvulus (Hoerauf et al. 2002).

Parasite genetics

Widespread genetic variation between parasite
species is an equally important source of hetero-
geneity in the development of acquired immune re-
sponses to infection. Since parasitic nematodes have
arisen from several independent evolutionary path-
ways their classificationwithin the PhylumNematoda
belies the huge diversity apparent from their distinct
life-histories, physiology and proteomes (Dorris et al.
1999). Comparisons between nematode worms at
the genomic level have identified multiple species-
specific gene sequences and transcription patterns,
even between phylogenetically close organisms
(Parkinson et al. 2004). Among the 3 major human
Schistosoma spp. differences in immunologically rele-
vant antigens have been found. Notably the leading
anti-schistosome vaccine candidate antigen; gluta-
thione-S-transferase (GST), of S. mansoni differs
from that of S. haematobium (Trottein et al. 1992),
though the impact of this on human immunity is
unknown.
The existence of helminth homologues of human

proteins (Pastrana et al. 1998; Gomez-Escobar et al.
2000) and analyses that indicate more rapid evolution
among parasite secreted proteins are compatible with
the idea that parasitic helminths are diversifying
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fastest among antigens exposed to (and interacting
with) the host immune system (Hoekstra et al. 2000;
Harcus et al. 2004). The relatively recent completion
of the first parasitic nematode (B. malayi; Ghedin
et al. 2007) and trematode genome projects
(S. mansoni; Berriman et al. 2009) and S. japonicum
(Zhou et al. 2009) will inevitably yield greater in-
sights into the evolution of genetic diversity between
different helminth species.

Genetic diversity within helminth species may
partly explain the slow development of protective
immunity in endemic populations. It has been pro-
posed that natural infections consist of several
genetically distinct parasite strains (Galvani, 2005),
evidence for which comes from variations in the non-
coding sequence identified via genome-wide scans
(Hunt et al. 2008; Redman et al. 2008). The effect
of helminth strains on the host immune response
has been investigated in theoretical models based on
field studies of A. lumbricoides, N. americanus,
S. haematobium and T. trichiura infections, which
surmise that challenge with multiple strains delays
development of resistance to infection in human
populations because a different protective response
must be mounted against each parasite genotype
separately (Galvani, 2005).

INDIVIDUAL EXPOSURE HISTORY

The immune environment to which de novo helminth
infections are exposed is not independent of a host’s
infection history (Woolhouse andHagan, 1999). This
was first demonstrated in a study of Sudanese canal
workershyper-exposed toS.mansoni infection,which
showed that those who had been occupationally ex-
posed for over 10 years were more resistant to infec-
tion than newly recruited workers (Satti et al. 1996).
More recently a direct comparison between 2 occu-
pationally exposed male cohorts, found that chroni-
cally exposed individuals develop resistance to
S. mansoni re-infection after significantly fewer
rounds of praziquantel treatment than those with a
shorter exposure history (Black et al. 2010).

It is well known that in endemic populations worm
burdens accumulate with age to a peak intensity and
decline thereafter (Fisher, 1934) but the age at which
peak prevalence occurs (Brooker et al. 2000) and the
relative decline post-peak varies according to hel-
minth species (Fig. 2). For example, intensity of
W. bancrofti (Fig. 2A) and hookworm (Fig. 2B)
infections tends to be highest in adults rather than
children (Day et al. 1991b; Gandhi et al. 2001). In
contrast, T. trichiuria (Fig. 2C) and schistosome
(Fig. 2D) infection intensity peaks in childhood, after
which worm burdens decline (Mutapi et al. 1997;
Faulkner et al. 2002). Host behaviour may partially
explain these differences, for example the risk of
hookworm infection is highest in adults due to occu-
pation-related exposure (Bradley and Chandiwana,

1990), whilst exposure to schistosomiasis is deter-
mined by contact with water from an early age during
washing and domestic activities (Rudge et al. 2008).

Evidence that the host immune response is im-
portant in shaping age-related variation includes the
observation that peak worm burdens occur at a
younger age in regions of high infection intensity
than in regions with low or intermediate intensity, a
phenomenon called the ‘peak shift’ (Woolhouse,
1998) (Fig. 2D). It is clear that, at least for long-
term residents of an area endemic for a particular
species of helminth, age is effectively a proxy of ex-
posure history and cumulative exposure to parasite
antigens over time can trigger changes in the immune
response (Mutapi et al. 2008). The latter assertion is
supported by immuno-epidemiological studies in a
variety of helminthiases indicating that cellular and
humoral changes correlate with development of
resistance to infection with age. For example in an
S. haematobium-infected population, cross-sectional
data showed that cytokine responses switch from a
regulatory IL-10 response in younger individuals
to an effector IL-5 response in older individuals
(Mutapi et al. 2007). Longitudinal studies of
W. bancrofti-infected subjects in Papua New
Guinea showed that adults are relatively resistant to
parasite accrual (Day et al. 1991b) and that this could
be attributed to parallel age-specific acquisition of
anti-larval antibodies (Day et al. 1991a). As discussed
above, development of this form of concomitant
immunity may be one explanation for the lower
prevalence of these species in adults (Day et al.
1991a,b; MacDonald et al. 2002).

In areas of high intensity transmission, people are
exposed to infection from a very early age and these
patterns vary according to parasite species (Sousa-
Figueiredo et al. 2008). A recent study in Zanzibar
found that whilst schistosome infections were rare in
pre-school children, soil-transmitted helminths were
already highly prevalent (Sousa-Figueiredo et al.
2008). Variation in maternal infection status may also
introduce variation in the in utero exposure patterns
and potentially lead to long-lasting effects on the anti-
helminth immune response of their offspring. For
example, Steel and colleagues showed that pre-
natal priming during maternal helminth infection
has far-reaching effects on anti-filarial immunity
including clonal deletion of parasite-specific T cells
(Steel et al. 1994) and life-long susceptibility to
infection (Steel and Nutman, 2003). Cellular studies
in endemic populations have shown that umbilical
cord blood lymphocytes (CBL) from neonates born
of W. bancrofti-infected mothers mount parasite-
specific cytokine responses similar to those of
maternal PBMCs and in contrast to neonates born
of un-infected mothers (Malhotra et al. 1997). An
extension of this study found that schistosome and
B. malayi-specific cytokine responses persisted in
childhood and significantly affected the CD4+ T cell
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polarization of Bacillus Calmette-Guerin (BCG)
vaccine-specific responses in 2 to 10 year olds
(Malhotra et al. 1999). However, an investigation of
CBL responses to N. americanus and O. volvulus
antigens found no evidence for specific polarization
of Th1 and Th2 responses in the offspring of
helminth-infected mothers (Pit et al. 2000). To date
only a very few studies have directly compared the
effect of different helminth species on neonatal
immunity, though researchers hypothesize that
tissue-dwelling helminths may be associated with a
greater trans-placental transfer of antigens (Eloi-
Santos et al. 1989; Novato-Silva et al. 1992;Malhotra
et al. 1997). Since maternal exposure patterns
will inevitably affect neonatal and early post-natal
exposure the contribution of parasite transmission
route and the associated behavioural risk factors for
infection to immune heterogeneity (discussed above)
should not be overlooked in early life.

ANTI-HELMINTHIC TREATMENT

Anti-helminthic treatment can effectively clear in-
fection and thus artificially disrupts host-parasite
immunoepidemiology, for example immune reacti-
vity has been shown to peak shortly after treatment in
many species of helminth infection (Quinnell et al.
2004; Watanabe et al. 2007). Following treatment,
however, endemic populations become re-infected
and the highest re-infection rates are consistently
seen in individuals who carried high worm burdens
before treatment suggesting pre-disposition to infec-
tion in certain hosts (Bundy et al. 1988; Tingley et al.
1988; Chandiwana et al. 1991).
In addition to clearing infection, even a single dose

of chemotherapy can lead to changes in the host
immune response to helminths. Successful treatment
has been shown to enhance the proportion of effector
T cells (Watanabe et al. 2007), increase the range of
parasite proteins recognized by host antibodies and
induce a more rapid switch to protective antibody
isotypes (Mutapi et al. 2003) in schistosomiasis
patients. This post-treatment rebound in immune
responsiveness could be due to heightened DC
activation in an environment of high parasite death
(Watanabe et al. 2007) and/or recovery of normal
immune function following removal of immuno-
suppressive parasite excretory/secretory products
(Maizels and Yazdanbakhsh, 2003).
Furthermore, the large variation in treatment

regimens employed in mass-treatment programmes,
including the drug administered, number of treat-
ments (single or repeated dose), age-ranges targeted
(e.g. school-age children, whole population) and
method of administration (e.g. school-based, hos-
pital/clinic-based), is also a potential source of
variation in host immunity within endemic popu-
lations. Notably, many treatment programmes ex-
clude children under the age of 5 due to a perceived

risk of side-effects, despite evidence that children can
become both infected and a source of transmission
from a very young age (Opara et al. 2007). Most also
employ single-dose regimens, despite evidence that
repeated treatment may be more effective at aug-
menting protective immunity (Black et al. 2010)
potentially by periodically ‘boosting’ development
of immunological memory (Woolhouse and Hagan,
1999). Whilst the long-term effects of anti-
helminthic treatment on the host acquired immune
response remain unclear, the desired reduction
in parasite prevalence and transmission inevitably
impacts upon helminth immunoepidemiology.

CO-INFECTION

Co-infection adds a further level of complexity to
host-pathogen interactions and is highly prevalent
in some communities, particularly in sub-Saharan
Africa (Raso et al. 2004; Brooker et al. 2006). Here
we focus on how co-infections of particular public
health significance contribute to heterogeneity in
the anti-helminth immune response and how these
effects vary depending on the species of helminth
infection.

Helminth-helminth co-infection

Certain combinations of helminth co-infection are
more common in human populations than others,
notably several nematode pairs including: A. lum-
bricoides and T. trichiura (Faulkner et al. 2005; Ellis
et al. 2007), A. lumbricoides and hookworm (Fleming
et al. 2006) andO. volvulus andT. trichiura (Faulkner
et al. 2005). Interactions between schistosomes
and nematodes in co-infection are more variable,
with evidence for co-aggregation with hookworms
(Fleming et al. 2006) and T. trichiura (Ellis et al.
2007), but no significant association with A. lum-
bricoides infection intensity (Tchuem Tchuente et al.
2003; Fleming et al. 2006; Ellis et al. 2007). Co-
infection also tends to be associated with higher
worm burdens than those seen in single species in-
fections (Tchuem Tchuente et al. 2003). A. lumbri-
coides-T. trichiura co-infected individuals were also
found to have higher IgG4:IgE ratios than their
singly-infected counterparts (Figueiredo et al. 2010).
Several explanations for the variable effect of one

helminth species on the likelihood of co-infection
with another have been proposed, although it is
unlikely that these factors act in isolation. Firstly,
similarities in parasite life cycle might mean that
certain species share common behavioural or genetic
risk factors for infection (Ellis et al. 2007; Pullan et al.
2008). Alternatively, since studies in animals and
humans show that patent infection with one helminth
species can depress both the humoral and cellular
responses of the host to challenge by other parasites
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(Brady et al. 1999; Correa-Oliveira et al. 2002) it is
possible that these synergistic interactions result from
non-specific ‘bystander suppression’ (Brady et al.
1999) or immunosuppression directed against cross-
reactive antigens expressed by closely-related species
(Geiger et al. 2002). S. mansoni-exposed but patently
uninfected Brazilian subjects, identified by egg and
adult worm-specific antibodies, were found to have
impaired responses to Ascaris spp. and hookworm
infections (Correa-Oliveira et al. 2002), suggesting
that prior exposure to schistosomiasis may have a
lasting impact on host responses to other helminths.
Experimental studies comparingS. mansoni infection
with antigen (adult worm and egg homogenates)
administration, suggest that immunosuppressive
mechanisms rely on the presence of active infection
(Osada and Kanazawa, 2010). However there is a lack
of data on the effect of exposure to one parasite on
the immunobiology of subsequent infection with a
different species. It is conceivable that, even after
clearance of adult worms, sequestration of eggs in
host tissues, cellular memory responses to cross-
reactive antigens and impaired organ-function result-
ing from cumulative morbidity may all affect the
response to subsequent helminthiases.

Helminth-malaria co-infection

Malaria is a predominantly intracellular protozoan
infection and has a markedly different immuno-
biology to that of helminths. The host response to
malaria is characterized by inflammatory cytokines
causing periodic fevers and immune-mediated patho-
logy and, though protective immunity is yet to be
fully characterized, clearance of blood-stage infection
positively correlates with titres of variant-specific
cytophilic antibodies, particularly IgG3 (Cavanagh
et al. 2004).

Studies of the effect of malaria on immune re-
sponses to helminths are rare and tend to focus on the
anti-malarial, rather than anti-helminth immune re-
sponse. However, work on schistosomiasis-malaria
co-infections indicate distinct effects on humoral and
cellular responses (Mutapi et al. 2000; Wilson et al.
2008). On the one hand, co-infection has been asso-
ciated with elevated titres of schistosome egg-specific
IgE and IgG3 (Mutapi et al. 2000), indicating that
acute inflammatory responses to malaria may reverse
helminth-mediated immune hyporesponsiveness.
Consistent with this hypothesis, skewing of T cell
responses by malaria can exacerbate liver and spleen
pathology due to deficient regulation of schistosome
egg-specific regulatory responses (Wilson et al.
2008). Recent schistosome-malaria co-infection
studies also show that co-infected children do not
differ from singly infected children in their absolute
numbers of circulating Tregs, but do exhibit reduced
proportions of memory Tregs (Muok et al. 2009).

Both elevated malaria-specific IgG3 and high S.
mansoni egg counts are risk factors for splenomegaly
(Booth et al. 2004b), suggesting that both severity of
infection and host immunoreactivity contribute to
the clinical outcome of malaria-schistosome co-
infection (Diallo et al. 2004).

In individuals concurrently infected with GI
nematodes and malaria, the inflammatory response
to Plasmodium spp. might be expected to blunt Th2
effector responses involved in clearance of adult
nematodes (Mountford and Pearlman, 1998). For
example, N. americanus-specific Th2 effector cyto-
kine and total IgE responses were lower in Papua
New Guinean subjects co-infected with malaria, de-
spite no observable effect on hookworm-specific
IFNγ or cell proliferation (Quinnell et al. 2004).
The same study found evidence for malaria and
hookworm-mediated suppression of cell prolifer-
ation, but not effector cytokine secretion, in response
to bacterial antigens (Quinnell et al. 2004). Thus,
malaria co-infection can limit the effector response
to hookworm, but may not significantly affect hook-
worm-mediated immunosuppressive mechanisms.
Conversely, in aMalian study of malaria-W. bancrofti
co-infection, filariasis was significantly associated
with elevated total and malaria-specific IL-10 and
reduced IFNγ (Metenou et al. 2009). As more co-
infection studies are conducted it will become possi-
ble to more directly compare effects of malaria on the
acquired immune responses mounted against differ-
ent helminth species.

Helminth-HIV co-infection

Human Immunodeficiency Virus (HIV) is a lympho-
trophic virus that replicates in CD4+ T cells leading
to incremental abrogation of this cell population
and progression to Acquired Immune Deficiency
Syndrome (AIDS). Both HIV and helminth infec-
tion can be considered as immunocompromising
infections, and it could therefore be predicted that
these effects would synergise to the detriment of
co-infected hosts.

Although co-infection studies tend to focus on
immune responses to HIV, there is some evidence
for heterogeneity in the reciprocal effects of HIV on
helminth immunobiology. For example, HIV infec-
tion is associated with up-regulation of CTLA-4
expression and anergy, which might enhance hel-
minth-mediatedTreg induction and immune evasion
(Steel and Nutman, 2003; Leng et al. 2006). Severe
immunosuppression in advanced HIV/AIDS is also
linked to abnormally high intensity Strongyloides spp.
infections due to increased rates of auto-infection
and, in some regions, strongyloidiasis is considered to
be an AIDS-related opportunistic infection (Meamar
et al. 2007). Furthermore, lowCD4+T cell counts in
HIV seropositive individuals has been associated
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with increased tissue sequestration of schistosome
eggs (Karanja et al. 1997), although the relative
impact that this has on host pathology has not been
investigated.
In addition to generalized immunosuppression,

HIV co-infections are negatively correlated with
worm-specific effector cytokine responses (Sentongo
et al. 1998) and may therefore reduce clearance of
both adult and immature worms. HIV-positive
patients co-infected with S. mansoni had lower
measurable agonist-specific IL-4 and parasite and
agonist-specific IL-10 than theirHIV-negative coun-
terparts, but had similar levels of IFNγ (Mwinzi et al.
2001). This finding was linked to an increased Th1:
Th2 effector cytokine ratio in HIV-positive indivi-
duals (Mwinzi et al. 2001), which may result from
preferential infection and abrogation of activatedTh2
cells relative to Th1 and naïve T cells (Maggi et al.
1994).
Disruption of CD4+ T cell polarization and

regulatory mechanisms might be predicted to exacer-
bate helminth-related pathologies (Maggi et al. 1994;
Booth et al. 2004a), particularly in GI infections
which require robust Th2 cytokine responses for
clearance. However, very few studies of nematode-
HIV co-infected populations have been conducted to
date. HIV co-infection with schistosomiasis did not
affect anti-helminthic treatment efficacy in a Kenyan
cohort with high intensity S. mansoni infections
(Karanja et al. 1998). Researchers in the latter study
hypothesized that these findings were partly due to
schistosomiasis preceding HIV infection and that
subsequent co-infection did not affect pre-existing
immune responses to schistosome antigens (Secor
et al. 2004). The latter is of particular interest given
that HIV is most prevalent in sexually-active adults
and thus co-infections tend to arise after initial ex-
posure to helminth infections, which peak in intensity
in childhood. Thus, the stage of HIV infection (and
associated degree of immunosuppression) and popu-
lation-specific age-infection intensity distributions
of different helminthiases are potential sources of
heterogeneity and should be considered when inves-
tigating the immunobiology of co-infections.

CONCLUSIONS

Parasitic helminths present a diverse challenge to
the immune system. Their large proteome and
broad-range of antigens alone may partially explain
the slow development of resistance to helminthiases
(Yazdanbakhsh and Sacks, 2010). Furthermore,
the stage-specific challenges (Day et al. 1991a,b;
MacDonald et al. 2002) and genetic diversity within
single species infections (Galvani, 2005) can lead to
heterogeneity in anti-helminth immune responses in
an individual host.
When comparing different species of helminth it is

clear that immune-heterogeneity can transcend

phylogenetic delineations, particularly with respect
to parasite life-span and intra-host niche. Long-lived
parasites and species inhabiting host tissues can only
exist incognito via sophisticated immunosuppressive
mechanisms that may compromise fecundity and
transmission of infection (Karanja et al. 1997;
Maizels and Yazdanbakhsh, 2003; Brattig, 2004).
Short-lived and GI parasites face different challenges
resulting in characteristic immunobiology. Whilst
immunity to the tissue-dwelling nematodes is associa-
ted with a mixed CD4+ T cell immune response
(Turaga et al. 2000), expulsion of GI nematode
species is more specifically Th2-dependent (Turner
et al. 2003). Few studies have directly compared im-
mune responses to GI nematodes, filarial nematodes
and Schistosoma spp. in single-infections, potentially
due to the high prevalence of co-infection, meaning
that many of the hypothesized sources of inter-
specific immune heterogeneities remain to be em-
pirically tested.
Unlike in experimental animal infections, acquired

immune heterogeneity in natural infections also
arises from host variables. Genetic polymorphism
in the human immune system inevitably translates
into heterogeneous expression of cellular and hu-
moral responses, as is evident in clustering of im-
mune responses within populations and individual
families (Quinnell, 2003; Ellis et al. 2007). The
relatively recent discovery of new CD4+ T cell sub-
classes and identification of further plasticity in
innate effector cells has led to re-evaluation of how
helminths interact with their human host (Diaz
and Allen, 2007; Jenkins and Allen, 2010). Further-
more, the influence that host exposure-history, anti-
helminthic treatment and co-infection have on
anti-helminth responses indicates that immune
heterogeneity arises not from the host and parasite
in isolation, but also from the environment in which
they interact.
Despite the diversity of helminth species and their

host populations identifying the immunological
mechanisms underlying these distinctions has
been a challenge for field studies. Helminth-specific
immune responses become activated and polarized at
a very young age (Eloi-Santos et al. 1989; Lammie
et al. 1991; Novato-Silva et al. 1992; Steel et al. 1994;
King et al. 1998). However, field studies often exclude
individuals under the age of 5, focusing instead on
older individuals in the chronic stage of infection
with a more ambiguous exposure and treatment
history. In addition, whilst co-evolution of humans
and helminths has clearly led to shared features of an
anti-macroparasite response (Jackson et al. 2009), it
is also possible that peripheral sampling methods,
co-infection and long-term systemic disease may
disguise integral differences in human immune
responses (Hayes et al. 2004). The cellular targets
of systemic and highly pleiotropic cytokines and site-
specific immune responses are particularly difficult to
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define in peripheral blood samples. Thus, in addition
to expansion of elegant in vitro cellular assays, a wider
range of immune correlates should be measured in
the field to give a broader characterization of the host
immune ‘phenotype’ in which these cells act.

Anthropophilic helminths are both evolutionarily
ancient and alarmingly prevalent (Hotez et al. 2008),
yet the immune responses mounted against them and
the best means of treating infection remain unclear.
Characterization of risk factors for infection and
morbidity requires immunological measures to be
considered in the context of host and environmental
variables, which can be as influential as those of the
parasite, and in some cases more so (Jackson et al.
2004a; Ellis et al. 2007).
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