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The confirmatory analysis of pre-specified multiple hypotheses has become common in pivotal
clinical trials. In the recent past multiple test procedures have been developed that reflect the relative
importance of different study objectives, such as fixed sequence, fallback, and gatekeeping proce-
dures. In addition, graphical approaches have been proposed that facilitate the visualization and
communication of Bonferroni-based closed test procedures for common multiple test problems, such
as comparing several treatments with a control, assessing the benefit of a new drug for more than one
endpoint, combined non-inferiority and superiority testing, or testing a treatment at different dose
levels in an overall and a subpopulation. In this paper, we focus on extended graphical approaches by
dissociating the underlying weighting strategy from the employed test procedure. This allows one to
first derive suitable weighting strategies that reflect the given study objectives and subsequently apply
appropriate test procedures, such as weighted Bonferroni tests, weighted parametric tests accounting
for the correlation between the test statistics, or weighted Simes tests. We illustrate the extended
graphical approaches with several examples. In addition, we describe briefly the gMCP package in R,
which implements some of the methods described in this paper.

Keywords: Dunnett test; Gatekeeping procedure; Min-p test; Non-inferiority; Truncated
Holm.

1 Introduction

Multiple test procedures are often used in the analysis of clinical trials addressing multiple objec-
tives, such as comparing several treatments with a control and assessing the benefit of a new drug
for more than one endpoint. Several multiple test procedures have been developed in the recent past
that allow one to map the relative importance of the different study objectives as well as their
relation onto an appropriately tailored multiple test procedure.

A common strategy to reduce the degree of multiplicity is to group the hypotheses into primary
and secondary objectives (O’Neill, 1997). Test procedures accounting for the inherent logical
relationships include fixed sequence tests (Maurer et al., 1995; Westfall and Krishen, 2001), gate-
keeping procedures (Bauer et al., 1998; Westfall and Krishen, 2001; Dmitrienko et al., 2003) and
fallback procedures (Wiens, 2003; Huque and Alosh, 2008). Li and Mehrotra (2008) introduced a
more general approach for adapting the significance level to test secondary hypotheses based on the
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finding for the primary hypotheses. Alosh and Huque (2009) introduced the notion of consistency
when testing for an effect in the overall population and in a specific subgroup. The authors extended
this consistency concept to other situations (Alosh and Huque, 2010), including how to address
multiplicity issues of a composite endpoint and its components in clinical trials (Huque et al., 2011).
Hung and Wang (2009, 2010) considered some controversial multiple test problems, with emphasis
on regulatory applications, and pointed out illogical problems that may arise with recently devel-
oped multiple test procedures.

In this paper, we focus on graphical approaches which have been introduced independently by
Bretz et al. (2009) and Burman et al. (2009). The key idea is to express the resulting multiple test
procedures by directed, weighted graphs, where each node corresponds to an elementary hypothesis,
together with a simple algorithm to generate such graphs while sequentially testing the individual
hypotheses. Using graphical approaches, one can explore different test strategies together with the
clinical team and thus tailor the multiple test procedure to the given study objectives. So far, the
description of these graphical approaches has focused on Bonferroni-based test procedures. In this
paper, we investigate extensions of the original ideas. In particular, we discuss in Section 2 how a
separation between the weighting strategy and the test procedure facilitates the application of a
graphical approach beyond Bonferroni-based test procedures. In Section 3, we illustrate these ideas
with different test procedures. We start with a brief review of Bonferroni-based test procedures and
subsequently describe parametric graphical approaches that account for the correlation between the
test statistics as well as graphical approaches using the Simes test. In Section 4, we describe the
gMCP package in R which implements some of the methods discussed in this paper and illustrate it
with a clinical trial example using a truncated Holm procedure. Concluding remarks are given in
Section 5.

2 Graphical weighting strategies

Consider the problem of testing m elementary hypotheses H1,y,Hm, some of which could be more
important than others, e.g. primary and secondary objectives. Let I ¼ f1; . . .;mg denote the asso-
ciated index set. The closure principle introduced by Marcus et al. (1976) is commonly
used to construct powerful multiple test procedures. Accordingly, we consider all non-empty
intersection hypotheses HJ ¼ \j2JHj ; J � I . We further pre-specify an a-level test for each
HJ. The resulting closed test procedure rejects Hi; i 2 I ; if all intersection hypotheses HJ with
i 2 J � I are rejected by their corresponding a-level tests. By construction, closed test procedures
control the familywise error rate (FWER) in the strong sense at level aA(0,1). That is, the prob-
ability to reject at least one true null hypothesis is bounded by a under any configuration
of true and false null hypotheses (Hochberg and Tamhane, 1987). In fact, closed test procedures
have certain optimality properties whenever the FWER has to be controlled (Bauer, 1991). In what
follows, we assume that the hypotheses H1,y,Hm satisfy the free combination condition (Holm,
1979). If this condition is not satisfied, the methods in this paper still control the FWER at level a,
although they can possibly be improved because of the reduced closure tree (Brannath and Bretz,
2010).

One important class of closed test procedures is obtained by applying weighted Bonferroni tests
to each intersection hypothesis HJ. For each JDI assume a collection of weights wj (J) such that
0 � wjðJÞ � 1 and

P
j2J wjðJÞ � 1. With the weighted Bonferroni test we reject HJ if pj � ajðJÞ ¼

wjðJÞa for at least one jAJ, where pj denotes the unadjusted p-value for Hj. Hommel et al. (2007)
introduced a useful subclass of sequentially rejective Bonferroni-based closed test procedures. They
showed that the monotonicity condition

wjðJÞ � wjðJ
0Þ for all J 0 � J � I and j 2 J 0 ð1Þ
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ensures consonance, i.e. if an intersection hypothesis HJ is rejected, there is an index jAJ, such that
the elementary hypothesis Hj can be rejected as well. This substantially simplifies the
implementation and interpretation of related closed test procedures, as the closure tree of 2m�1
intersection hypotheses is tested in only m steps. Many common multiple test procedures satisfy (1),
see Hommel et al. (2007) for examples.

Bretz et al. (2009) and Burman et al. (2009) independently derived graphical representations and
associated rejection algorithms for important subclasses of the Hommel et al. (2007) procedures. The
graphical representations and rejection algorithms in these two articles are different, though under-
lying ideas are closely related; see Guilbaud and Karlsson (2011) for some comparative examples.
Using the graphical approach of Bretz et al. (2009), the hypotheses H1,y,Hm are represented by
vertices with associated weights denoting the local significance levels a1,y,am. In addition, any two
vertices Hi and Hj are connected through directed edges, where the associated weight gij indicates the
fraction of the (local) significance level ai that is propagated toHj onceHi (the hypothesis at the tail of
the edge) has been rejected. A weight gij5 0 indicates that no propagation of the significance level is
foreseen and the edge is dropped for convenience. Figure 1 shows an example.

While the original graphical approaches were introduced based on weighted Bonferroni tests, we
propose here to dissociate the underlying weighting strategy from the employed test procedure. The
benefit of such an approach is the enhanced transparency by (i) first deriving suitable weighting
strategies that reflect the given study objectives (and which can be communicated to the clinical
team) and (ii) subsequently applying appropriate test procedures that do not necessarily have to be
based on Bonferroni’s inequality.

Graphical weighting strategies are conceptually similar to the graphs proposed by Bretz et al.
(2009). They essentially summarize the complete set of

Pm
i¼1 i ðmi Þ ¼ m2m�1 weights determining the

full closure tree. A weighted multiple test can then be applied to each intersection hypothesis HJ,
such as a weighted Bonferroni test, a weighted min-p test accounting for the correlation between the
test statistics, or a weighted Simes test; see Section 3 for details. Weighting strategies are formally
defined through the weights wi (I), iAI, for the global null hypothesis HI and the transition matrix
G5 (gij), where 0rgijr1, gii 5 0, and

Pm
j¼1 gij � 1 for all i, jAI. We additionally need to determine

how the graph is updated once a vertex is removed. This can be achieved by tailoring Algorithm 1 in
Bretz et al. (2009) to the graphical weighting strategies as follows. For a given index set JDI, let
Jc 5 I \ J denote the set of indices that are not contained in J. Then the following algorithm de-
termines the weights wj(J), jAJ. This algorithm has to be repeated for each JDI to generate the
m2m�1 weights for the full closure.

Algorithm 1 (Weighting Strategy)

(i) Select jAJc and remove Hj

(ii) Update the graph:

I ! Infjg; Jc ! Jcnfjg

w‘ðIÞ !
w‘ðIÞ1wjðIÞgj‘; ‘ 2 I

0; otherwise

�

g‘k!

g‘k1g‘jgjk
1�g‘jgj‘

; ‘; k 2 I ; ‘ 6¼ k; g‘jgj‘o1

0; otherwise

(

(iii) If |Jc|Z1, go to step (i); otherwise w‘ðJÞ ¼ w‘ðIÞ; ‘ 2 J, and stop.

As shown by Bretz et al. (2009), the weights wj(J), jAJ are unique. In particular, they do not
depend on the sequence in which hypotheses Hj ; j 2 Jc; are removed in step (i) of Algorithm 1. Note
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that Algorithm 1 requires specifying the weights wj(I) for the global intersection hypothesis HI and
the elements of the transition matrix G. This leads to the specification of m1mðm� 1Þ ¼ m2

parameters if
P

j2I wjðIÞ � 1 and
Pm

j¼1 gij � 1 or m� 11mðm� 2Þ ¼ m2 �m� 1 parameters ifP
j2I wjðIÞ ¼ 1 and

Pm
j¼1 gij ¼ 1, for all i, jAI.

Example 1

As an example, assume a primary family of two hypotheses F 1 ¼ fH1;H2g and a secondary
family of two hypotheses F 2 ¼ fH3;H4g. The hypotheses H1 and H2 could denote, for example, the
comparison of low and high dose with a control, for either a primary endpoint, a non-inferiority
claim, or an overall population. Accordingly, the hypotheses H3 and H4 would then denote the
comparison of the same two doses with a control, for either a secondary endpoint, a superiority
claim, or a pre-specified subgroup. Figure 1 visualizes one possible weighting strategy. It is moti-
vated by a strict hierarchy within dose: the secondary endpoint will only be assessed if efficacy was
shown previously for the primary endpoint (so-called successiveness property; see Maurer et al.,
2011). If for one of the doses efficacy can be shown for both the primary and the secondary
endpoint, the associated weight is passed on to the other dose. Therefore we have I ¼ f1; 2; 3; 4g,
w1ðIÞ ¼ w2ðIÞ ¼ 0:5 for the primary hypotheses and w3ðIÞ ¼ w4ðIÞ ¼ 0 for the secondary hy-
potheses, which implies that no secondary hypothesis can be rejected until a primary hypothesis is
rejected and propagates its weight. The associated transition matrix is

G ¼

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

0
BB@

1
CCA:

The graph in Figure 1 together with Algorithm 1 from above fully specify the 32 weights of the
full closure tree, as summarized in Table 1. This table parallels the weight tables introduced by
Dmitrienko et al. (2003). Note that the weights wjðJÞ; j 2 Jc; are formally not defined and expressed
by ‘‘–’’ in Table 1. Figure 2 displays the updated graphs resulting from Figure 1 after removing H1,
H2, H3, or H4. The four updated graphs in Figure 2 correspond to the four rows in Table 1
containing the weights for the three-way intersection hypotheses. Removing any two hypotheses
results in six possible two-way intersection hypotheses and the two vertexes are connected by two
directed edges, each with weight 1 (graphical display omitted here). Note that Figure 2 displays the
principle of recalculating the weights by updating the graphs. It is possible and also necessary to
remove hypotheses with weight 0 (in this example H3 and H4 with w3ðIÞ ¼ w4ðIÞ ¼ 0) in order to
compute the respective weights for the larger intersection hypotheses.

Note that Figure 1 displays only one possible weighting strategy. Many other weighting strategies
are possible and perhaps more reasonable, depending on the given context. We refer to Bretz et al.
(2011) for a generic discussion about testing two families F 1 and F 2 with two hypotheses each.

Figure 1 Weighting strategy for two hierarchically ordered endpoints and two dose
levels.
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3 Test procedures

In Section 2, we proposed to dissociate the underlying weighting strategy from the employed test
procedure and gave a generic description of the former, illustrated with an example. In this section

Table 1 Weights for the intersection hypotheses derived from Figure 1.

Intersection hypothesis Weights

H1 H2 H3 H4

H1\H2\H3\H4 0.5 0.5 0 0
H1\H2\H3 0.5 0.5 0 –
H1\H2\H4 0.5 0.5 – 0
H1\H2 0.5 0.5 – –
H1\H3\H4 0.5 – 0 0.5
H1\H3 1 – 0 –
H1\H4 0.5 – – 0.5
H1 1 – – –
H2\H3\H4 – 0.5 0.5 0
H2\H3 – 0.5 0.5 –
H2\H4 – 1 – 0
H2 – 1 – –
H3\H4 – – 0.5 0.5
H3 – – 1 –
H4 – – – 1

DC

A B

0

Figure 2 Updated graphs resulting from Figure 1 after removing (A) H1, (B) H2,
(C) H3, and (D) H4.

898 F. Bretz et al.: Graphical approaches for multiple comparison procedures

r 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



we give details on different test procedures that could be employed to test the intersection
hypotheses, including weighted Bonferroni tests, weighted min-p tests accounting for the correlation
between the test statistics, and weighted Simes’ tests.

3.1 Weighted Bonferroni tests

The weighted Bonferroni test introduced in Section 2 is the simplest applicable test procedure,
leading to the original graphical approaches by Bretz et al. (2009). Applying the Bonferroni test
leads to simple and transparent test procedures that are often easier to communicate than alter-
native, potentially more powerful approaches. As a matter of fact, the Bonferroni test is often
perceived to provide credible trial outcomes in clinical practice. Most importantly in the context of
the graphical weighting strategies considered here, applying the Bonferroni test leads to shortcut
procedures as long as the monotonicity condition (1) is satisfied. That is, one can start with a graph
as shown in Figure 1 and sequentially test the m hypotheses as long as individual null hypothesesHi,
i AI, are rejected. Based on Algorithm 1 from Section 2, we give in the following a similar algorithm
that accounts for the weighted Bonferroni tests, thus leading to the sequentially rejective multiple
test procedures described in Bretz et al. (2009):

Algorithm 2 (Weighted Bonferroni Test)

(i) Select a jAI such that pjrwj(I)a and reject Hj; otherwise stop.
(ii) Update the graph:

I ! Infjg

w‘ðIÞ !
w‘ðIÞ1wjðIÞgj‘; ‘ 2 I

0; otherwise

�

g‘k!

g‘k1g‘jgjk
1�g‘jgj‘

; ‘; k 2 I ; ‘ 6¼ k; g‘jgj‘o1

0; otherwise

(

(iii) If |I|Z1, go to step (i); otherwise stop.

Similar to Algorithm 1, the results in Bretz et al. (2009) ensure that the decisions of the resulting
sequentially rejective multiple test procedures remain unchanged regardless of the actual rejection
sequence. That is, if in step (i) of Algorithm 2 more than one hypothesis could be rejected, it does
not matter with which to proceed. Although Algorithms 1 and 2 have a similar update rule in
step (ii), they differ in the way that the index sets are updated. While Algorithm 2 starts with the
global index set I and reduces it sequentially as long as hypotheses are rejected, Algorithm 1
removes, for each JDI, consecutively all indices from I that are not contained in J until the set J is
obtained. Note that performing a closed weighted Bonferroni test procedure using the weights from
Algorithm 1 leads to exactly the same test decisions as performing a sequentially rejective multiple
test procedure with Algorithm 2 based on the same starting weights.

Figure 3 gives an example of a Bonferroni-based sequentially rejective multiple test procedures
for the weighting strategy proposed in Example 1. Assume, for example, the unadjusted p-values
p1 5 0.01, p2 5 0.005, p3 5 0.1, and p4 5 0.5. Then we can reject both H1 and H2, but none of the
other hypotheses. Figure 3 displays the initial graph together with a possible rejection sequence. As
mentioned above, the final decisions on which hypotheses to reject do not depend on the particular
rejection sequence. That is, with the initial graph from Figure 3 we would obtain the same decisions,
regardless of whether we first reject H2 and then H1, or vice versa.
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Many standard approaches from the literature can be visualized using Bonferroni-based
graphical test procedures, including the weighted or unweighted Bonferroni–Holm procedure
(Holm, 1979), fixed sequence tests (Maurer et. al, 1995; Westfall and Krishen, 2001), fallback
procedures (Wiens, 2003), and gatekeeping procedures (Bauer et al., 1998; Westfall and Krishen,
2001; Dmitrienko et al., 2003). Adjusted p-values and simultaneous confidence intervals can be
calculated as well, although the resulting simultaneous confidence intervals are known to be of
limited practical use, as they are often non-informative; see Strassburger and Bretz (2008), Guilbaud
(2008, 2009) and Bretz et al. (2009) for details. Bretz et al. (2011) provided SAS/IML code to
perform the resulting Bonferroni-based sequentially rejective multiple test procedures. In Section 4,
we describe the gMCP package in R, which offers a convenient graphical user interface (GUI) for
these approaches.

One general disadvantage of Bonferroni-based approaches is a perceived power loss, motivating
the use of weighted parametric tests that account for the correlation between the test statistics or the
use of weighted Simes tests. We discuss these alternative test procedures in Sections 3.2 and 3.3,
respectively.

3.2 Weighted parametric tests

If for the intersection hypotheses HJ ; J � I , the joint distribution of the p-values pj, jAJ, are known,
a weighted min-p test can be defined (Westfall and Young, 1993; Westfall et al., 1998). This test
rejects HJ if there exists a jAJ such that pj � cJwjðJÞa, where cJ is the largest constant satisfying

PHJ

[
j2J

fpj � cJwjðJÞag

 !
� a: ð2Þ

If the p-values are continuously distributed, there is a cJ such that the rejection probability is
exactly a. Determination of cJ requires knowledge of the joint null distribution of the p-values and
computation of the corresponding multivariate cumulative distribution functions. If the test sta-
tistics are multivariate normal or t distributed under the null hypotheses, these probabilities can be
calculated using, for example, the mvtnorm package in R (Genz and Bretz, 2009). Alternatively,
resampling-based methods may be used to approximate the joint null distribution; see Westfall and
Young (1993).

If cJ 5 1 in (2), the weighted parametric test reduces to the weighted Bonferroni test. This fully
exhausts the level if and only if the joint distribution of continuously distributed p-values with
strictly positive density function over (0,1)m satisfies

PHJ
ðfpj � cJwjðJÞag \ fpi � cJwiðJÞagÞ ¼ 0

initial graph rejected rejected

Figure 3 Graph for sequentially rejective procedure with example rejection sequence.
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for all i 6¼ jAJ, because then all events are pairwise disjoint and PHJ
ð [j2J fpj � cJwjðJÞagÞ

¼
P

j2J PHJ
ðpj � cJwjðJÞaÞ. Otherwise, cJ41 and the weighted parametric test gives a uniform im-

provement over the weighted Bonferroni test from Section 3.1.
If not all, but some of the multivariate distributions of the p-values are known, it is possible to

derive conservative upper bounds of the rejection probability that still give an improvement over the
Bonferroni test. Assume that I can be partitioned into l sets Ih such that I ¼ [lh¼1Ih and Ii \ Ih ¼ ;
for i 6¼ h ¼ 1; . . .; l. We assume that for each h5 1,y,l the joint distribution of the p-values pi; i 2 Ih,
is known, but the joint distribution of p-values belonging to different Ih is not necessarily known.
Now, let JDI and choose the maximal critical value cJ such that

Xl
h¼1

PHJ

[
k2Ih\J

fpk � cJwkðJÞag

 !
� a: ð3Þ

By the Bonferroni inequality, the left-hand side in (2), which cannot be computed if the full joint
distribution is unknown, is bounded from above by the left-hand side in (3), whose computation
requires only the knowledge of the joint distribution of the p-values in Ih\J, separately for each
h5 1,y,l. Thus, any cJ satisfying (3) will also satisfy (2), leading to a conservative test for the
intersection hypothesis HJ.

It follows immediately from Eq. (1) that these parametric approaches are consonant if

cJwjðJÞ � cJ 0wjðJ
0Þ for all J 0 � J � I and j 2 J 0: ð4Þ

For p-values following a joint continuous distribution with strictly positive density function
over (0,1)m this is also a necessary consonance condition. This condition is often violated by the
weighted parametric tests above. Consider, for example, the Sidak (1967) test for three hypotheses
with initial weights 1/3. Assume that for the test of the intersection of any two hypotheses the
weights are 1/3 and 2/3. For a5 0.05, the critical value cJwj (J)a5 0.01695 for all three hypotheses
in the first step. For all J0 with |J0|5 2, we have cJ 0wjðJ

0Þa ¼ 0:01686 for the hypothesis Hj with the
weight 1/3 in the second step, violating (4). This phenomenon is even more pronounced for positive
correlations. If in the previous example the correlations are all 0.5 (corresponding to a Dunnett test
in a balanced one-way layout with known variance), we have cJwjðJÞa ¼ 0:0196 and
cJ 0wjðJ

0Þa ¼ 0:0182.
If the consonance condition (4) is met, a sequentially rejective test procedure similar to the

Bonferroni-based graphical tests from Section 3.1 can be defined.

Algorithm 3 (Weighted Parametric Test)

(i) Choose the maximal constant cI that satisfies either (2) or (3) for J5 I.
(ii) Select a jAI such that pj � cIwjðIÞa and reject Hj; otherwise stop.
(iii) Update the graph:

I ! Infjg

w‘ðIÞ !
w‘ðIÞ1wjðIÞgj‘; ‘ 2 I

0; otherwise

�

g‘k!

g‘k1g‘jgjk
1�g‘jgj‘

; ‘; k 2 I ; ‘ 6¼ k; g‘jgj‘o1

0; otherwise

(

(iv) If |I|Z1, go to step (i); otherwise stop.

For any specific multiple test procedure defined by a given graph, the consonance condition can
be checked. If the consonance condition is not met, the weighting strategies introduced in Section 2
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remain applicable, although the connection to a corresponding sequentially rejective test procedure
is lost. In this case, Algorithm 3 no longer applies and one has to go through the entire closed test
procedure. For a given weighting strategy, this procedure is uniformly more powerful than the
associated Bonferroni-based procedure from Section 3.1. Note that adjusted p-values for each
hypothesis Hi can be obtained by computing p-values for each intersection hypothesis HJ with iAJ
(given by the lowest local level for which the respective intersection hypothesis can be rejected) and
then taking the maximum over them.

Before illustrating Algorithm 3 with two examples, we notice that Eq. (2) does not provide the
only possible definition of a weighted parametric test. Instead of using cJwj(J)a as the critical values
for pj, jAJ, we could also use some other function fJ (wj (J),a) fulfilling fJðwjðJÞ;aÞ � wjðJÞa for all
jAJ and all dependence structures of the p-values. For example, if Tj ¼ F�1ð1� pjÞ is the test
statistic corresponding to the p-value of a z-test for Hj, then finding an eJ such that

1� PHJ

[
j2J

fTj � F�1ð1� wjðJÞaÞ � wjðJÞeJg

 !
¼ a

would also define a test which is uniformly more powerful than the corresponding weighted Bon-
ferroni test. A related approach to account for correlations in weighted multiple testing procedures
defined by the graphical approach was considered in Millen and Dmitrienko (2011).

Example 2

We revisit the weighting strategy from Example 1. Assume that the joint null distribution
of the p-values p1, p2 for the two primary dose-control comparisons as well as the joint null
distribution of the p-values p3, p4 for the two secondary comparisons are known. Applying the
standard analysis-of-variance assumptions with a known common variance, we have a bivariate
normal distribution, where the correlation is determined only by the relative group sample sizes. In
practice, the correlation between primary and secondary endpoints is typically unknown and thus
the joint distributions of the pairs ðpi; pjÞ; i ¼ 1; 2; j ¼ 3; 4 are also unknown. Therefore, (2) cannot
be computed and cJ cannot be determined directly. Setting I1 ¼ f1; 2g and I2 ¼ f3; 4g, the joint null
distribution of the test statistics for the hypotheses in I1 and I2 is known and the constants cJ can be
determined by (3). Note that cJ depends on a and on the weights. Table 2 shows the local sig-
nificance levels for both (A) the closed weighted Bonferroni test procedure and (B) the closed
weighted parametric test procedure, assuming a5 0.025 and equal group sample sizes.

Using, for example, the mvtnorm package in R, one can call

> myfct o- function(x, a, w, sig) {
1 1 - a - pmvnorm(lower = -Inf, upper = qnorm(1-x�w�a), sigma = sig)
1 }
> sig o- diag(2)�0.5 1 0.5
> uniroot(myfct, lower = 1, upper = 9, a = 0.025, w = rep(0.5, 2),
1 sig = sig)$root
[1] 1.078306

to compute cJ 5 1.0783 for J ¼ f3; 4g as well as for all J � f1; 2g and cJ 5 1 otherwise.
In other words, H3\H4 and all intersection hypotheses that include H1 and H2 are
tested with unweighted Dunnett z tests. However, intersection hypotheses containing H1\H4 or
H2\H3 are tested with an unweighted Bonferroni test. As a consequence, the resulting family of
tests is not consonant. For example, cf1;2;3;4gw1ðf1; 2; 3; 4gÞa ¼ 0:013540:0125 ¼ cf1;4gw1ðf1; 4gÞa,
violating condition (4). Nevertheless, for a given weighting strategy, the closed test
procedure based on parametric weighted tests dominates the associated procedure based on
weighted Bonferroni tests. For example, if p1 ¼ 0:0131; p2 ¼ 0:1; p3 ¼ 0:012, and p4 5 0.01, the
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weighted parametric test procedure rejects H1 and H3, whereas the Bonferroni test rejects none. In
Section 4, we revisit this numerical example and describe the gMCP package in R, which implements
the closed weighted parametric test procedure (B). Related gatekeeping procedures addressing the
problem of comparing several doses with a control for multiple hierarchical endpoints were
described, among others, by Dmitrienko et al. (2006), Liu and Hsu (2009), and Xu et al. (2009).

Continuing with the example, one can enforce consonance via an appropriate modification
of the weighting strategy from Figure 1. To achieve consonance, we introduce additional
edges with weight d (see Figure 4) such that the weight for H1 (resp. H2) is sufficiently increased to
satisfy the monotonicity condition (4) when testing the intersection hypotheses H1\H4 and
H1\H3\H4 (resp. H2\H3 and H2\H3\H4). If d � d�: ¼ cf1;2;3;4g � 1 the resulting closed
test procedure is consonant and Algorithm 3 can be used to perform the test. In the above
example with a5 0.025, the lower bound is d�5 0.0783. Setting d5 d�, we obtain the local sig-
nificance levels for procedure (C) in Table 2. Note that because of the special weighting strategy
employed in this example, these local significance levels are obtained with the regular Dunnett and
univariate z tests.

The lower bound d� depends on the correlation between the test statistics for H1 and H2. Because
cf1;2;3;4g increases with the correlation, this also holds for d�. In the limiting case that the sample
size ratios of the dose groups and the control group tend to infinity, the correlation tends
to 1. Consequently, cf1;2;3;4g ¼ 2, such that d�5 1 and the graph is degenerated for all a40. On the
other hand, if the above sample size ratios tend to 0, the correlation tends to 0 and d� ¼
2ð1� ð1� aÞ1=2Þ=a� 1 in limit.

Note that by enforcing consonance, the resulting multiple test procedure based on weighted parametric
tests is no longer uniformly better than the associated Bonferroni-based test procedure which does not
account for the correlations. That is, for a given weighting strategy, the closed test procedure based on
parametric weighted tests may fail to reject certain hypotheses that otherwise are rejected by the asso-
ciated procedure based on weighted Bonferroni tests. For example, if p1 ¼ 0:01; p2 ¼ 0:1; p3 ¼ 0:012,
and p450.01, the initial graph from Figure 3 rejects H1 and H3, whereas the consonant weighted
parametric test procedure from Figure 4 with d50.0783 rejects only H1.

Table 2 Local significance levels (in %) of A: weighted Bonferroni (B: parametric, C: consonant
parametric with d5 0.0783) test for the example from Figure 1 and a5 0.025.

Intersection hypothesis Local significance levels (in %)

H1 H2 H3 H4

H1\H2\H3\H4 1.25 (1.35,1.35) 1.25 (1.35,1.35) 0 (0,0) 0 (0,0)
H1\H2\H3 1.25 (1.35,1.35) 1.25 (1.35,1.35) 0 (0,0) –
H1\H2\H4 1.25 (1.35,1.35) 1.25 (1.35,1.35) – 0 (0,0)
H1\H2 1.25 (1.35,1.35) 1.25 (1.35,1.35) – –
H1\H3\H4 1.25 (1.25,1.35) – 0 (0,0) 1.25 (1.25,1.15)
H1\H3 2.50 (2.50,2.50) – 0 (0,0) –
H1\H4 1.25 (1.25,1.35) – – 1.25 (1.25,1.15)
H1 2.50 (2.50,2.50) – – –
H2\H3\H4 – 1.25 (1.25,1.35) 1.25 (1.25,1.15) 0 (0,0)
H2\H3 – 1.25 (1.25,1.35) 1.25 (1.25,1.15) –
H2\H4 – 2.50 (2.50,2.50) – 0 (0,0)
H2 – 2.50 (2.50,2.50) – –
H3\H4 – – 1.25 (1.35,1.35) 1.25 (1.35,1.35)
H3 – – 2.50 (2.50,2.50) –
H4 – – – 2.50 (2.50,2.50)
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Example 3

Consider again Example 1, but assume that H1,H2 are two non-inferiority hypotheses (say, for
low and high dose against control) and H3,H4 are two superiority hypotheses (for the same two
doses). We again make the standard analysis-of-variance assumptions with a known common
variance and let a5 0.025. Bonferroni-based graphical approaches for combined non-inferiority
and superiority testing were described in Hung and Wang (2010) and Lawrence (2011). In the
following, we exploit the fact that the correlations between the four test statistics are known.
Therefore, the complete joint distribution is known and we can apply (2). Note that if wj (J)5 0 for
some jAJ, the joint distribution degenerates. In our example it thus suffices to calculate bivariate or
univariate normal probabilities.

Assume first that the same population is used for all four tests. For simplicity, assume further that
the group sample sizes are equal. Then the correlation between the non-inferiority and superiority
tests within a same dose is 1; all other correlations are 0.5. Therefore, cJ 5 1.0783 for
J ¼ f1; 2g; f1; 4g; f2; 3g, and f3; 4g. Otherwise, cJ 5 1 and condition (4) is trivially satisfied. That is,
consonance is ensured and one can apply Algorithm 3. This leads to a sequentially rejective multiple
test procedure, where at each step either bivariate Dunnett z tests or individual z tests are used. This
conclusion remains true if the common variance is unknown and Dunnett t tests or individual t tests
are used.

To illustrate the procedure, let a5 0.025 and assume the unadjusted p-values p1 5 0.01, p2 5 0.02,
p3 5 0.005, and p4 5 0.5. Following Algorithm 3, we have p1 � cIw1ðIÞa ¼ 0:0135 and can reject H1.
The update step then leads to the weights in Figure 2(A). Next, p3 � 0:0135 and we can reject H3.
This leaves us with H2, H4 and the weights w2ðf2; 4gÞ ¼ 1, w4ðf2; 4gÞ ¼ 0. Therefore, H2 is now tested
at full level a. Because p2ra, we reject H2 and the procedure stops.

We now consider the situation that two different populations are used. Assume that the per-
protocol population (PP) is used for non-inferiority testing and the intention-to-treat population
(ITT) for superiority testing, where PP is a subpopulation of ITT. Let ni denote the ITT sample size
for group i, where i5 0 (1,2) denotes placebo (low dose, high dose). Let further n�i � ni denote the
PP sample size for group i. Finally, let Ti denote the test statistic for Hi; i ¼ 1; . . .; 4; and r(Ti,Tj) the
correlation between Ti and Tj. With this notation,

rðT1;T2Þ ¼ rðT3;T4Þ ¼
n1

n01n1

� �1=2
n2

n01n2

� �1=2

which reduces to 0.5 if n0 5 n1 5 n2. Further,

rðT1;T3Þ ¼
n01n1

n0n1

� �1=2
n�0n
�
1

n�01n�1

� �1=2

and rðT2;T4Þ ¼
n01n2

n0n2

� �1=2
n�0n
�
2

n�01n�2

� �1=2

;

Figure 4 Graphical display of weighting strategy for a consonant weighted parametric
test procedure.
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which both reduce to ðn�0=n0Þ
1=2 for n0 ¼ ni and n�0 ¼ n�i , i5 1,2. Finally, rðT1;T4Þ ¼

rðT1;T3ÞrðT3;T4Þ and rðT2;T3Þ ¼ rðT2;T4ÞrðT3;T4Þ, which both reduce to 1=2ðn�0=n0Þ
1=2 for n0 ¼

n1 ¼ n2 and n�0 ¼ n�1 ¼ n�2. In this simplest case of equal group sample sizes within PP and ITT we
thus have, assuming n�0=n0 ¼ 0:9 as an example

cJ ¼
1 for J ¼ f1; 3g; J ¼ f2; 4g and J ¼ fig; i ¼ 1; . . .; 4
1:0783 for J ¼ f3; 4g and for all J � f1; 2g
1:0706 otherwise

8<
:

As a consequence, the resulting family of tests is no longer consonant, although the
differences in the resulting local significance levels are small. For example,
cf1;2;3;4gw1ðf1; 2; 3; 4gÞa ¼ 0:013540:0134 ¼ cf1;4gw1ðf1; 4gÞa, violating condition (4). Similar to
Example 2, we can enforce consonance by applying the graphical test procedure from Figure 4 with
d5 0.0071.

Finally, we note that this multiple test procedure is immediately applicable to testing for a
treatment effect at two different dose levels in an overall population and, if at least one dose is
significant, continue testing in a pre-specified subpopulation. This could apply to testing, for ex-
ample, in the global study population and a regional subpopulation or in the enrolled full popu-
lation and a targeted genetic subpopulation.

3.3 Weighted Simes tests

Generalization of the original Bonferroni-based graphs from Section 3.1 also apply when the
correlations between the test statistics are not exactly known, but certain restriction on them are
assumed. A typical case in practice is to assume (or show) that the test statistics have a joint
multivariate normal distribution with non-negative correlations. In this case, the Simes test is a
popular test. Here, we discuss the use of a weighted version of the Simes test for the intersection
hypotheses HJ ; J � I .

The unweighted Simes test, as originally proposed by Simes (1986), rejects HI if there exists a jAI
such that pðjÞ � j=ma, where pð1Þ � � � � � pðmÞ denote the ordered p-values for the hypotheses
Hi; i 2 I . The Type 1 error rate is exactly a if the test statistics are independent and it is bounded by
a if positive regression dependence holds. This follows from Benjamini and Yekutieli (2001), who
showed false discovery rate control for a related step-up procedure under positive regression
dependence on the test statistics. Note that this condition is not always easy to verify or even justify
in practice.

The weighted Simes test introduced by Benjamini and Hochberg (1997) rejects HI if for some jAI
pðjÞ �

Pj
i¼1 aðiÞ, where aðiÞ ¼ wðiÞa and wðiÞ denotes the weight associated with pðiÞ. An equivalent

condition is to reject HI if for some jAI

pj �
X
i2Ij

ai ¼ a
X
i2Ij

wi ð5Þ

where Ij ¼ fk 2 I ; pk � pjg. This weighted Simes test reduces to the original (unweighted) Simes test
if wi ¼ 1=m; i 2 I . Kling (2005) showed that the weighted test is conservative if the univariate test
statistics are positive regression dependent for any number of hypotheses. This, for example, is the
case if the test statistics follow a multivariate normal distribution with non-negative correlations
and the tests are one-sided (Benjamini and Heller, 2007).

For given weights wj(J), JDI, and assuming positive regression dependence among the univariate
test statistics for all m hypotheses Hi, iAI, the weighted Simes test can be applied to all intersection
hypotheses HJ, JDI. By means of the closure principle the resulting multiple test procedure rejects
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Hi, iAI, at level a if for each JDI with iAJ, there exists an index jAJ such that

pj � a
X
k2Jj

wkðJÞ ð6Þ

where Jj ¼ fk 2 J; pk � pjg. This follows from the application of condition (5) to all subsets J�I,
and the fact that any subset of m positive regression dependent test statistics is also positive
regression dependent. Related gatekeeping procedures based on the Simes tests were described,
among others, by Dmitrienko et al. (2003) and Chen et al. (2005).

If all weights are equal, the above procedure reduces to the procedure by Hommel (1988), which
is known not to be consonant. In case of unequal weights, a corresponding sequentially rejective test
procedure is not available and one may have to go through the entire closed test procedure using
weighted Simes tests for each intersection hypotheses. Nevertheless, for a given weighting strategy,
this procedure is uniformly more powerful than an associated Bonferroni-based procedure from
Section 3.1. This follows from the fact that any hypothesis rejected by the closed weighted Bon-
ferroni test procedure can also be rejected by the corresponding closed weighted Simes test pro-
cedure; see, for example, the Appendix in Maurer et al. (2011).

Although full consonance is generally not available for Simes-based closed test procedures, we
can still derive a partially sequentially rejective test procedure which leads to the same test decision
as the closed test procedure defined in (6). In the following, we assume that the weights are ex-
haustive, i.e.

P
k2J wkðJÞ ¼ 1 for all subsets JAI.

Algorithm 4 (Weighted Simes Test)

(i) If pi4a for all iAI, stop and retain all m hypotheses.
(ii) If pira for all iAI, stop and reject all hypotheses.
(iii) Perform the Bonferroni-based graphical test procedure from Section 3.1. Let Ir denote the

index set of rejected hypotheses and Icr its complement in I . If jIcr jo3, stop and retain the
remaining hypotheses.

(iv) If jIcr j � 3 consider the weights wiðI
c
r Þ; i 2 Icr , and the transition matrix G defined on Icr as

the new initial graph for the remaining hypotheses. Compute the weights wk(J) for all
J � Icr with Algorithm 1.

(v) Reject Hi; i 2 Icr , if for each J � Icr with iAJ, there exists an index jAJ such that

pj � a
X
k2Jj

wkðJÞ: ð7Þ

With step (ii), all hypotheses Hi, iAI can be rejected if pjra for all jAI. This follows from
the fact that for each J there is always a largest pj, jAJ, such that Jj 5 J and therefore
a
P

k2Jj
wkðJÞ ¼ a

P
k2J wkðJÞ ¼ a. Hence condition (6) holds for all JDI and therefore for all Hi,

iAI. Note that if the weights are not exhaustive, step (ii) may no longer be valid and should be
skipped.

The stopping condition in step (iii), jIcr jo3, is explained as follows. Assume first that jIcr j ¼ 1, i.e.
one hypothesis is left, say Hi. If pioa, one would have rejected already all hypotheses in step (ii) and
stopped the procedure because for all other hypotheses than Hi necessarily pjra. Therefore, pi4a
and one cannot rejectHi. Similarly, if jIcr j ¼ 2, the respective p-values cannot be both smaller than a.
Also if only one of them, say pi, is smaller and the other is larger than a, then pi4wiðI

c
r Þa, since

otherwise the Bonferroni test in step (iii) would have rejected Hi. In that case the Simes test cannot
reject Hi either and hence both remaining hypotheses must be retained.

Algorithm 4 is essentially looking first for outcomes that are easy to verify (steps (i) and (ii)) or
where sequential rejection of the hypotheses is possible (step (iii)). Only then one needs to compute
for all remaining hypotheses and their subsets the weights and apply the closed weighted Simes
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procedure as given in (6). It can happen though that no hypotheses can be rejected in the first three
steps and that one has to perform step (iv) with the full set of all m hypotheses. Note that one could,
of course, start immediately with step (iv) on the full hypotheses set. The resulting decisions
are identical to those obtained with Algorithm 4, because for any given weighting strategy, any
hypothesis rejected by the closed weighted Bonferroni test procedure is also rejected by the asso-
ciated closed weighted Simes test procedure.

Similar to the case that knowledge about the joint distribution of the p-values is partially missing
(as discussed in Section 3.2), we consider now the case that positive regression dependence cannot
be assumed between all m test statistics. Let Ih; h ¼ 1; . . .; l � m, be a a partition (i.e., I ¼ [lh¼1Ih and
Ih \ Ii ¼ ; for h 6¼ i) such that for each family of hypotheses Hi; i 2 Ih, positive regression depen-
dence between the respective test statistics holds. Then we can reject HJ ; J � I , if for some j and h
with j 2 Jh ¼ Ih \ J

pj � a
X
k2Jh;j

wkðJÞ ð8Þ

where Jh;j ¼ fk 2 Jh; pk � pjg. This procedure controls the Type I error rate at level a for any in-
tersection hypothesisHJ. This is seen as follows. The weighted Simes test is applied separately to each
of the partition sets Jh of J. With the definitions for Jh and Hh;j above, for a fixed h 2 f1; . . . ;lg, the
probability of the event that there exists a jAJh such that pj � a

P
k2Jh;j

wkðJÞ, is less than or equal to
a
P

k2Jh
wkðJÞ by the weighted Simes test. Hence the probability that this happens in any of the

partitions Jh is less than
Pl

h¼1 a
P

k2Jh
wkðJÞ ¼ a

P
k2J wkðJÞ ¼ a by means of the Bonferroni in-

equality. For a given partition Ih; h ¼ 1; . . .; l; with ‘‘local’’ regression dependence within the disjunct
subsets of associated test statistics, condition (7) in the algorithm hence can be replaced by (8).

We conclude this section with an example. For the weighting strategy from Example 1, the
resulting closed weighted Simes test will reject more hypotheses than the related closed weighted
Bonferroni test only if all four p-values are less than or equal to a (Maurer et al., 2011). The latter is
not the case for the numerical example in Section 3.1, because, for example, p3 5 0.140.0255 a and
hence no further hypothesis can be rejected. However, if we had instead, for example, p3 5 0.015
and p4 5 0.022, the closed weighted Simes test would reject all four hypotheses, two more than with
the closed weighted Bonferroni test. Generally speaking, the weighted Simes test has power ad-
vantages over alternative weighted test procedures if the effect sizes are of similar magnitude.

4 gMCP package in R

The gMCP package (Rohmeyer and Klinglmueller, 2011) in R (R Development Core Team, 2011)
currently implements the Bonferroni-based graphical approach from Section 3.1 and the closed
weighted parametric tests from Section 3.2. R is a language and environment for statistical
computing and graphics (Ihaka and Gentleman, 1996). It provides a wide variety of statistical
and graphical techniques, and is highly extensible. The latest version of gMCP is available
at the Comprehensive R Archive Network (CRAN) and can be accessed from http://cran.
r-project.org/package5gMCP/. In the following, we give only a brief illustration of the gMCP
package. We refer to the installation instructions at http://cran.r-project.org/web/
packages/gMCP/INSTALL and the accompanying vignette for a description of the full func-
tionality (Rohmeyer and Klinglmueller, 2011).

4.1 Weighted Bonferroni tests with gMCP

We consider the cardiovascular clinical trial example from Dmitrienko and Tamhane (2009) to
illustrate the implementation of the Bonferroni-based graphical approach from Section 3.1 in
the gMCP package. The trial compared a new compound with placebo for two primary and two
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secondary endpoints. Consequently, we have two families of hypotheses F 1 ¼ fH1;H2g and
F 2 ¼ fH3;H4g.

Dmitrienko and Tamhane (2009) used this example to illustrate the truncated Holm procedure
described in Dmitrienko et al. (2008) and Strassburger and Bretz (2008). Given multiple families of
hypotheses in a pre-specified hierarchical order, the key idea of truncated tests is to avoid propagating
the complete significance level within a family until all its hypotheses are rejected in order to proceed
testing the next family in the hierarchy. Instead, once at least one hypothesis is rejected in a given
family, a fraction of the significance level is reserved to test subsequent families of hypotheses. In
principle, truncation can be applied to any of the test procedures discussed in Section 3.

In the cardiovascular study example, the hypotheses in F 2 are only tested, if at least one
of the hypotheses in F 1 are rejected. We assume that F 1 is tested using the truncated Holm procedure
with truncation parameter gA[0,1]. Let p(1)op(2) denote the ordered p-values with associated hypotheses
H(1) and H(2). Consequently, H(1) is tested at level a/2. If H(1) is rejected, H(2) is tested at level
a/21g(a/2). The family F 2 is then tested with the regular Holm procedure either at level (1–g)a/2 or at
level a, depending on whether only one or both hypotheses in F 1 are rejected, respectively.

The gMCP package offers a GUI to conveniently create and perform Bonferroni-based graphical
test procedures, such as the one for the test procedure above. To this end, we invoke in R the gMCP
package and subsequently call the GUI with

> library(gMCP)
> graphGUI()

Different buttons are available in the icon panel of the GUI to create a new graph. The main
functionality includes the possibility of adding new nodes as well as new edges connecting any two
selected nodes. In many cases, the edges will have to be dragged manually in order to improve the
readability of the graphs. The associated labels, weights, and significant levels can be edited directly in
the graph. Alternatively, the numerical information can be entered into the transition matrix and other
fields on the right-hand side of the GUI. Figure 5 displays the complete test procedure for the cardi-
ovascular study example using the gMCP package: The truncated Holm procedure for F 1 with trun-
cation parameter g and the regular Holm procedure for F 2. Note that we can immediately improve that
test procedure by connecting the secondary hypotheses H3 and H4 with the primary hypotheses H1 and
H2 through the e-edges introduced in Bretz et al. (2009). We refer to the vignette of the gMCP package
for a description of how to construct e-edges with the GUI (Rohmeyer and Klinglmueller, 2011).

The GUI offers the possibility to perform sequentially Bonferroni-based test procedures defined
through a graph like the one displayed in Figure 5 and in addition to calculate adjusted p-values as
well as simultaneous confidence intervals. To illustrate this functionality, we consider Scenario 1
from Dmitrienko and Tamhane (2009) and assume the unadjusted p-values p1 5 0.0121, p2 5 0.0337,
p3 5 0.0084, and p4 5 0.0160, which are entered directly into the GUI. By clicking on the corre-
sponding button in the icon panel and and specifying g5 0.5, one obtains in this example the
adjusted p-values 0.024, 0.045, 0.045, and 0.045 for the four hypotheses H1, H2, H3, and H4,
respectively. These adjusted p-values are identical to those reported in Dmitrienko and Tamhane
(2009). Accordingly, one can reject all four hypotheses at level a5 0.05. Simultaneous confidence
intervals can be obtained as well from the GUI after entering additional information on effect
estimates and standard errors. Finally, the user may perform the sequential test procedure by
clicking on the green triangle in the icon bar. By doing so, the ‘‘Reject’’ buttons in the lower right
become activated and one can step through the graph as long as significances occur.

4.2 Weighted parametric tests with gMCP

The gMCP package provides also a convenient interface to perform graphical test procedures
without the GUI using the R command line. We illustrate this with the closed weighted parametric
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tests from Section 3.2 and revisit Example 2. We first define the related transition matrix G and the
weights wi(I), iAI, through

> G o- matrix(0, nr=4, nc = 4)
> G[1,3] o- G[2,4] o- G[3,2] o- G[4,1] o- 1
4w o- c(1/2, 1/2, 0, 0)

The function matrix2graph then converts the matrix G and the vector w into an object of type
graphMCP

> graph o- matrix2graph(G, w)
> graph
A graphMCP graph
Overall alpha: 1
H1 (not rejected, alpha=0.5)
H2 (not rejected, alpha=0.5)
H3 (not rejected, alpha=0)
H4 (not rejected, alpha=0)
Edges:
H1 -(1)-> H3
H2 -(1)-> H4
H3 -(1)-> H2
H4 -(1)-> H1

Figure 5 Screenshot of the GUI from the gMCP package. Left: Display of the graphical
Bonferroni-based test procedure for the cardiovascular trial. Right: Transition matrix,
initial weights and unadjusted p-values.
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The gMCP function takes objects of the type graphMCP as its input together with a vector of
p-values and performs the specified multiple test procedure. In particular, one can specify a cor-
relation matrix with the effect that a closed weighted parametric multiple test procedure is per-
formed under the standard analysis-of-variance assumptions with known common variance.

In Example 2 we assumed normally distributed test statistics with a block-diagonal correlation
matrix of the form

1 0:5 NA NA
0:5 1 NA NA
NA NA 1 0:5
NA NA 0:5 1

0
BB@

1
CCA;

where NA reflects the fact that the correlation between the primary and secondary endpoints is
unknown. Accordingly, we let

> cr o- matrix(NA, nr = 4, nc = 4)
> diag(cr) o- 1
> cr[1,2] o- cr[2,1] o- cr[3,4] o- cr[4,3] o- 1/2

and define the unadjusted p-values

> p o- c(0.0131, 0.1, 0.012, 0.01)

Finally, we perform the closed weighted parametric test at a specified significance level a5 0.025,
say, by calling

> res o- gMCP(graph, p, corr = cr, alpha = 0.025)

This returns an object of class gMCPResult providing information on which hypotheses are re-
jected

> res@rejected
H1 H2 H3 H4

TRUE FALSE TRUE FALSE

We conclude from the output that both H1 and H3 can be rejected. We come to the same con-
clusions, if we report the adjusted p-values and compare them with a5 0.025

> res@adjPValues
H1 H2 H3 H4

0.02431856 0.10000000 0.02431856 0.10000000

Alternatively, one can use a sequentially rejective Bonferroni-based test procedure from Section 3.2
by omitting the corr argument

> gMCP(graph, p, alpha = 0.025)@rejected
H1 H2 H3 H4

FALSE FALSE FALSE FALSE

As seen from the output, none of the null hypotheses can be rejected, which coincides with our
conclusions from Section 3.2.
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5 Discussion

This paper shows that the graphical approach introduced by Bretz et al. (2009) can be used to create
and visualize tailored strategies for common multiple test problems. By dissociating the underlying
weighting strategy from the employed test procedure, it is seen that the graphical approach is not
restricted to Bonferroni-based tests. Similarly, the graphs introduced by Burman et al. (2009) define
weights for all intersection hypotheses and the procedures discussed in this paper can be applied
using these weights. Extended graphical approaches include weighted Simes tests and weighted min-
p tests in the sense of Westfall and Young (1993). The latter take into account all or some of the
joint multivariate distributions of p-values. Consonance and the corresponding shortcuts may be
lost, but for any concrete multiple test strategy, consonance can be checked prior to a clinical study.
As shown in this paper, consonance can be enforced and related sequentially rejective graphs
established at least in some simple situations.

Many proposed multiple test procedures in the literature can be expressed with the methods
described in this paper. On the other hand, the methods in this paper also allow one to investigate
alternative procedures that go beyond the published results. But even if the closure principle is very
common in practice, it does not necessarily lead to consonant multiple test procedures. We gave
monotonicity conditions for ensuring consonant graphical weighting strategies, but it is not always
clear when these conditions are met if weighted parametric or Simes tests are used. In principle, one
could enforce consonance following, for example, the approach of Romano et al. (2011), although
the computation of the rejection regions could become tedious. We leave this topic for further
research.
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