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Spatial memory is an important cognitive function for human daily life and may
present dysfunction or decline due to aging or clinical diseases. Functional near-
infrared spectroscopy neurofeedback (fNIRS-NFB) is a promising neuromodulation
technique with several special advantages that can be used to improve human cognitive
functions by manipulating the neural activity of targeted brain regions or networks. In
this pilot study, we intended to test the feasibility of fNIRS-NFB to enhance human
spatial memory ability. The lateral parietal cortex, an accessible cortical region in
the posterior medial hippocampal-cortical network that plays a crucial role in human
spatial memory processing, was selected as the potential feedback target. A placebo-
controlled fNIRS-NFB experiment was conducted to instruct individuals to regulate
the neural activity in this region or an irrelevant control region. Experimental results
showed that individuals learned to up-regulate the neural activity in the region of interest
successfully. A significant increase in spatial memory performance was found after 8-
session neurofeedback training in the experimental group but not in the control group.
Furthermore, neurofeedback-induced neural activation increase correlated with spatial
memory improvement. In summary, this study preliminarily demonstrated the feasibility
of fNIRS-NFB to improve human spatial memory and has important implications for
further applications.

Keywords: neurofeedback, neuromodulation, fNIRS (functional near infrared spectroscopy), spatial memory,
lateral parietal cortex

INTRODUCTION

Spatial memory is a form of memory responsible for encoding, storing, and retrieving information
about spatial locations, configurations, or routes (De Renzi et al., 1977; Postma and De Haan, 1996;
Kessels et al., 2001). This important cognitive function is of great relevance in our daily life, in which
it enables us to remember the locations of objects or find our way about in the familiar environment.
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Spatial memory will decline with normal aging (Korman et al.,
2019), and be impaired in several disease conditions, such as mild
cognitive impairment (MCI), Alzheimer’s disease (AD), stroke,
chronic stress, depression, and schizophrenia (Iachini et al.,
2009). The decline or disruption in spatial memory will affect
individuals’ normal life severely, make individuals dispirited, and
reduce the life quality. Therefore, how to improve spatial memory
ability and delay spatial memory loss in normal aging or disease
state has critical meanings.

Neuromodulation techniques can be used to facilitate
individuals’ cognition, behavior, and pathology by modifying
the activity of specific neural targets. In contrast to exogenous
brain modulation techniques, such as transcranial magnetic
stimulation (TMS) and transcranial direct current stimulation
(tDCS), neurofeedback is a relatively safe, side-effect-free, well-
tolerated, and acceptable brain modulation technique (Luctkar-
Flude and Groll, 2015). Neurofeedback is an endogenous form of
neuromodulation technique involving a brain-compute interface
(BCI) that maps the real-time neural signals to some form
of feedback (usually visual or auditory stimuli), that allows
individuals to arbitrarily manipulate the underlying neural
activity (Robert and Evans, 2011; Ordikhani-Seyedlar et al., 2016;
Fedotchev et al., 2017; Sitaram et al., 2017; Smetanin et al., 2018;
Thibault et al., 2018; Al-Taleb et al., 2019). Neurofeedback is
a promising noninvasive neuromodulation tool to change the
neuroplasticity of target brain regions or networks, and then
improve cognitive and behavioral functions involved in turn. The
benefits of neurofeedback have been widely reported in clinical
populations (deCharms et al., 2005; Subramanian et al., 2011,
2016; Lofthouse et al., 2012; Marx et al., 2015; Zotev et al., 2016;
Young et al., 2017, 2018; Mehler et al., 2018; Carney, 2019; Kohl
et al., 2019) and healthy individuals (Egner and Gruzelier, 2003;
Gruzelier, 2009; Nan et al., 2012; Li et al., 2019; Zhao et al., 2019).

There are currently three main neuroimaging techniques to
obtain the ongoing neural signal for further real-time feedback
in neurofeedback: electroencephalography (EEG), functional
magnetic resonance imaging (fMRI), and functional near-
infrared spectroscopy (fNIRS). In contrast to MRI device, fNIRS
device is much cheaper without extra running fees, relatively
insensitive to head motion, has no special needs for performing
place and fewer contraindications, and can be conducted in a
more natural environment (Ferrari and Quaresima, 2012; Kober
et al., 2014; Wriessnegger et al., 2017). Besides, fNIRS has a
relatively higher and acceptable spatial resolution compared to
EEG, which allows fNIRS-based neurofeedback (fNIRS-NFB) to
achieve more precise self-regulation of a local cortical target
(Kohl et al., 2020). As an emerging technique, fNIRS-NFB
has been considered as an adequate alternative method to
enhance human cognitive functions or behavioral performances,
particularly for long-term and multi-session applications. This
promising transcranial brain modulation technique has been
successfully applied in many cognitive and behavioral areas, such
as executive function (Hosseini et al., 2016), motor rehabilitation
(Mihara et al., 2013), attention-deficit/hyperactivity disorder
(Marx et al., 2015; Mayer et al., 2015), autism spectrum disorder
(Liu et al., 2016), and social anxiety (Kimmig et al., 2019; for
review see Kohl et al., 2020).

Spatial memory processing involves the posterior
medial hippocampal-cortical network, mainly including the
hippocampus, lateral parietal cortex (LPC), precuneus, posterior
cingulate cortex, retrosplenial cortex, parahippocampal gyrus,
and entorhinal cortex (Ranganath and Ritchey, 2012; Ritchey
et al., 2015). The hippocampus is the core node of the posterior
medial hippocampal-cortical network (Kahn et al., 2008),
and plays an essential role in spatial and episodic memory
processing (Bird and Burgess, 2008). The hippocampus has
reciprocal connections with other regions in this network
and receives the spatial representations input via the dorsal
visual stream (Kahn et al., 2008). The LPC is part of the
dorsal visual processing stream, extracts and integrates
the spatial aspects from external visual inputs or internal
mental representations (Sack, 2009; Seghier, 2013), then
propagates the processed spatial context information to the
hippocampus via the dorsal stream. The hippocampus will
process the spatial information to more abstract allocentric
spatial representations then combine them with non-spatial
information (e.g., object, person) usually input via the ventral
pathway to form the cognitive map (Tolman, 1948). Previous
TMS studies showed that stimulation on LPC enhanced intrinsic
functional connectivity within the related posterior medial
hippocampal-cortical network (Wang et al., 2014; Hermiller
et al., 2019) and increased task-induced activation of other
connected regions in this network including the hippocampus
(Kim et al., 2018). Spatial memory performance also increased
after TMS stimulation over the LPC (Nilakantan et al., 2017).
Therefore, in consideration of its critical role in spatial memory
processing and accessibility for fNIRS, we believe that the
LPC is a potential brain target for fNIRS-NFB to enhance
human spatial memory.

Here, we intended to perform a pilot study to test whether
fNIRS-NFB on the LPC could be used to improve human spatial
memory performance. We expected that participants in the real
experimental group would learn to successfully regulate the
neural activity in the LPC, and that spatial memory performance
would be increased after training.

MATERIALS AND METHODS

Participants
This study was approved by Southwest University Brain Imaging
Center Institutional Review Board. Fifty healthy college students
(25 males, age range 18–25 years) were recruited from Southwest
University (China) to participate in this study. All the participants
were right-handed, had no mental or neurological disorders,
did not take medications within the previous month. In the
screening phase, any individuals with experience in mnemonic
strategies or neurofeedback were excluded. All participants
provided written informed consent and were compensated for
their participation.

The participants were divided into two groups randomly: The
experimental (total 30 participants, 15 males), and the active
control group (total 20 participants, 10 males). All participants
were blinded to the group allocation.
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Identification of Feedback Targets
Human spatial memory processing involves the posterior
medial hippocampal-cortical network, especially the LPC and
hippocampus. As described above, the LPC was selected as the
potential neurofeedback target due to its important role in spatial
cognitive processing and accessibility by fNIRS. While the LPC
is a brain region with wide coverage and complex functions,
it is important to identify a precise location within the LPC
as the feedback target to achieve more specific and significant
neural and behavioral effects for spatial memory. Previous studies
have used resting-state functional connectivity to select the
peak node within the LPC for its robust connection with the
hippocampus as the TMS target (Wang et al., 2014; Kim et al.,
2018), and the results have shown that the multi-day repetitive
TMS (rTMS) stimulation on this region not only selectively
enhanced the neural activation of related regions in the posterior
medial hippocampal-cortical network including the LPC and
hippocampus, but also significantly improved spatial memory
performance (Nilakantan et al., 2017). Similar to this method,
we also performed a resting-state functional connectivity analysis
based on the open-access large sample fMRI database SLIM (Liu
et al., 2017). A total of 112 participants with structural and
resting-state MRI data (50 males, age range: 18–26 years, mean
age = 20.7 years) were included in our analysis. The left middle
hippocampus (3 mm radius sphere, center MNI: [–24, –18, –18])
was selected as the seed node, as it has robust connectivity with
the cortical surface (Kahn et al., 2008). After preprocessing, a
group-mean functional connectivity map was generated, multiple
comparison corrected with FDR p < 0.005. Consistent with
previous studies (Kahn et al., 2008), the left LPC (mainly
including the angular gyrus, peak voxel MNI: [–45, –69, 33])
exhibited robust positive connectivity with the hippocampus.
Then, the accessible superficial MNI coordinates within the
hippocampal functional connectivity mask were projected to the
scalp, and a transcranial brain atlas-based magnetic navigation
system (Xiao et al., 2018) was used to assist in placing the fNIRS
channels to cover the regions of interest (Figure 1).

Control conditions are essential for neurofeedback studies
to distinguish whether neuropsychological changes were due
to regulation of the target region or placebo effects. A control
condition wherein participants receive contingent feedback from
the irrelevant area(s) is recommended for determining the
specificity of neurofeedback (Sulzer et al., 2013; Sorger et al.,
2018; Thibault et al., 2018). The movement-related cortical region
from a low-level system irrelative with the spatial memory-
related network is more suitable for the control condition in
this study. Besides, to minimize the contralateral confusion, the
left hemisphere was selected. Finally, the left PMA (mean MNI
[–38, –13, 60]) was selected as the feedback target for the active
control group (Figure 1).

Neurofeedback Protocols
The experiment was divided into three stages: pre-assessment,
8 fNIRS-NFB sessions, and post-assessment (Figure 2A). The
day before the first feedback session, the pre-assessment was
performed to assess the baseline behavioral performance. Then,

FIGURE 1 | Schematic of fNIRS channel localization on the brain surface.
Averaged positions for sources (red), detectors (blue), and channels (yellow)
are overlaid on an MNI-152 canonical brain surface (MNI coordinates were
generated using NFRI spatial registration toolbox developed by Singh et al.,
2005). The premotor area (PMA, channel 4) was selected as the feedback
target for the control group and the lateral parietal cortex (LPC, channel 8) for
the experimental group.

each participant received 8 neurofeedback sessions within 9 days.
Each session had about 30 min of effective feedback time. There
was 1 day without training between the first and last feedback
sessions to avoid absence. Post-assessment was performed on the
day after the final feedback session.

Changes in oxyhemoglobin concentration (HbO) were
measured by the NIRS system (FOIRE-3000, Shimadzu
Corporation, Kyoto, Japan) with two 2 × 2 probe sets designed
to cover the feedback brain regions of interest. The probe arrays
allowed for 8 different measurement channels, with 3.0 cm
of source-detector separation. Neurofeedback was performed
on our in-house fNIRS neurofeedback platform, which has
previously been used to improve individuals’ cognitive flexibility
(Li et al., 2019). Each neurofeedback session comprised 6 runs
(4 min 35 s per run) separated by 5 short breaks. Each run
consisted of five fixation blocks (25 s/ block) and regulation
blocks (30 s/ block), starting with a fixation block (Figure 2B).

The neurofeedback interface (Figure 2C) presented to
participants was a view of a sandy beach with a large stone
that could be moved in a vertical direction. There were three
gray indicator lights in the upper part of the screen. After a
transient prompt tone, the left light turned red, indicating the
start of the fixation block. During fixation blocks, the stone
was kept static on the sand, and participants were asked to
passively look at the stone and relax without thinking of anything.
Subsequently, the right light turned green along with another
transient beep, indicating the start of the regulation block. In
this phase, participants were instructed to raise the stone by
up-regulating the neural activity of their target brain region.
Given that the explicit strategy instruction is not necessary for
successful regulation (Sepulveda et al., 2016; Thibault et al., 2018),
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FIGURE 2 | Experimental design overview. (A) Experimental procedure. Both experimental group (Exp) and control group (Ctr) received 8 neurofeedback (NFB)
sessions. Before and after training, all participants completed the behavioral assessments. (B) Timeline of one neurofeedback session. (C) Neurofeedback visual
interface. Two sample images of the interface depict the fixation (upper) and regulation (lower) blocks.

no explicit strategies were provided. Participants were asked to
raise the stone as high as they could by using any mental strategy
they found helpful. Large head motions and intentional breath
control were not allowed because of the large influence on the
fNIRS recordings.

The ongoing raw signal was received by the neurofeedback
platform from the fNIRS recording device at a high sampling
rate (1/0.012 Hz). The raw signals were firstly down-sampled
to a lower rate (1/0.28 Hz) and were then smoothed using
a 1-s wide sliding window moving average filter. To calculate
the real-time feedback index, a common method—the relative
amplitude change value (Marx et al., 2015; Barth et al., 2016;
Hudak et al., 2017, 2018)—was used to calculate the feedback
index. The mean value of HbO in the last 5 s during fixation
block before the following regulation block was firstly calculated
as the baseline (Marx et al., 2015; Hudak et al., 2017). During
regulation blocks, the preceding baseline was subtracted from
the ongoing signal at each time point and was divided by a
study-specific “difficulty coefficient” M to get the relative brain
activity change value (f ). The “difficulty coefficient” serves to
calibrate the feedback visualization according to the variation
range of the feedback signals to promote learning success (Li
et al., 2019). Here, the “difficulty coefficient” M was set at
0.05 based on our experience in the pre-experiment. Then this
relative brain activity change value (f ) was transformed into
the final feedback index (F) using the following formula which
essentially limits the range from 0 to 1 (see following equations
and Figure 3). The continuous neurofeedback index (F) was
presented to participants in real-time via a movable stone on
a 0–1 scale from the ground to the top of the screen (see
Figure 2C).

f =
HbOreg −Mean(HbObase)

M

F =


0, f ≤ 0;
f , 0 <f<1;
1, f ≥ 1;

Behavioral Assessment
To measure the behavioral effects induced by fNIRS-NFB, all
participants performed an associative object-location memory
task in the pre- and post-assessment sessions, which is a common
task to measure human spatial memory ability (Nilakantan et al.,
2017; Tambini et al., 2017, 2018). There were two sets (A and B)
of spatial memory tests. To control for order effects, half of the
participants of the experimental and control groups performed
the set A in pre-assessment, and then the set B in post-assessment.
The other half of each group used the tests in the opposite order.
Each object stimuli set consisted of 25 unique and common
object line drawings. The high-quality colorful object images
were randomly selected from the Multilingual Picture (MultiPic)
databank1 that is a set of publicly available 750 drawings from
common concrete concepts (Duñabeitia et al., 2018). The stimuli
presentation and response recording were implemented through
the Psychtoolbox-32 on Matlab (R2012a).

The entire spatial memory testing process consisted of
three parts: learning phase, distractor phase, and testing phase
(Figure 4). During the learning phase (Figure 4A), 25 objects

1https://www.bcbl.eu/databases/multipic
2www.psychtoolbox.org
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FIGURE 3 | Example of the processed HbO signal and feedback index in a complete regulation run.

FIGURE 4 | Object-location spatial memory task. (A) Learning phase. (B) Distractor phase. (C) Testing phase.

were presented at randomized locations (the center of each
square) on an empty 6 × 6 grid. Every object was presented for
3 s, and the inter-trial interval (ITI) was 2 s. Participants were
instructed to study the object-location associations. Immediately
after the learning phase, a 2-min arithmetic distractor task was
followed to prevent further rehearsal or elaboration of the learned
object-location associations (Figure 4B). After that, the testing
phase started (Figure 4C), in which each object was presented
above an empty grid, and participants were asked to recall the
paired location learned previously as accurately as possible, then
move and click on the mouse to its final location (any position
within the corresponding square) within 3 s.

Besides the spatial memory processing, the LPC, as part of
a more global neural network, is involved in several general

cognitive functions, such as working memory (Tumati et al.,
2019). In order to test whether the spatial memory enhancement
was induced by neural feedback training on the specific target
rather than other general cognitive function improvements,
we also performed a classical sequential letter n-back test
(Lieberman and Rosenthal, 2001) to test the working memory
ability (memory load n = 3 in this study).

Data Analysis
Neural Data Analysis
The recorded raw fNIRS neurofeedback data were processed and
analyzed offline using an open-source software NIRS-KIT (Hou
et al., 2021). All the raw fNIRS signals were visually inspected
throughout the experiment to control the signal quality. The
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subjects with severe head motion in more than 2 bad sessions
( ≥ 3 bad runs in each session) or 3 bad sessions ( ≥ 2 bad runs
in each session) were removed from further analysis.

After quality control, the survived fNIRS data were
preprocessed to minimize the influence of noise and artifacts.
First, the linear baseline drifts due to long-term physiological
shifts or instrumental instability were removed by using a
first-order detrending. Since measurement optodes are typically
affixed to the surface of the head using a cap, fNIRS is more
tolerant of head motion than fMRI. However, NIRS is not
impervious to head-motion-induced noise. When severe
head movements occurred that may be caused by sudden
or unconscious movements, the NIRS optodes (source or
detector) may shift relative to the head and alter the coupling
between the optodes and scalp (Cui et al., 2010). This will
result in an artifact that changes abruptly with the motion,
which is more likely to degrade signal quality (Brigadoi et al.,
2014). Therefore, despite the relative insensitivity of fNIRS
to head motion, it is still necessary to apply preprocessing
strategies that eliminate artifacts resulting from excessive
head movement (Fishburn et al., 2019). Here, a temporal
derivative distribution repair (TDDR) algorithm was used
for head motion correction (Fishburn et al., 2019). Then, a
Butterworth band-pass filter (third order, 0.0078–0.01 Hz)
was applied to remove the irrelevant low-frequency and
high-frequency components.

To estimate the effect of neurofeedback on cortical activation,
a general linear model (GLM) was applied on the individual level
(Fujimoto et al., 2017; Li et al., 2019). In the GLM model, the task
condition for regulation periods was convolved with a standard
canonical hemodynamic response function (HRF) to form the
corresponding regressor, and the rest periods were included as
the implicit baseline. Then, individual neurofeedback-induced
(NFB-induced) activation (β: beta value) for each measurement
channel was evaluated.

The individual activation values within every session were
firstly averaged. To explore whether subjects learned to regulate
the neural activity in the region of interest successfully, mixed
ANOVAs, with between-participants factor (group) and within-
participants factor (time), were performed. Then, paired t-test
was performed to compare the regulation-induced activation
values of each group between the following sessions and the first
session for post hoc analysis.

Behavioral Data Analysis
To better characterize the spatial memory ability, we calculated
the recollection precision, which is more sensitive to the
recollected quality (Harlow and Yonelinas, 2016; Nilakantan
et al., 2018) and subtle performance change. Similar to previous
studies, the error distance (Edi) between each object’s response
location during the memory test and its target location during the
learning phase was introduced to compute the spatial memory
precision (Nilakantan et al., 2017, 2018; Tambini et al., 2017).
Then, the value was normalized to the scale of [0∼1] to represent
the spatial memory recollection precision:Precision = MaxEdi−Edi

MaxEdi
(where MaxEdi denotes the maximal possible error distance
for each object).

To test whether fNIRS-NFB improved individuals’ spatial
memory performance, paired t-test (pre vs. post) were used
for each group. Then, a two-sample t-test was performed to
test whether the group difference of the behavioral effects was
significant. Similar analyses were also performed on working
memory accuracy.

Besides, to detect the relationship between the neurofeedback-
induced neural effects and behavioral effects, Pearson correlation
analysis was performed. Pearson correlation analysis was also
conducted to test whether working memory change contributes
to the spatial memory improvement induced by fNIRS-NFB.

Statistical analysis for neural and behavioral data was
performed using MATLAB (R2012a) and SPSS (IBM Crop.,
version 25). The significance threshold was set to α = 0.05
(two-sided).

RESULTS

As stated above, one participant in the experimental group
and two participants in the control group were excluded
because of severe head motion artifacts. Therefore, the following
results were based on the final participant set consisting of
29 participants in the experimental group and 18 participants
in the control group. We found no significant age difference
between the two groups [t(45) = 0.98, p = 0.333, Cohen’s
d = 0.29, see Table 1]. No significant group difference was found
in either spatial memory precision [t(45) = 0.49, p = 0.625,
Cohen’s d = 0.15] or working memory accuracy in pre-assessment
[t(45) = 0.68, p = 0.54, Cohen’s d = 0.20] in the pre-assessment.

Neural Results
The NFB-induced activation in the region of interest for
each session was calculated and presented in Figure 5A. To
evaluate the training success on the neural level in the target
channel, a mixed two-way ANOVA with within-subject factor
(time: session1/session2/. . ./session8) and between-subject factor
(group: experimental group vs. control group) was conducted.
The results showed significant main effects of time [F(7,

315) = 10.74, p < 0.001, η2 = .19] and group [F(1, 45) = 7.83,
p = 0.008, η2 = 0.15]. The interaction between time and group
was significant [F(7, 315) = 2.78, p = 0.008, η2 = 0.06]. Post-hoc
comparisons demonstrated that activation in the target channel
significantly increased by session 5 and the following sessions vs.
the first session in the experimental group (session 5 > session 1,
p = 0.040; session 6 > session 1, p< 0.0001; session 7 > session 1,
p < 0.0001; session 8 > session 1, p < 0.0001). But not significant
increases were found in the control group (all ps > 0.109). Direct
inter-group comparison further revealed that the experimental
group exhibited significantly higher activity compared to the
control group during session 3 (p = 0.018) and sessions 5∼8
(session 5: p = 0.037; session 6: p = 0.002; session 7: p = 0.013;
session 8: p = 0.007).

Directly comparing the NFB-induced activation change (last
session vs. first session) in LPC revealed that significant increase
was found in the experimental [t(28) = 4.83, p < 0.0001,
Cohen’s d = 0.90], but not in the control group [t(17) = 1.65,
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FIGURE 5 | NFB-induced activation performance in the target region (channel 8: lateral parietal cortex). (A) Trends of NFB-induced activation across all sessions.
Error bars indicate standard error of the mean (SEM). (B) NFB-induced activation changes (last session vs. first session). ∗p < 0.05; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001;
ns, non-significant.

p = 0.117, Cohen’s d = 0.39], shown in Figure 5B. Between-group
comparison showed that the difference of regulation-induced
activation change in LPC was significant [t(45) = 2.21, p = 0.033,
Cohen’s d = 0.66, Figure 5B].

Behavioral Results
Behavioral effect analyses showed that spatial memory precision
significantly increased relative to baseline in the experimental
group [t(28) = 4.24, p < 0.001, Cohen’s d = 0.79], while the
change was not found to be significant in the control group
[t(17) = 0.47, p = 0.642, Cohen’s d = 0.11], as shown in Table 1 and
Figure 6. Group difference of NFB-induced behavioral changes
was significant [t(45) = 3.02, p = 0.004, Cohen’s d = 0.90, Figure 6].

Control behavioral analysis showed that significant increases
of working memory accuracy were obtained not only in the
experimental group [t(28) = 3.91, p < 0.001, Cohen’s d = 0.73],
but also in the control group [t(17) = 3.391, p = 0.004, Cohen’s
d = 0.80]. And group difference of working memory gain was not
significant [t(45) = 0.82, p = 0.416, Cohen’s d = 0.25, see Table 1].
These results indicate that there is no selectivity in increasing
working memory performance after training.

Relationship Between Neural and
Behavioral Effects
Correlation analysis revealed that NFB-induced activation
changes in LPC were significantly and positively correlated with
increases in spatial memory performance in the experimental
group (r = 0.38, p = 0.040, 95% CI: [0.02, 0.66], Figure 7A).
No significant trend (r = 0.23, p = 0.352, 95% CI: [–0.26, 0.63],
Figure 7B) was found in the control group.

No significant correlation trends between spatial memory
improvements and working memory changes were obtained in
both groups (r = 0.25, p = 0.197, 95% CI: [–0.13, 0.56] for the
experimental group; r = 0.27, p = 0.270, 95% CI: [–0.22, 0.66] for
the control group).

DISCUSSION

In this pilot study, fNIRS-NFB was preliminarily used to allow
individuals to manipulate the neural activity of LPC with the
aim of improving human spatial memory performance. The
results showed that participants in the experimental group but
not in the control group learned to regulate the neural activation
in this cortical target successfully accompanied by significantly
increased spatial memory performance. Furthermore, increase of
NFB-induced activation in LPC could predict the improvement
in spatial memory performance. This pilot trial preliminarily
verified the feasibility of fNIRS-NFB to improve human spatial
memory by modulating the related cortical region.

Here, fNIRS-NFB was used to assist individuals to voluntarily
modulate the neural activity of LPC, a cortical region for spatial
memory processing, with the aim to improve human spatial
memory performance. In the experimental group, real-time
signals of interest from the target region were fed back, while
subjects in the control group received the real-time feedback
neural signals for an irrelevant cortical region. The neural effects
analysis results showed that LPC activity significantly increased
over the last four training sessions relative to the first session
in the experimental group, but no significant changes were
observed in the control group. The successful regulation effect
on the neural level was further confirmed by between-group
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TABLE 1 | Demographic information and spatial memory performance.

Variables Experimental (n = 29) Control (n = 18) Group difference t-value (pre) Group difference t-value (post—pre)

Pre Post Pre Post

Gender (male) 14 9

Age (year) 21.1(0 .78) 21.5(0 .37) 0.98

Spatial memory 0.79(0.06) 0.86(0.04)*** 0.80(0.05) 0.79(0 .05) 0.49 3.02**

Working memory 0.77(0.09) 0.83(0.08)*** 0.74(0.08) 0.83(0.08)** 0.68 0.82

Entries are means (SEM). **p < 0.01; ***p < 0.001.

differences analysis. These target-specific regulation effects on
the neural level demonstrated that only successful regulation
on specific regions of interest can produce the desired neural
changes. On the behavioral level, spatial memory performance
increased significantly in the experimental group but not in
the control group. Moreover, the selective behavioral increase
was only observed in spatial memory performances rather than
in working memory changes. This suggests that significant
increases in working memory in both groups might be caused
by certain unspecific factors, such as practice effect rather
than specific neurofeedback training. Importantly, correlation
analyses revealed that the increases in LPC activation rather
than changes in working memory performance can predict
the improvements of spatial memory performance, further
confirming a potential functional relevance between successful
LPC regulation via fNIRS-NFB and the following behavioral
effects on spatial memory improvement. It is important to
be noted that though working memory as a general cognitive
function has been measured to demonstrate the specificity on
behavioral effects, other general cognitive functions involved by

FIGURE 6 | Spatial memory performance. Exp: the experimental group; Ctr:
the control group; ∗∗p < 0.01; ∗∗∗p < 0.001; ns, non-significant.

LPC and related brain networks, such as attention (Cabeza et al.,
2012; Tumati et al., 2019), should also be tested in the future to
further verify the specificity of the fNIRS-NFB.

In the current study, increased NFB-induced activation in
LPC during regulation was significantly associated with spatial
memory improvement, which suggests that improved function
in this region makes contributions to better spatial memory
performance. The LPC is involved in a wide range of tasks
in spatial cognition, which reflects its ability to extract and
integrate the spatial aspects of our environment, including the
spatial analysis of external sensory information or internal mental
representations (Sack, 2009; Seghier, 2013; Tumati et al., 2019).
Previous studies have demonstrated that it enables the rich and
vivid subjective experience during episodic memory retrieval,
which benefits successful and precise recollection (Ciaramelli
et al., 2008; Vilberg and Rugg, 2008). Furthermore, exogenous
neuromodulation studies showed that high-frequency rTMS
applied over the LPC enhanced object-location recollection
(Nilakantan et al., 2017; Kim et al., 2018). Combined with
the previous evidence, the current results may suggest that the
improved functions induced by neurofeedback in the LPC would
support better, vivid, and precise spatial-related information
processing, and result in the better spatial memory performance.

Besides the direct local effects, the potential remote neural
effects in other related brain regions caused by fNIRS-NFB
might also contribute to the final behavioral improvement.
The neurofeedback cortical target, LPC, has reciprocal
connections with other regions in the posterior medial
network and projects to the medial temporal lobe (MTL).
With robust structural and functional connections to LPC
(Kahn et al., 2008), the hippocampus receives input from
LPC likely mediated by the lateral parietal projections to the
retrosplenial and parahippocampal cortex (Mesulam et al.,
1977; Mufson and Pandya, 1984; Cavada and Goldman-
Rakic, 1989). The hippocampus is the core component of the
distributed hippocampal-cortical network (Battaglia et al.,
2011; Ranganath and Ritchey, 2012), which plays a crucial
role in spatial memory processing (Bird and Burgess, 2008).
For spatial memory processing, the hippocampus receives the
spatial context information input (from LPC) via the dorsal
pathway and the non-spatial information (e.g., object, person)
usually input via the ventral pathway, then combines the
item-context association to form the cognitive map, and will
be reactivated to extract the item-context association during
retrieval (Tolman, 1948). Previous studies showed that TMS
stimulation over LPC affects the remote and related brain
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FIGURE 7 | Correlation between NFB-induced activation change in LPC and spatial memory change for the (A) experimental group (Exp) and (B) control group (Ctr).
∗p < 0.05.

regions, especially the hippocampus (Wang et al., 2014; Kim
et al., 2018; Tambini et al., 2018; Freedberg et al., 2019). Based on
the above findings, we speculate that fNIRS-NFB of LPC might
enhance spatial memory performance via the potential neural
influences both on LPC and on the related network regions,
especially the hippocampus.

The polity fNIRS-NFB study has potential practical and
social values. Compared with other brain modulation techniques,
fNIRS-NFB has several special advantages including perfect
safety, low cost, simplicity, portability, accessibility, and wide
applicability, which makes it a promising brain modulation tool.
Given these special advantages and the positive results in the
current study, fNIRS-NFB has great potential to be widely applied
in future clinical and non-clinical situations for patients and
elderly people who are suffering spatial memory loss or decline.

However, the results of the current study should be interpreted
in line with its limitations. First, this pilot study was performed
based on a limited sample size and a healthy young adult
population sample, which somewhat limits the generalization
of this study. Future studies are needed to test its feasibility
in larger sample sizes and different populations to further
verify its effectiveness and feasibility, especially in the clinical
patients and elderly population. Second, it is important to
know whether the learning effects of self-regulation can be
maintained over longer periods beyond the initial training
period, especially for clinical applications. Although several
previous studies have reported that the neural and behavioral
effects induced by neurofeedback could persist for weeks or
even months after intervention (Marx et al., 2015; Robineau
et al., 2017; Rance et al., 2018; Van Doren et al., 2019), the
special time course of the lasting effects induced by fNIRS-
NFB has not been characterized in the current study. We
recommend that future studies should perform regular follow-
up measurements for weeks or months after the intervention,
which will further verify the feasibility of the study. Besides,

the underlying neural mechanism caused by fNIRS-NFB which
contributes to final spatial memory improvement is still
unclear. It is recommended to combine other brain imaging
modalities methods with fNIRS at different measurement time
points to further explore the underlying neural mechanisms
of fNIRS-NFB for behavioral improvements, and fMRI might
be the best choice for higher spatial resolution and subcortical
imaging ability.

CONCLUSION

In summary, the present pilot study demonstrates that real-
time fNIRS-NFB training is feasible to allow participants to
volitionally manipulate the neural activity in LPC. Successful
modulation on LPC was accompanied by significantly increased
spatial memory, and spatial memory changes can be predicted
by NFB-induced activation changes in this region. Given the
special advantages of fNIRS-NFB, this study has important
implications for future possible applications in clinical
settings or normal life situations for individuals with spatial
memory problems. To achieve this goal, more research is
needed in the future.
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