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	 Background:	 Lead (Pb) is a widely used metal in modern industry and is regarded as a health hazard. Although lead-induced 
genotoxicity has been confirmed, the direct evidence that lead induces genotoxicity in human cells and its re-
lated mechanisms has not been fully elucidated. In this study, for the first time, we evaluated the genotoxici-
ty induced by lead in human lymphoblastoid TK6 cells.

	 Material/Methods:	 The TK6 cells were incubated with various concentrations of Pb(Ac)2 for 6 h, 12 h, or 24 h. Cell viability was 
detected by CCK8 assay. Various biochemical markers were assessed by specific kits. Immunofluorescence as-
say was used to detect g-H2AX foci formation. The promoter methylation was assessed by methylation-specif-
ic PCR. The protein levels were determined by Western blot assay.

	 Results:	 The results showed that after exposure to lead, cell viability was obviously decreased and g-H2AX foci forma-
tion was significantly enhanced in TK6 cells. Moreover, the levels of 8-OHdG, ROS, MDA, and GSSG were in-
creased, while the GSH level and SOD activity were decreased in lead-treated TK6 cells. The activation of the 
Nrf2-ARE signaling pathway was involved in lead-induced oxidative stress in TK6 cells. Finally, the expressions 
of DNA repair genes XRCC1, hOGG-1, BRCA1, and XPD were inhibited via enhancing their promoter methyla-
tion in TK6 cells after exposure to lead.

	 Conclusions:	 Taken together, our study provides the first published evidence that lead exposure results in DNA damage via 
promoting oxidative stress and the promoter methylation of DNA repair genes in human lymphoblastoid TK6 
cells.
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Background

Lead is one of the most widely used metals in the world. It has 
distinctive physical and chemical properties, such as mallea-
bility, low melting point, and corrosion resistance. However, 
lead persists undegraded in the environment and cannot be 
metabolized in the body. As an occupational risk factors, ac-
cumulation of lead in the body is a serious threat to human 
health [1–3]. The most common routes of lead exposure are 
respiratory and digestive tracts, through which lead develops 
toxic effects on every organ and system of the body [4]. In re-
cent years, it has been well demonstrated that lead or its com-
pounds shows potential genotoxicity to various research sub-
jects under different conditions [5–10], but few studies have 
explored lead-induced genotoxicity in human cells. TK6 human 
lymphoblasts with good differentiation ability, stable genome, 
and normal expression of P53, are widely used in genotoxic-
ity studies [11–14] and can be useful for the in vitro study of 
human genotoxicity.

Epidemiological investigations indicated that the frequency 
of micronucleus and serum MDA level were significantly in-
creased in workers exposed to lead, and the blood lead level 
was positively correlated with oxidative stress [15]. Sharma et 
al. showed that lead-induced overproduction of ROS can re-
sult in oxidative and anti-oxidative unbalance [16]. Moreover, 
the excessive amounts of ROS may cause DNA oxidative dam-
age [17,18].

A feature common to the genotoxicity of various poisons is 
DNA damage, which can be repaired by multiple DNA repair 
genes, such as XRCC1, hOGG1, BRCA1, and XPD. The main types 
of DNA damage repair are base excision repair, nucleotide ex-
cision repair, and double-strand break repair [19]. Generally, 
the expression level of DNA repair gene is negatively corre-
lated with its promoter methylation. It was reported that the 
promoter methylation of DNA repair genes can decrease the 
DNA damage repair capability [20]. The above research back-
ground suggests that oxidative damage and the promoter 
methylation of DNA repair genes may be involved in lead-in-
duced genotoxicity in human TK6 cells.

In the present study, for the first time, we evaluated lead-in-
duced genotoxicity and its potential molecular mechanisms 
in human TK6 cells.

Material and Methods

Drug

Lead acetate was obtained from Sigma Chemical Company 
and dissolved in deionized water at a stock concentration of 

20 mM and stored at 4°C. The drug was diluted by deionized 
water into various concentrations and filtrated through a 0.22-
μm membrane filter before use.

Cell culture

Human lymphoblastoid TK6 cells were provided by Professor 
Kuicheng Zheng (Fujian Center for Disease Control and 
Prevention, China). The TK6 cells were maintained in RPMI 
1640 medium (Gibco, USA) supplemented by 10% heat-inac-
tivated horse serum (Gibco, USA) at 37°C under a humidified 
atmosphere and 5% CO2.

CCK8 assay

TK6 cells (6×103 cells per well) were seeded in 96-well plates in 
100 μl of culture medium. After cell attachment, various con-
centrations of lead acetate (0, 30, 60, 120, 240, 480, 960, 1920, 
and 3840 μM) in fresh medium were added to TK6 cells. The 
supernatant was discarded after incubation for 6, 12, and 24 
h, then we added 100 μl RPMI 1640 medium and 10 μl CCK8 
(Wanleibio, Shenyang, China) to the cells and incubated them 
for 4 h at 37°C. The optical density (OD) value was measured 
on a microplate reader (Bio-Tek, USA) at 450 nm. The formu-
la for cell viability (%) was: cell viability (%)=OD in treatment 
group/OD in control group ×100%.

Immunofluorescence staining

To assess g-H2AX foci formation in TK6 cells, immunofluores-
cence staining assay was performed. Briefly, cells were treated 
with lead acetate (0, 120, 240, and 480 μM) for 6, 12, and 24 h. 
The cells treated with 100 μM H2O2 for 10 min were used as a 
positive control. Then, the cells were collected and fixed onto 
slides. After washing with PBS, the slides were incubated with 
0.1% tritonX-100 for 30 min at room temperature. The slides 
were washed with PBS and incubated with goat serum (Solarbio, 
China) for 15 min at room temperature. Thereafter, a prima-
ry polyclonal anti-H2AX antibody (1: 200, Proteintech, China) 
was added at 4°C overnight. Then, the slides were washed 3 
times with PBS and incubated with Cy3-conjugated goat an-
ti-rabbit secondary antibody (1: 200, Beyotime, China) for 1 h 
at room temperature. We used 4’,6-diamidino-2-phenylindole 
(DAPI) for nuclear counterstaining. The images were obtained 
under a fluorescence microscope (Zeiss, Germany) at a mag-
nification of 400×. The integral optical density of g-H2AX was 
analyzed by Image Pro-Plus software (Media Cybernetics, USA).

ELISA

The level of 8-OHdG in TK6 cells was assessed by ELISA assay. 
After being treated with lead acetate (0, 120, 240, and 480 μM) 
for 6, 12, and 24 h, the TK6 cells were lysed and subjected to 
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ELISA assay using a commercially available kit (USCN, China) 
according to the manufacturer’s instructions. The 8-OHdG con-
tent was calculated through a standard curve.

Measurement of intracellular ROS

The intracellular ROS production was evaluated by DCFH-DA 
fluorescent probe. Briefly, TK6 cells were seeded into 6-well 
plates at a density of 1×106 cells per well. After being treated 
with lead acetate (0, 120, 240, 480 μM) for 6, 12, and 24 h, 
the cells were washed with PBS, incubated with DMEM con-
taining DCFH-DA (1: 1000, Nanjing Jiancheng Bioengineering 
Institute, China) at 37°C for 20 min away from light. Then, the 
cells were washed with PBS and detected by flow cytometry.

MDA, GSH, GSSG, and SOD detections

TK6 cells were treated as detailed above and collected for fur-
ther tests. The levels of MDA, GSH, and GSSG and activity of 
SOD were determined by commercially-available detection kits 
(Nanjing Jiancheng Bioengineering Institute, China) following 
the manufacturer’s instructions.

Quantitative real-time polymerase chain reaction (qPCR)

The mRNA expressions of Nrf2, HO-1, and NQO1 in TK6 cells 
were assessed by qPCR. Total RNAs were extracted using the 
RNApure quick extraction kit (Bio Teke, China). Then, the RNAs 
were reversed transcribed into cDNA using Super M-MLV reverse 
transcriptase (Bio Teke, China). SYBR Green quantitative PCR 
was performed using 2×Power Taq PCR MasterMix (Bio Teke, 
China) on an ExicyclerTM 96 Real-Time Quantitative Thermal 
Block (Bioneer, South Korea). The primer sequences are listed 
in Table 1. b-actin was used as an internal control. The rela-
tive expressions of genes were analyzed by the 2–DDCT method.

DNA extraction

TK6 cells were treated with various concentrations of lead ac-
etate (0, 120, 240, and 480 μM) for 6, 12, and 24 h, and then 
the DNA from TK6 cells was extracted using the TIANamp 
Genomic DNA Kit (TIANGEN, China) according to the manufac-
turer’s instructions. To evaluate the concentration and purity 
of the extracted DNA, the OD260/OD280 ratio was detected 
by use of a NanoDrop ND-2000 ultramicrospectrophotome-
ter (Thermo, USA).

Methylation-specific PCR (MS-PCR)

The methylation status of XRCC1, hOGG-1, BRCA1, and XPD 
was detected by MS-PCR. Briefly, 500 ng genomic DNA was 
modified with sodium bisulfite using the EZ DNA methylation 
kit (Zymo, USA) following the manufacturer’s instructions. The 

methylation PCR primers were designed using the MethPrimer 
online tool and synthesized by Sangon Biotech Company, 
Limited (Shanghai, China). The primers sequences are list-
ed in Table 2. The MS-PCR was carried out using 2×Taq PCR 
MasterMix (BioTek, China). The thermocycling conditions were: 
denaturation at 95°C for 10 s, annealing at 55°C for 20 s, and 
extension at 72°C for 30 s, for 40 cycles. The MS-PCR products 
were subjected to 1.5% agarose gel electrophoresis. The MS-
PCR results were also quantitatively analyzed by 2–DDCt method.

Name Sequence (5’-3’) Length

Nrf2 F GTCAGCGACGGAAAGAGTA 19

Nrf2 R ACCTGGGAGTAGTTGGCA 18

NQO1 F GCCGAGTCTGTTCTGGCTTAT 21

NQO1 R TGGCAGCGTAAGTGTAAGCA 20

HO-1 F CTCCGATGGGTCCTTACACTC 21

HO-1 R CATAGGCTCCTTCCTCCTTTC 21

b-actin F CTTAGTTGCGTTACACCCTTTCTTG 25

b-actin R CTGTCACCTTCACCGTTCCAGTTT 24

Table 1. Oligonucleotide primer sets for qPCR.

Name Sequence (5’-3’) Length

hOGG-1(M) F CGTTTATAGGTTTTGGGGGC 20

hOGG-1(M) R CATACCTCGCCCTTTACGAA 20

hOGG-1(U)F GTGTTTATAGGTTTTGGGGGT 21

hOGG-1(U) R ACATACCTCACCCTTTACAAA 21

XRCC1(M)F GAGATTTGTTAATTTTTTTCGC 22

XRCC1(M)R AAACGTAAACGACTACGCTAA 21

XRCC1(U)F AAAGAGATTTGTTAATTTTTTTTGT 25

XRCC1(U)R CAAACATAAACAACTACACTAAAC 24

XPD(M)F GACGTTTTTCGTATCGTTTTATTC 24

XPD(M)R AAACCATTAACTAACCTACCCGTC 24

XPD(U)F ATGTTTTTTGTATTGTTTTATTTGA 25

XPD(U)R AACCATTAACTAACCTACCCATC 23

BRCA1(M)F TCGTGGTAACGGAAAAGCGC 20

BRCA1(M)R AAATCTCAACGAACTCACGCCG 22

BRCA1(U)F TTGTGGTAATGGAAAAGTGT 20

BRCA1(U)R AAATCTCAACAAACTCACACCA 22

Table 2. Oligonucleotide primer sets for MS-PCR.

M – methylation; U – unmethylation; F – forward; R – reverse.
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Western blot analysis

The protein levels in TK6 cells were assessed by Western blot 
assay. Briefly, TK6 cells from different treatment groups were 
lysed in RIPA Lysis Buffer (Wanleibio, China). Then, the pro-
tein concentration was determined using the BCA Protein 
Quantitation Kit (Wanleibio, China). Thereafter, 40 μg pro-
tein samples were separated on polypropylene acyl amine gel 
electrophoresis (PAGE), transferred to polyvinylidene difluo-
ride (PVDF) membranes, and blocked by 5% skim milk for 1 h 
at room temperature. Then, the membranes were incubated 
with primary antibodies Nrf2 (1: 500, Sangon, China), HO-1 
(1: 500, Wanleibio, China), NQO1 (1: 500, Wanleibio, China), 
XRCC1 (1: 500, Sangon, China), hOGG1 (1: 500, Sangon, China), 
BRCA1 (1: 500, Sangon, China), and XPD (1: 500, Sangon, China) 
at 4°C overnight. After incubation with the corresponding HRP-
conjugated secondary antibodies (Wanleibio, China) at 37°C 
for 45 min, the bands were visualized by enhanced chemilu-
minescence (ECL) reagent.

Statistical analysis

All experimental data are shown as mean ± standard deviation 
(SD). One-way ANOVA was performed to compare differenc-
es among multiple groups using GraphPad Prism 5 software 
followed by Bonferroni’s multiple comparison test. Statistical 
differences were considered significant when p-value were 
less than 0.05.

Results

Effect of lead exposure on DNA damage of human TK6 
cells

Firstly, the cytotoxicity of lead was evaluated in human TK6 
cells by CCK8 assay. As shown in Figure 1A, cell viability was 
obviously inhibited by lead exposure in a concentration- and 
time-dependent manner. Moreover, DNA damage was assessed 
by immunofluorescence staining of g-H2AX. The results showed 
that g-H2AX foci formation was significantly promoted in TK6 
cells with increased dosage or lead exposure time extension 
(Figure 1B). The integrated optical density of g-H2AX-positive 
TK6 cells was concentration- or time-dependently increased 
by lead exposure (Figure 1C). The TK6 cells treated with H2O2 
were used as positive control.

Effect of lead exposure on oxidative stress injury in 
human TK6 cells

To evaluate the DNA oxidative damage, the 8-OHdG level in 
TK6 cells after exposure to lead was detected by ELISA as-
say. As presented in Figure 2A, there was a concentration- or 

time-dependent increase in 8-OHdG level in TK6 cells after ex-
posure to lead. Subsequently, the ROS level in TK6 cells was 
assessed by flow cytometry. The results suggested that the 
ROS level was remarkably increased by lead exposure in TK6 
cells (Figure 2B, 2C). Moreover, more oxidative stress markers 
or enzyme were investigated. As shown in Figure 2D–2G, the 
levels of MDA and GSSG were enhanced, while the level of GSH 
and activity of SOD were decreased in human TK6 cells after 
exposure to different concentrations of lead.

Effect of lead exposure on Nrf2-ARE signaling pathway in 
human TK6 cells

The Nrf2-ARE signaling pathway plays important roles in the 
regulation of cellular redox status [21], so we further evaluated 
the effect of lead exposure on the Nrf2-ARE signaling pathway. 
As shown in Figure 3A–3C, the mRNA expressions of Nrf2 and 
NQO1 were upregulated by lead exposure in a concentration- 
and time-dependant manner. The HO-1 mRNA expression first 
increased, then declined with the increase of lead concentra-
tion. Protein levels of Nrf2, HO-1, and NQO1 were also deter-
mined by Western blot assay and are shown in Figure 3D. The 
cytoplasmic Nrf2 level was downregulated, while the nucle-
ar Nrf2 and NQO1 levels were upregulated by lead exposure 
with the extension of time. The protein level of HO-1 first in-
creased, then decreased, which was consistent with the change 
in HO-1 mRNA expression.

Effect of lead exposure on promoter methylation of DNA 
repair genes

The methylation status of DNA repair genes was assessed 
by methylation-specific PCR. As shown in Figure 4A–4D, the 
methylation levels of XRCC1, hOGG-1, BRCA1, and XPD were 
significantly enhanced, whereas their unmethylation levels 
were obviously decreased with increasing time and concen-
tration. Promoter methylation has been confirmed to repress 
gene transcription without changing the sequence, so we fur-
ther assessed the protein levels of XRCC1, hOGG-1, BRCA1, 
and XPD. The results showed that lead exposure resulted in 
remarkable decreases in the protein levels of XRCC1 at 12 h; 
hOGG-1 at 6, 12, and 24 h; BRCA1 at 12 and 24 h; and XPD at 
6 and 12 h in TK6 cells after exposure to lead.

Discussion

Genotoxicity is an important biological event in the processes 
of mutagenesis, teratogenesis [22], and carcinogenesis [23], 
which not only causes harm to parental health, but also to 
their offspring. This is the first study that observed the geno-
toxicity of lead in human TK6 cells and elucidated its poten-
tial molecular mechanisms. It has been reported that lead can 

4298
Indexed in:  [Current Contents/Clinical Medicine]  [SCI Expanded]  [ISI Alerting System]   
[ISI Journals Master List]  [Index Medicus/MEDLINE]  [EMBASE/Excerpta Medica]   
[Chemical Abstracts/CAS]

Liu X. et al.: 
Lead induces genotoxicity in human TK6 cells

© Med Sci Monit, 2018; 24: 4295-4304
LAB/IN VITRO RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



induce genotoxicity in various species, including plants [24], 
humans [25], and polychaetes [26]. Unlike previous research, 
our study may provide a direct theoretical basis for possible 
prevention and control strategies for human exposure to lead.

The DNA double-strand breaks (DSBs) of eukaryotic cells 
can trigger the phosphorylation of histone H2AX, forming 
g-H2AX [27]. There is a positive correlation between DSBs and 
g-H2AX and g-H2AX is an acknowledged marker for DSBs. The 
quantification of g-H2AX has been widely used for evaluation 
of genotoxicity in many studies [28–30]. In addition, g-H2AX is 
a DSB biomarker that reveals different types of DNA damage, 
notably DNA adducts and oxidative DNA lesions [31,32]. A re-
cent study by Kopp et al. investigated the genotoxicity of 11 
heavy metals, including lead, by g-H2AX assay [31]; the g-H2AX 
foci formation was detected by immunofluorescence staining. 
The results showed that lead exposure caused a time- and 

concentration-dependant increase in g-H2AX foci formation 
in TK6 cells, which suggested that lead induced obvious DSBs 
and had potential genotoxicity to humans.

Oxidative stress damage can be triggered by lead exposure, 
and DNA damage is an important consequence of oxidative 
stress. Therefore, we further evaluated the role of lead in oxi-
dative stress damage in TK6 cells. 8-OHdG is a molecular mark-
er for DNA oxidative damage [33]. It has been reported that 
8-OHdG concentration in the urine of people occupationally 
exposed to lead was significantly increased [34]. According to 
our results, the 8-OHdG level in TK6 cells was also enhanced 
by lead exposure, suggesting increased DNA oxidative dam-
age. Furthermore, we assessed the levels of more oxidative 
stress-related markers or enzymes. ROS, largely produced by 
the stimulated cells, destroys the balance between oxidative 
and anti-oxidative systems and finally causes oxidative stress 
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Figure 3. �Effect of lead exposure on Nrf2-ARE signaling pathway in TK6 cells. (A–C) The mRNA expressions of Nrf2, HO-1, and NQO1 
in TK6 cells were detected by qPCR assay. (D) The protein levels of cytoplasmic Nrf2, nuclear Nrf2, HO-1, and NQO1 in 
TK6 cells were assessed by Western blot assay. b-actin and histone H3 served as loading controls. (E–H) The quantitative 
analysis of the gray-scale values of the bands. The results are presented as mean ±SD (n=3). * P<0.05, ** P<0.01, versus the 
corresponding cells treated with 0 μM Pb(Ac)2.
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Figure 4. �Effect of lead exposure on promoter methylation of DNA repair genes. (A–D) The methylation and nonmethylation levels 
of XRCC1, hOGG-1, BRCA1, and XPD in TK6 cells were assessed by methylation-specific PCR (MS-PCR) at the indicated time 
points and concentrations. (E) The protein levels of XRCC1, hOGG-1, BRCA1, and XPD in TK6 cells were detected by Western 
blot assay. Histone H3 was used as a loading control. (F–I) The quantitative analysis of the gray-scale values of the bands. 
The results are presented as mean ±SD (n=3). * P<0.05, ** P<0.01, *** P<0.001, versus the corresponding cells treated with 0 
μM Pb(Ac)2.
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injury [35]. It is well documented that ROS can attack DNA and 
causes DNA damage [36]. MDA is a product of lipid peroxida-
tion, which can reflect the degree of lipid peroxidation. GSH 
is an important antioxidant in the body, while GSSG is the ox-
idized state of GSH. The GSH level drop and the GSSG level ris-
es when the body is challenged by oxidative stress. Therefore, 
the ratio of GSH/GSSG is a sensible index of oxidative stress 
state [37]. SOD is a key enzyme that can effectively scavenge 
superoxide free radicals and protect the body from oxidative 
stress damage [38]. In the present study, the ROS, MDA, and 
GSSG levels were increased and GSH level and SOD activi-
ty were decreased in TK6 cells after exposure to lead. These 

results suggest that oxidative stress is involved in lead-induced 
genotoxicity in TK6 cells.

To further evaluate the mechanisms of oxidative stress in lead-
induced genotoxicity, we focused on the Nrf2-ARE signaling 
pathway. Nrf2 is an important transcription factor that regu-
lates oxidative stress reaction and maintains the redox bal-
ance [39]. Under physiological conditions, Nrf2 is inactivated 
by binding with Kelch-like ECH-associated protein1 (Keap1) 
in the cytoplasm. Upon cellular stress, Nrf2 is separated from 
Keap1, translocates into the nucleus, and binds with antiox-
idant response element (ARE) to promote the expressions of 
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its target antioxidant genes [40]. HO-1 and NQO1 are 2 repre-
sentative target genes of the Nrf2-ARE pathway, which prevent 
oxidative stress injury [41]. In the present study, lead exposure 
promoted the transcriptional activation of Nrf2 and increased 
its target genes HO-1 and NQO1 expressions in TK6 cells.

DNA repair genes play pivotal roles in DNA damage repair 
processes, and their expressions are negatively associated 
with the promoter methylation level [42]. DNA methylation is 
an important part of epigenetics that has been discovered to 
produce lasting changes in gene expression without altering 
the DNA sequence. It has been found that the DNA methyla-
tion can affect DNA oxidative damage repair [43]. In the pres-
ent study, we assessed the DNA methylation of 4 DNA repair 
genes: XRCC1, hOGG-1, BRCA1, and XPD. XRCC1 is an impor-
tant component of the base excision repair and participates in 
the maintenance of genome integrity and stability [44]. hOGG-
1 can specifically inhibit 8-OHdG level, which is a key enzyme 
that repairs DNA oxidative injury [45]. BRCA1, as a tumor sup-
pressor gene, plays important roles in DNA damage repair [46]. 
XPD is a ATP-dependent DNA helicase, which takes part in nu-
cleotide excision repair [47]. According to our results, the meth-
ylation levels of XRCC1, hOGG-1, BRCA1, and XPD were signif-
icantly increased in TK6 cells at 6, 12, and 24 h after exposure 
to lead. However, their protein levels were not decreased ac-
cordingly at any time points. This discrepancy may be due to 
several causes. First, protein expression is a complex process 

that is regulated by multiple factors, not limited to DNA meth-
ylation. In addition, there is a time difference in the process-
es of DNA methylation and corresponding protein expression.

The limitations of this study include the following. First, this 
study was carried out on only 1 human cell line, and the ob-
tained results need to be verified in multiple human cell lines. 
Second, the role of these DNA repair proteins (XRCC1, hOGG-1, 
BRCA1, and XPD) in lead-induced genotoxicity is unclear and 
needs to be elucidated in the future.

Conclusions

Taken together, our results indicate that lead exposure de-
creased the cell viability, induced oxidative stress-mediat-
ed DNA damage via the Nrf2-ARE signaling pathway, and de-
creased the expressions of DNA repair genes via promoting 
their promoter methylation in human TK6 cells. Our study elu-
cidates the genotoxic mechanisms of lead in human TK6 cells 
for the first time, which provides more direct and reliable the-
oretical evidence for the clinical prevention and treatment of 
human lead poisoning.
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