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Abstract

Background: We present the algorithm PFClust (Parameter Free Clustering), which is able automatically to cluster
data and identify a suitable number of clusters to group them into without requiring any parameters to be
specified by the user. The algorithm partitions a dataset into a number of clusters that share some common
attributes, such as their minimum expectation value and variance of intra-cluster similarity. A set of n objects can be
clustered into any number of clusters from one to n, and there are many different hierarchical and partitional,
agglomerative and divisive, clustering methodologies available that can be used to do this. Nonetheless,
automatically determining the number of clusters present in a dataset constitutes a significant challenge for
clustering algorithms. Identifying a putative optimum number of clusters to group the objects into involves
computing and evaluating a range of clusterings with different numbers of clusters. However, there is no agreed or
unique definition of optimum in this context. Thus, we test PFClust on datasets for which an external gold standard
of ‘correct’ cluster definitions exists, noting that this division into clusters may be suboptimal according to other
reasonable criteria. PFClust is heuristic in the sense that it cannot be described in terms of optimising any single
simply-expressed metric over the space of possible clusterings.

Results: We validate PFClust firstly with reference to a number of synthetic datasets consisting of 2D vectors,
showing that its clustering performance is at least equal to that of six other leading methodologies – even though
five of the other methods are told in advance how many clusters to use. We also demonstrate the ability of PFClust
to classify the three dimensional structures of protein domains, using a set of folds taken from the structural
bioinformatics database CATH.

Conclusions: We show that PFClust is able to cluster the test datasets a little better, on average, than any of the
other algorithms, and furthermore is able to do this without the need to specify any external parameters. Results on
the synthetic datasets demonstrate that PFClust generates meaningful clusters, while our algorithm also shows
excellent agreement with the correct assignments for a dataset extracted from the CATH part-manually curated
classification of protein domain structures.
Background
In pattern recognition, data analysis is used for
predicting the behaviour of an unseen test dataset.
Amongst problems of this kind, two different types can
be clearly distinguished. The first is supervised learning
or classification, where a labelled training dataset with
known categories is involved. The second kind is
unsupervised learning or clustering, where no prior
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reproduction in any medium, provided the or
information is available for grouping the dataset. The
objective of a clustering algorithm is to partition the
given data into mutually exclusive and meaningful [1]
clusters; this can provide a better understanding of the
natural structure of the data. Semi-supervised [2] classi-
fication, which combines strategies from both supervised
and unsupervised methods, has also grabbed attention
in various fields of research as it requires less human ef-
fort and gives better accuracy [3] than unsupervised
learning. In this paper, we focus our attention on the
challenges faced by clustering algorithms [4,5].
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There are numerous clustering algorithms discussed in
the literature, traditionally clearly distinguished as either
hierarchical [6] or partitional [7]. Hierarchical methods
group the objects together layer by layer, based on the
closeness of the data points as measured by suitable
similarity or distance metrics. Hierarchical clustering se-
quentially partitions the dataset, either by successively
dividing an initial single cluster in divisive methods, or
by joining together initially unlinked objects in agglom-
erative algorithms. In a hierarchical method, once two
objects are clustered together they remain together at all
subsequent levels of the scheme with fewer clusters.
Contrastingly, partitional clustering algorithms, such as
k-means, do not have a layer by layer structure and ob-
jects may sometimes move from one cluster to another.
The k-means method iteratively assigns each point to

the cluster whose centroid is closest to it, recalculates
the cluster centroids, and reassigns the points. This
process continues until the assignments no longer
change at each iteration. k-means tends to generate ap-
proximately equally sized clusters, minimising intra-
cluster distances; however, its preference for globular
clusters and its failure to reproduce clusters of complex
shape are limitations [5].

Determining the number of clusters
Automatically determining the number of clusters is a
major problem in clustering. A set of n objects can be
clustered into any number k of clusters 1 ≤ k ≤ n by any
of the methods we have discussed. Identifying the opti-
mal number of clusters involves computing a range of
different numbers of clusters k, with the objective of
finding the best value of k that gives the optimum clus-
tering. However, there is no agreed or unique definition
of optimum in this context. Using internal and external
validation measures as described in Handl et al. [5], one
could design a protocol for reaching a decision on the
best k. A gap statistic [8] addressed this issue by acting
as an internal validation measure, and has been applied
in bioinformatics [9]. Though in principle it is not hard
to design a workflow to find the best k, in practice this
is not commonly done. This is partly because there is no
consensus as to which of the many different possible
measures should be used to compare clusterings with
different numbers of clusters, a more difficult problem
than the comparison of clusterings with the same k. This
adds to the difficulty of choosing the best clustering
method for finding the structure of a novel dataset.

Validation
Validation [4,8] plays an important role in deciding the
number of clusters, as well as in assessing the perform-
ance of the clustering algorithm. Cluster validation is
designed to evaluate and compare clustering algorithms
by their ability to analyse a dataset. There are many
different validation measures. Internal measures like
Silhouette width [9] and Dunn Index [10,11] depend on
the inherent structure of the data [12]. External mea-
sures, such as the Rand Index [13] commonly used to
evaluate the noise in biological data, depend on com-
parison with an externally known gold standard classifi-
cation of the objects.
Here we propose a novel clustering algorithm, PFClust

(Parameter Free Clustering), suitable for use where no
prior information about the number of clusters is given.
As input, only similarity scores within the dataset are re-
quired, and evaluation of the clustering is part of the al-
gorithm. A previous study by Akoglu et al. [14] designed
a parameter free graph clustering algorithm to find co-
hesive clusters, PICS. They have shown the efficiency of
their method using real-world datasets including data
from YouTube and Twitter. Our method shares the
property of being parameter-free, but is aimed at classi-
fying objects rather than graphs.
As the availability of biological information acceler-

ates, it is necessary to find the natural structure or pat-
terns in data in order to understand biological questions.
In bioinformatics, grouping proteins based on sequence
[1] or structure is a very common task. Classification of
novel proteins [15] can be performed by using pattern
recognition approaches, built on the assumption that
some underlying characteristics are considered, while
clustering proteins into superfamilies and families. There
are numerous classification schemes for protein se-
quences including PIR-PSD [16], a freely available data-
base of protein sequence classification mostly applied for
functional annotation, and Pfam [17], a classification of
functional protein domains based on hidden Markov
models and multiple sequence alignments.
Extending these ideas to three-dimensional (3D) pro-

tein structure provides the interesting task of clustering
and classifying protein domain folds. During the early
1990s the Protein Data Bank (PDB) [18] held only a few
thousand 3D crystal structures, and several initiatives for
protein fold classification were proposed with CATH
[19] and SCOP [20] being the best known. These were
based on either manual curation (SCOP) or computer-
aided manual curation (CATH). Common to both ap-
proaches is that the human curator has the final word in
the classification decision. With the exponential growth
of the number of 3D high resolution structures depos-
ited in the PDB during the last decade [21], reaching
87,085 structures at the beginning of 2013, the rate-
limiting manual part of the curation process restricts
our capacity to understand the full structural diversity of
proteins. Hence it would be ideal if a fully automated
process could classify protein domains and cluster them
into structurally similar groups.



Figure 1 Visual representation of the algorithm. This figure
provides a visual representation of the algorithm as a number of
different steps (A to F).
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Methods
Here we describe a partitional algorithm that uses the
idea that each cluster can be represented as a non-
predetermined distribution of the intra-cluster similar-
ities of its members. The algorithm partitions a dataset
into a number of clusters that share some common attri-
butes, such as their minimum expectation value and
variance of intra-cluster similarity. It is an agglomerative
algorithm, meaning that it starts with separated objects
and progressively joins them together to form clusters.
PFClust is heuristic in the sense that it cannot be de-
scribed in terms of optimising any single simply-
expressed metric over the space of possible clusterings.
Nonetheless, we demonstrate that, over a number of val-
idations on test datasets, it produces clusterings that
closely reflect the structure of the test data, and outper-
forms many well established algorithms in this regard.
We have taken a number of design decisions to optimize
the algorithm with respect to time efficiency and result
stability.
Since we represent each cluster as the distribution of

the similarities between its members, we need to have a
clustering criterion in order to separate different clusters
and find the cluster structure. The criterion used in this
algorithm is the expectation value of the similarity distri-
bution between cluster members. In order to select a
suitable threshold, we will need a good approximation to
the distribution of mean intra-cluster similarities for all
possible clusterings. We can then select the most appro-
priate threshold value given an internal validation meas-
ure. The number of unique clusterings for a dataset with
n points when we do not know the number of clusters,
O(n), a priori is the Bell number:

o nð Þ ¼
Xn
k¼0

1
k!

Xk
j¼0

−1ð Þk−j k
j

� �
jn

� �

where k is the number of clusters, inclusive of single-
tons. This number grows rapidly with the number of
points in the dataset. Hence, instead of attempting an
exhaustive search of all possible clusterings, we perform
a random sampling, where we randomly decide the
number of clusters and randomly assign the initial distri-
bution of points amongst clusters. This sampling ap-
proach is necessary for efficiency, but introduces a
random element to the algorithm. In order to optimize
some of our design decisions for the algorithm, we have
internally validated using a synthetic dataset of 1500
two-dimensional (2D) vector points.

Algorithm
The clustering algorithm consists of two parts. The first
part is the randomization, and the second part incorpo-
rates both the threshold selection and the actual
clustering. Thus, in the first part (panel B of Figure 1),
20 thresholds are estimated (T1,…, T20) by a
randomization process. In the second part (panels C &
D of Figure 1), each threshold is used to cluster the data,
and the best threshold is selected. This whole process,
incorporating both randomization and threshold selec-
tion, is carried out four times (panel E of Figure 1). If
the four resulting clusterings do not agree, the algorithm
replaces the least successful of the four runs with a fresh
attempt and repeats until convergence. Figure 1 shows a
graphical representation of the clustering algorithm.

Threshold estimation
Given a dataset Ω = {α1,…,αn} with n members, the
threshold values are estimated by multiple random clus-
terings of the data. Firstly, a random number of clusters
k (where 1≤ k ≤ n) is chosen and each data point α is ini-
tially randomly placed in one of the clusters. Now let Xi

be the distribution of the similarities between the ele-
ments of cluster i. The mean intra-cluster similarity,
which is the expectation value of the distribution Xi, is
defined so as to exclude self-similarities and can be cal-
culated as:

E Xi½ � ¼ 1

ni
2

� �Xni
j¼2

Xj−1
q¼1

sαj;αq

where Xi is the ith cluster, ni is the number of members
of that cluster and sαj;αq is the similarity between
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elements αj and αq. In order to estimate an efficient
value for N, the number of randomizations used for
threshold estimation, we selected a dataset and simu-
lated the randomization process. We repeated this ten
times for a number of different values of N. Figure 2
shows that using a small number of randomizations
greatly affects the shape and sharpness of the distribu-
tion. However, increasing N greatly affects the execution
time of the algorithm, since the randomization is the
most expensive part of the calculation. Hence, as a com-
promise between accuracy and expense, we selected N =
1000 as the number of randomizations, since this is the
smallest number which gives an acceptably sharp distri-
bution of mean intra-cluster similarities. The intra-
cluster mean similarities, E[Xi], from every individual
cluster across the 1000 randomizations are collated into
a single distribution. From this distribution, we retrieve
20 threshold values from the 95% - 100% significance
levels, that is the 5% of the clusters with the highest
mean intra-cluster similarities. We select the ten values
corresponding to the following percentiles {95.00%,
97.50%, 99.00%, 99.14%, 99.29%, 99.43%, 99.57%, 99.71%,
99.86% and 100.00%} and ten further thresholds corre-
sponding to the second to eleventh highest values in the
distribution of intra-cluster similarities. Using this num-
ber of thresholds provides a way of reducing the random
element of our sampling.

Similarity-based clustering
Now, for each threshold value T, the dataset Ω is clus-
tered with a similarity-based clustering. We begin with
all elements separated and no clusters defined. The two
most similar elements in Ω are placed together to form
the first cluster. For each of the (n-2) remaining ele-
ments, we compute its average similarity E[X] to the el-
ements already in cluster 1, and we now identify the
element with the highest similarity. If this value is lar-
ger than T, the algorithm considers adding this most
similar element to the given cluster. The element is
added if and only if the element’s average similarity
compared to the members of that cluster is at least P%
of T and the overall E[X] of the cluster is also larger
than T. This process is repeated until no new element
can be added to the cluster without E[X] of the cluster
falling below T. At this stage, a new cluster is formed
from the two most similar remaining elements, pro-
vided that their similarity exceeds T. This process is
continued iteratively until all elements of Ω have been
clustered, or until the remaining elements cannot form a
cluster that has an expectation value of intra-cluster simi-
larity greater than T.
The P% of T cut-off was selected as a way to restrict

the intra-cluster variation of the similarities since, in a
very tight cluster, outlier members could be included
because, even if they are distant from the other cluster
members, the total E[X] could still be above T. In order
to estimate the value of P, we performed a number of ex-
periments on our dataset with different P values. Table 1
shows the results, from which we see that a value of P =
85% of T gives the optimal results with respect to the
Silhouette width as well as the number of clusters, with
multi-member clusters and singletons being shown
separately.
After the data are assigned to clusters, a final refine-

ment step is applied to all points that have an average
similarity score less than T when compared to the mem-
bers of the cluster they have been assigned to. Each such
point has its average similarity calculated with every
cluster and is assigned to the cluster to which it is most
similar (if this is not its original cluster, then the process
moves the point to a different cluster; this assignment to
a cluster is made even if the point’s average similarity to
the members of its new cluster is less than T).

Selecting the best threshold
For each of the 20 different T values, a clustering has
been obtained from the algorithm. For each of these
clusterings, the mean Silhouette width (averaged over
every point in the dataset) and the Dunn Index of the
clustering are computed. The Silhouette width is defined
for each element i as:

s ið Þ ¼ b ið Þ−a ið Þ
max a ið Þ; b ið Þf g

where a(i) is the average dissimilarity, where dissimilar-
ity is 1-similarity, of element i with all the other ele-
ments of the same cluster and b(i) the average
dissimilarity of element i to all the members of the clos-
est neighbouring cluster. In order to take singletons into
account, a negative score (−1) is given to each singleton
point in the proposed clustering. The Dunn Index is de-
fined as:

DIm ¼ min
1≤i≤m

min
1≤j≤m;j≠i

δ Ci;Cj
� �
max
1≤k≤m

Δk

8<
:

9=
;

8<
:

9=
;∀i; j; k

where δ(Ci,Cj) is the inter-cluster distance between the
centres of clusters i and j, and max 1 ≤ k ≤mΔk is the max-
imum cluster size in the dataset, where cluster size is de-
fined as the mean distance between all members of the
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Figure 2 Distribution of the E[X] according to the number of randomizations N. For each value of N (N = 10, N = 102, N = 103, N = 104 &
N = 105), the randomization process was run independently ten times and the distribution of the E[X] was plotted.
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Table 1 Comparison of different values of P

P Value Clusters Singletons Silhouette width Avg Std

T 30 6 0.1719 1.1740

0.95 × T 10 4 0.5240 4.2715

0.90 × T 10 1 0.5650 4.3176

0.85 × T 10 0 0.5961 4.6604

0.80 × T 10 0 0.5955 4.8175

0.75 × T 10 0 0.5955 4.8175

The table summarizes the performance of the different P values for the
threshold inclusion rule. The numbers of multi-member clusters and singletons
are given separately, so that the total numbers of clusters at each P value are
36, 14, 11, 10, 10, and 10, respectively. The Silhouette width and the average
of the standard deviations of the distributions of intra-cluster similarities in
each cluster are also shown.
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cluster and the cluster centroid. The cluster centroid is
the element with the maximum similarity to the other
members of the cluster. The Silhouette width is the main
factor used in deciding which threshold produces the
best clustering, and the Dunn Index is used only as a
tie-breaker to decide cases where two or more cluster-
ings have the same Silhouette width.
Convergence
As mentioned above, the algorithm has a random sam-
pling aspect. In order to increase the probability of ul-
timately finding the best possible clustering, we choose
to repeat the process a number of times. In order to de-
cide a number of repetitions that is time efficient and re-
duces the probability of runs (of the whole multi-
repetition procedure) generating different outputs, we
performed a single clustering experiment on our dataset.
We ran the algorithm (excluding repetitions) 100 times
using a dataset of 1500 2D vectors and, considering the
event A as “seeing the clustering result with the max-
imum Silhouette width”, we found p(A) = 76%. There-
fore, if we run the algorithm only once, we have a 24%
probability of not finding the best solution. Ideally, we
would like to have a very small probability of such an
event. Using four repetitions reduces that probability to
0.3%, which is sufficiently small for our needs. Hence,
the whole process is repeated four times and the four
different clusterings are retrieved and compared. If all
four runs give the same clustering, the algorithm is said
to have converged and stops. If not, for each of the six
different pairs of clusterings chosen from the four clus-
terings made, a Rand Index between a pair of clusters is
calculated as:

Rand Index ¼ aþ b
aþ bþ cþ d
where α is the number of cases where two elements are
members of the same cluster in both clusterings, b is the
number of cases where two elements are members of
different clusters in both clusterings, c is the number of
cases where a pair of elements are in the same cluster
for the first clustering and in different for the second
and d is the number of cases where a pair of elements
are members of different clusters for the first clustering
and members of the same cluster for the second cluster-
ing. Using all six different pairs of clusterings we calcu-
late the average Rand Index.
We use the Rand Index because it is a widely ac-

cepted measure of concordance between different clus-
terings (here, the four clusterings produced by the four
runs) and not as a maximization metric compared to
some original classification. If the average Rand Index
is high (>0.99), this means that most of the runs report
near-identical clusterings with no significant differ-
ences. Hence, this is enough for the algorithm to con-
verge and report the clustering with the highest
Silhouette width. As mentioned above we want to be
very confident in the resulting clusters, therefore a very
strict average Rand Index of 0.99 (which allows for a
limited number of differences in assignment of border-
line cases) is applied as a cut-off. In the case of an aver-
age Rand Index less than 0.99, we consider that we
have found significantly different clusterings. Then, an
instance of the clustering with the lowest (or equal
lowest) Silhouette width is removed, even if this out-
come has been found two or three times, and another
randomization is done. This procedure is repeated until
convergence.

Pseudocode

I. Do four times:

Stage 1: Calculate D (the distribution of E[X]’s).
1. Do the specified “randomization” 1000 times:

i. Randomly select a number of clusters k.
ii. Randomly assign each data point α to a

cluster c.
iii. ∀ clusters c, calculate E[X] for the pairwise

point-point similarities within c and include
this value of E[X] in D.

2. For each of the ten percentiles {95.00%, 97.50%,
99.00%, 99.14%, 99.29%, 99.43%, 99.57%, 99.71%,
99.86% and 100.00%} of the distribution D of
intra-cluster similarities, and for ten further
thresholds corresponding to the second to
eleventh highest values, retrieve a threshold
value T.
Stage 1A: Clustering
i. While any α in the dataset remains

unclustered:



Figure 3 C
frame A th
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a. Join the two most similar currently
unclustered elements to form a new cluster,
provided criteria in b. are met.

b. Calculate average similarity of each
currently unclustered data point to the
current cluster and keep adding the most
similar available data point as a member as
long as both:
– E[X] of the cluster > T, and.
A)

C)

E)

G)

omparison of different clustering algorithms. The 1500 2D vector dataset clu
e original gold standard clustering is shown. In frames B,C,D,E,F,G and H, the pro
– the average similarity of the new
member to the existing members of the
current cluster > 0.85×T.
Stage 1B: Clustering Refinement
ii. ∀ α ∈ any c, retrieve its average similarity with

all the members of its current cluster. If this
average similarity < T then:
a. If its average similarity with elements of any

other cluster is more than that with the
B)

D)

F)

H)

stered with all seven different clustering algorithms. In
posed clusterings by each method are given.
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parent cluster, move the point α to this
other cluster.

iii. Measure the Silhouette width, averaged over
all points with singletons each contributing −1,
and the Dunn Index for the final clustering for
this T value.

3. Return the T value and resultant clustering with
the best Silhouette width as the result of the run;
in the event of a tie, use the Dunn Index to
decide.
II. Repeat until Convergence:
Stage 2: Convergence (measure the Rand Index bet-

ween each of the four runs)
1. If average Rand Index amongst all 6 pairs taken

from the 4 clusterings ≥ 0.99, return the
clustering with the best Silhouette width as the
final result (algorithm converged).

2. If this average Rand Index < 0.99, the algorithm
has not converged and the clustering with the
lowest Silhouette width is discarded and we repeat
Stage 1 a single time to generate a new clustering.

Validation
In order to validate PFClust, we used a number of syn-
thetic 2D datasets. The first dataset consisted of 3000
2D vectors distributed over 20 groups; for each of
these groups, the probability density function falls off
with distance from its centre according to a normal
distribution. Hence the groups are approximately cir-
cular. Each group corresponds to the external gold
standard definition of a cluster. We also used subsets
of 300 and 450 2D vectors, respectively composed of
two and three out of the 20 groups in the 3000 vector
dataset. The second dataset consisted of 5000 2D vec-
tors distributed over 15 groups, which vary in shape.
Finally, the third dataset consisted of 928 2D vectors
distributed over 20 clusters, which all have different
e 2 Comparison of the clustering methods based on pop

ods

300 450 1500 3000

rchy 0.883 0.942 0.896 0.920

s 0.947 0.973 0.836 0.820

0.960 0.980 0.952 0.948

ans 0.960 0.980 0.958 0.966

odel 0.960 0.980 0.959 0.911

st 0.960 1.000 0.958 0.949

AN 0.973 0.973 0.930 0.921

ble summarizes the comparison between PFClust and the other six clustering
d in question and the original gold standard clusters.
member densities. In each dataset, the centres are
chosen such that there is no significant overlap between
groups, though a handful of outlier points appear within
an apparently ‘wrong’ group. We performed three different
experiments based on the first dataset, in order to illus-
trate that the method was not finely tuned for a specific
number of clusters or cluster structure. We define simila-
rity as one minus the normalized (such that the most
distant point is one unit from the origin of the coordinate
system) Euclidean distance between two points. We would
therefore expect PFClust to perform optimally where the
clusters are approximately circular.
On all our datasets, we run PFClust as well as

six other current state-of-the-art algorithms. These are
(i) the hierarchical clustering algorithm Hierarchy [6];
(ii) the hierarchical AGlomerative NESting (Agnes) [22],
(iii) the partitional k-means clustering algorithm [7], (iv)
Clustering Large Applications (Clara) [23], which
is based on repeated k-mediods clustering of samples,
(v) Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases (DBSCAN) [24] and (vi) Model-
Based Clustering (Mix Model) [25]. We used available
implementations of each of these methods in the statis-
tical software suite R, [26] the relevant packages are
listed in Additional file 1: Table S1. These algorithms
cannot all be compared on the ability to find the opti-
mal number of clusters. Only PFClust and DBSCAN
amongst the methods considered here can do this, and
in fact the latter algorithm requires two parameters to
be optimised before it decides the number of clusters.
Hence, for the five other methods, we will use the exter-
nally defined ‘correct’ number of clusters (this definition
including singletons in the count of clusters) as a given
parameter and compare how well each algorithm clus-
ters the data compared to the original classification. In
order to compare the different clustering approaches,
we selected the Rand Index as a measure of agreement
between the externally known ‘correct’ clustering and
that produced by a clustering algorithm.
ular metrics

Rand index

5000 CATH Density Average

0.981 0.964 0.928 0.931

0.976 0.906 0.975 0.919

0.987 1.000 0.956 0.969

0.986 0.738 0.901 0.927

0.990 1.000 0.977 0.968

0.986 0.996 0.976 0.975

0.978 0.977 0.688 0.920

algorithms based on the Rand Index between the clustering predicted by the



Mavridis et al. BMC Bioinformatics 2013, 14:213 Page 9 of 20
http://www.biomedcentral.com/1471-2105/14/213
We ran k-means and Clara 100 times each on every
dataset and have selected as the final result for each
algorithm the one with the best Silhouette width. For
the epsilon parameter of DBSCAN, the maximum per-
mitted distance between a point and its closest intra-
cluster neighbour, we examined all values between 0 and 1
with a step size of 0.001. We also iterated the min-points
parameter, the minimum number of members allowed in
A) Original B) Hierarchy

E) k−means F) Mix Model

I) Original J) Hierarchy

M) k−means N) Mix Model

Figure 4 In frames A (300 2D vectors) and I (450 2D vectors), two of t
clusterings are shown. In frames B, C, D, E, F, G and H, the proposed clu
frames J, K, L, M, N, O and P, the proposed clusterings by each method ar
a valid cluster, using all integer values from 1 to 100. This
resulted in 105 clustering outputs, from which the one
with the maximum Silhouette width was selected.
As an addendum to the main work, we tested the use of

the Silhouette width as a characteristic measure from which
to decide the correct number of clusters. We ran the deter-
ministic methods once each. We also ran the stochastic
Clara and k-means algorithms 100 times each for every
C) Agnes D) Clara

G) PFClust H) DBSCAN

K) Agnes L) Clara

O) PFClust P) DBSCAN

he datasets that were used and their original gold standard
sterings by each method for the 300 2D vector dataset are given. In
e shown for the 450 2D vector dataset.
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number of clusters, k, between 2 and 50. The run with the
best Silhouette width for a given algorithm was selected, thus
deciding the number of clusters to report.

Protein fold clustering using polar Fourier expansions
A shape-density superposition algorithm based on Spher-
ical Polar Fourier (SPF) basis functions has recently been
Figure 5 Comparison of different clustering algorithms. The 3000 2D v
For DBSCAN, the open circles denote singletons. In frame A the original go
proposed clusterings by each method are given.
published [27,28], in which protein shapes are represented
as 3D density functions expressed as expansions of ortho-
normal basis functions:

ρ r; θ;φð Þ ¼
XN
nlm

αnlmRnl rð Þylm θ;φð Þ
ector dataset clustered with all seven different clustering algorithms.
ld standard clustering is shown. In frames B,C,D,E,F,G and H, the
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where ylm (θ, φ) are the real spherical harmonics, N is the
order of the highest polynomial power of the expansion,
Rnl (r) are radial functions, and αnlm are the expansion co-
efficients which are calculated as described previously [29].
Mavridis et al. proposed in the same paper a novel
structure-based indexing for existing classification schemes
such as CATH [19] and SCOP [20]. Their proposed
Figure 6 Comparison of different clustering algorithms. The 5000 2D ve
DBSCAN, the open circles denote singletons. In frame A the original gold standa
by each method are given.
consensus algorithm works well for only some of the cases
it was tested on, because of the structural diversity of a
number of protein domains assigned to the same super-
families [28]. Hence, methods such as SPF would greatly
benefit from an automated clustering algorithm, such as
PFClust, which could identify the structure of a dataset
without any prior knowledge or parameter tuning.
ctor dataset clustered with all seven different clustering algorithms. For
rd clustering is shown. In frames B,C,D,E,F,G and H, the proposed clusterings
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In order to illustrate that PFClust could be used to
provide such a clustering using the SPF descriptors, we
performed the following study. We randomly selected 11
CATH superfamilies, which had in total 224 non-
redundant representative structures, and used the SPF
descriptors to calculate the all-against-all similarity
matrix of these protein domains. We then used PFClust
Figure 7 Comparison of different clustering algorithms. The 928 2D ve
different clustering algorithms. For DBSCAN, the open circles denote single
In frames B,C,D,E,F,G and H, the proposed clusterings by each method are
to cluster the protein domain structures based on these
similarities.

Results and discussion
Original dataset
In this section, we present the resulting clusters from
the 1500 2D vector dataset that was used for the general
ctor dataset of 20 clusters of varying density, as clustered by the seven
tons. In frame A the original gold standard clustering is shown.
given.
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parameter set up of the algorithm. Figure 3 shows the
results of each method on the 1500 2D vector dataset;
the mismatched points for each method are shown in
Additional file 1: Figure S1. From the Rand Index re-
sults in Table 2, we see that Agnes has the lowest
(worst) score; that is mainly because Agnes joins two
groups into a single cluster (green and yellow). Fur-
thermore, we have a singleton as one cluster (yellow
point). Rather better levels of performance are
achieved by the Hierarchy and DBSCAN algorithms.
However, Hierarchy has trouble in correctly assigning
a number of the boundary cases for some pairs of clus-
ters (particularly around the boundary between the or-
ange and cyan clusters, and also that between yellow
and green) and DBSCAN assigns a large number of
points as singletons. Finally, the best performing algo-
rithms are PFClust, Clara, k-means and Mix Model,
which correctly identify all clusters and boundaries.
Although the Rand Indices for these methods are very
good, they fail to reproduce perfectly the original ‘cor-
rect’ classification because the original dataset has a
number of outlier points that lie closer to the centres
of different groups, such as purple elements in the
cyan and orange groups. So, for example, a purple
element is so coloured because in the original grouping
it was generated from the normal distribution used to
define the purple cluster. However, it is located signifi-
cantly closer to the centre of the cyan cluster, and thus
we believe that a rational classifier should consider it
cyan. Nonetheless, the gold standard we are using
means that we count the rational classification as
incorrect.
Table 3 Supervised and Unsupervised timings for PFClust

Dataset Rand
index

Randomizations Clustering Total execution
time (runs)

CATH
folds

0.996 4.3 s 1.8 s 25 s

300 2D
Vectors

0.960 8 s 2 s 40 s

450 2D
Vectors

1.000 25 s 8 s 2 m 38 s

1500 2D
Vectors

0.958 13 m 22 s 5 m 47s 1 h 22 m

3000 2D
Vectors

0.949 2 h 24 m 27 s 1 h 14 m 38 s 12 h

5000 2D
Vectors

0.986 11 h 35 m 30 s 5 h 20 m 20 s 81 h 50 m 30 s

Density
Dataset

0.976 6 m 20 s 2 m 15 s 36 m

1500
Supervised

0.958 - 1 m 50 s 2 m 57 s

3000
Supervised

0.951 - 12 m 20 s 20 m 39 s

5000
Supervised

0.986 - 1 h 9 m 30 s 1 h 21 m 36 s
Validation
For the first two experiments with the 300 and 450 2D
vectors, all methods perform very well, as shown in
Figure 4, with only the Hierarchy clustering performing a
little worse in comparison with the rest, as can be seen in
Table 2 with the mismatched points for each method be-
ing shown in Additional file 1: Figure S2.
Table 2 summarizes the results for all methods on all

the different datasets used in this study. We can see
from the results that PFClust is the top performing algo-
rithm on average with a mean Rand Index of 0.975,
though it perfectly reproduces the original clusters for
only one dataset (450 2D vectors).
When we use all 3000 2D vectors, PFClust suggests a

different number of clusters from that in the original
clustering. In this case, PFClust finds that there are 21
clusters instead of 20 and splits the light green cluster
into two, light green and gold. Even though PFClust sug-
gests a different number of clusters, its very good Rand
Index means that it still significantly outperforms the
other algorithms, except k-means, as can be seen in
Table 2. Hierarchy, Clara and DBSCAN achieve good
Rand Indices, though with some errors on the borderline
cases. Mix Model gives a Rand Index that is only slightly
worse, but assigns a singleton as one of its 20 clusters
and, as seen in Figure 5, splits the greenish cluster at the
top centre of the diagram between its purple and blue
neighbours; the mismatched points for each method are
shown in Additional file 1: Figure S3. DBSCAN identifies
the correct number of multi-member clusters, although
as with all datasets it additionally has a large number of
points assigned as singletons, shown as open circles in
Figure 5.
We also performed another validation study on the

bigger dataset of 5000 2D vectors distributed over 15
clusters, in order also to compare the algorithms using a
dataset that had different shapes and sizes of clusters, as
well as the larger number of data points. As suggested
by visual inspection of Figure 6, the Rand Index results
in Table 2 show that all algorithms perform very well,
with Mix Model having the best Rand Index. The
mismatched points for each method are shown in
Additional file 1: Figure S4.
Another challenge for algorithms is describing datasets

that have different densities of points in their original
clusters; the 928 2D vector dataset consists of 20 clusters
whose densities vary. This is a subset of the D31 dataset
taken from [30], which consists of 31 circular clusters
with 100 members each. We then chose a 20 cluster
subset of the original dataset and from each cluster we
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randomly selected a different number of members (vary-
ing from 5% to 95%).
In this case, we see from Figure 7 that PFClust re-

ports 19 clusters instead of the original 20, integrating
the black group into the navy blue and the light green.
Of the other methods, only Agnes was able to correctly
identify all the groups, but due to the misassignment of
some borderline cases it did not achieve a very high Rand
Index. DBSCAN has major problems assigning the
correct clusters (it finds only 10 multi-member ones),
joining many clusters together and again leaving a
Figure 8 Performance of PFClust supervised mode. The 1500, 3000 and
Frames A, C & E show the original datasets, the training sets are coloured i
generated by PFClust supervised mode.
large number of singletons, as seen in Figure 7; the
mismatched points for each method are shown in
Additional file 1: Figure S5.

PFClust – supervised mode
While we have shown PFClust to be a very powerful and
accurate algorithm, it does take longer to cluster a dataset
than most alternative approaches. Table 3 shows how the
running time of the algorithm until convergence varies
with the number of data points. It is easy to see that the
run time grows rapidly as the dataset becomes larger and
5000 2D vector datasets clustered with PFClust supervised mode.
n red and the rest in black. Frames B, D & F show the clusterings



Table 4 CATH superfamilies selected for the study

Superfamily Name Members Representative structure

1.20.140.10 Butyryl-CoA Dehydrogenase, subunit A, domain 3 13

1.25.40.20 - 21

2.80.10.50 - 40

2.30.42.10 - 55

2.40.100.10 Cyclophilin 10

2.40.110.10 Butyryl-CoA Dehydrogenase, subunit A, domain 2 7

3.30.500.10 Murine Class I Major Histocompatibility Complex, H2-DB, subunit A, domain 1 13

3.40.50.80 Nucleotide-binding domain of ferredoxin-NADP reductase (FNR) module 14

3.40.50.1220 TPP-binding domain 16

3.90.110.10 L-2-Hydroxyisocaproate Dehydrogenase, subunit A, domain 2 11
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Table 4 CATH superfamilies selected for the study (Continued)

3.90.79.10 Nucleoside Triphosphate Pyrophosphohydrolase 24

The 11 CATH superfamilies that were selected to be clustered.

Figure 9 Heat map of protein domain to protein domain density similarities. On the row side, the protein domains are coloured according
to the CATH classification; on the column side, the protein domains are coloured according to PFClust.
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that the clustering takes considerable amounts of CPU
time in order to converge, with most of it being spent in
the randomization process.
The table summarizes the timings for convergence of

PFClust with the different datasets. The total execution
time typically includes four randomization and four clus-
tering runs, but in the case of the 5000 2D vectors, the
“0.99 average Rand Index between the four clusterings”
criterion was not met until a fifth run had been carried
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Figure 10 Clustering comparison between the different algorithms an
coloured lines, CATH colours represent different CATH superfamilies similar
out. The second column in the table shows the Rand
Index of the final clustering against the original gold
standard cluster definitions.
There exist cases when one wants to cluster large groups

of data and time efficiency is very important. For those
cases, a supervised mode of PFClust has been implemented
in order to significantly speed up the process. The super-
vised mode of PFClust addresses the cost issue by applying
an initial clustering on a training set and estimating a
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number of thresholds that would finally be applied to full
dataset. The training set should be a small subset of the
data, representing some coherent groups or clusters
amongst the full dataset that we wish to cluster.
PFClust clusters the training set and uses the three best

performing thresholds to estimate a total of nine threshold
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Figure 11 Using Silhouette width to define the stopping rule. As an a
as a characteristic measure from which to decide the correct number of clu
stochastic Clara and k-means algorithms 100 times each for every number
width for a given algorithm was selected, thus deciding the number of clu
values (these are selected to allow for some variation).
Then these nine values are applied on the full dataset and
the clustering with the best Silhouette width is reported.
Using the supervised version of the algorithm the time-
consuming randomization step is removed, which results
in a significant speed-up of the total process.
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ddendum to the main work, we tested the use of the Silhouette width
sters. We ran the deterministic methods once each. We also ran the
of clusters, k, between 2 and 50. The run with the best Silhouette
sters to report.
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As a validation of the supervised mode, we used the
dataset with the 1500 vectors in 10 groups, the dataset
of 3000 vectors distributed over 20 groups, and the lar-
ger one of 5000 vectors distributed over 15 groups.
Figure 8 shows the original dataset and the split between
training and full sets, as well as the resulting classifica-
tion by PFClust. A training set of 300 points was se-
lected and PFClust running using the supervised mode
clustered the first two datasets very rapidly, compared to
the unsupervised version, and with high accuracy. In
more detail, for the dataset of 1500 vectors the algo-
rithm took only three minutes to complete and gave an
identical clustering to the unsupervised method. For the
3000 vector group it took only 20 minutes, again with a
very good Rand Index of 0.951 compared with the ori-
ginal clustering, and in fact very slightly better than the
0.949 achieved by the unsupervised PFClust. Finally, for
the larger group the algorithm used a training set of 626
vectors and took 1 hour and 21 minutes to complete,
giving again a very good Rand Index of 0.986. In each
case, the Rand Indices achieved by the supervised and
unsupervised modes of PFClust are virtually identical,
but the supervised mode is much faster.

Protein fold clustering using polar Fourier expansions
When we used PFClust to cluster the 224 protein domains
in 11 CATH superfamilies, as shown in Table 4, the pro-
gram reported 11 multi-member clusters and one single-
ton protein domain, i.e., 12 clusters in total. Figure 9
shows as a heat map the all-against-all similarity matrix of
protein domains, each row is colour coded according to
the CATH classification and each column according to
the PFClust clustering.
The agreement between PFClust and the CATH

classification is nearly perfect with a Rand Index of
0.996. There is only a minor difference between the
original classification and the classification of PFClust,
where the 1q27A00 protein domain was classified as a
singleton, whereas CATH has it assigned to the
3.90.79.10 superfamily. We also tested the other clus-
tering algorithms against this dataset and set the num-
ber of clusters to 11 for the five algorithms requiring
this parameter. Table 2 summarizes the performance of
each method, and Figure 10 visually shows the agreements
and disagreements between the different clustering algo-
rithms. We see that Mix Model and Clara are the top
performing clustering algorithms, reproducing the exact
CATH classification.

Finding the correct number of clusters
For each of the aforementioned datasets, we tested the
use of the Silhouette width as the criterion for identify-
ing the number of clusters – similarly to the way we ran
DBSCAN. Since all the algorithms depended on a single
parameter k (number of clusters, inclusive of singletons),
we varied this number from 2 to 50 and the results are
shown in Figure 11. Note that these data are consid-
ered separately and do not contribute to the main re-
sults described previously, for which purpose the
‘correct’ number of clusters was instead passed to
Hierarchy, Agnes, Clara, k-means and Mix Model as a
parameter.
We see that in most cases, except for the density

dataset, at least one method found the correct number
of clusters by using the maximum Silhouette width as
the stopping criterion. However, no method is consist-
ently able to do this for the different datasets.

Conclusions
It has been shown that PFClust can accurately group data
according to their similarities without the need for any
parameter tuning. Our clustering results on the synthetic
datasets not only show that PFClust provides structurally
meaningful clusters, but also that it performs best when
compared to six other well-known clustering algorithms.
Clustering protein domains using a density representation
gives excellent agreement with the CATH part-manually
curated classification. In the future, the full CATH data-
base could be automatically clustered based on such dens-
ity representations of protein domains.
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