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Lack of metabolism in (R)-
ketamine’s antidepressant actions 
in a chronic social defeat stress 
model
Kai Zhang1,2, Yuko Fujita1 & Kenji Hashimoto1

Since the metabolism of (R,S)-ketamine to (2R,6R)-hydroxynorketamine (HNK) is reported to be 
essential for ketamine’s antidepressant effects, there is an increasing debate about antidepressant 
effects of (2R,6R)-HNK. Using pharmacokinetic and behavioral techniques, we investigated whether 
intracerebroventricular (i.c.v.) infusion of (R)-ketamine or (2R,6R)-HNK show antidepressant effects in 
a chronic social defeat stress (CSDS) model of depression. Low levels of (2R,6R)-HNK in the brain after 
i.c.v. infusion of (R)-ketamine were detected, although brain levels of (2R,6R)-HNK were markedly lower 
than those after i.c.v. infusion of (2R,6R)-HNK. Furthermore, high levels of (2R,6R)-HNK in the blood 
and liver after i.c.v. infusion of (R)-ketamine or (2R,6R)-HNK were detected. A single i.c.v. infusion of (R)-
ketamine showed rapid and long-lasting (7 days) antidepressant effects in a CSDS model. In contrast, 
i.c.v. infusion of (2R,6R)-HNK did not show any antidepressant effect in the same model, although brain 
concentration of (2R,6R)-HNK was higher than after i.c.v. infusion of (R)-ketamine. This study suggest 
that (R)-ketamine in the periphery after washout from the brain is metabolized to (2R,6R)-HNK in the 
liver, and subsequently, (2R,6R)-HNK enters into brain tissues. Furthermore, it is unlikely that (2R,6R)-
HNK is essential for the antidepressant actions of (R)-ketamine in a CSDS model.

Depression is a common, severe, and chronic psychiatric disease. Although current antidepressants have been 
used to treat depression, their beneficial effects are limited. Berman et al. reported that a subanesthetic dose 
of ketamine, an NMDAR (N-methyl-D-aspartate receptor) antagonist, elicits rapid and sustained antidepres-
sant effects in depressed patients1. Subsequent clinical studies exert rapid and sustained antidepressant effects 
in treatment-resistant patients with major depression or bipolar disorder2–8. However, the precise mechanisms 
underlying ketamine’s actions remain unclear9–14.

In 2016, Zanos et al. reported that the metabolism of (R,S)-ketamine to (2R,6R)-hydroxynorketamine (HNK) 
is essential for the antidepressant effects of ketamine in rodents, in an NMDAR inhibition-independent manner15. 
However, the recent study showed a critical role of NMDAR inhibition-mediated signaling of (2R,6R)-HNK16,17. 
It is well known that ketamine is rapidly metabolized in the liver by microsomal cytochrome P450 enzymes 
into norketamine (through N-demethylation) and finally into HNK15,18–23 (Fig. 1a). Several groups have 
reported that (R)-ketamine (Ki = 1.40 μM for NMDAR) showed greater potency and longer-lasting antidepres-
sant effects than (S)-ketamine (Ki = 0.30 μM for NMDAR) in animal models of depression15,24–29, suggesting 
that NMDAR inhibition and other unknown mechanisms may play a key role in the ketamine’s antidepressant 
actions12–14. Interestingly, Zanos et al. claimed that (2R,6R)-HNK (>10 μM for NMDAR), a final metabolite 
from (R)-ketamine, plays a key role in the ketamine’s antidepressant actions15. However, we did not replicate 
antidepressant effects of (2R,6R)-HNK in a chronic social defeat stress (CSDS) model27 and a learned helpless-
ness (LH) model30. There is now an increasing debate about the antidepressant actions of (2R,6R)-HNK in rode
nts12–14,27,30–35.

To exclude the metabolism of ketamine to HNK in the liver, this study was undertaken to examine whether 
intracerebroventricular (i.c.v.) infusion of (R)-ketamine or its metabolite (2R,6R)-HNK shows antidepressant effects 
in a CSDS model of depression. First, using a liquid chromatography tandem mass spectrometry (LC-MS/MS),  
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we determined the concentration of (2R,6R)-HNK in the brain, blood and liver after i.c.v. injection of 
(R)-ketamine and (2R,6R)-HNK. Second, we examined whether i.c.v. infusion of (R)-ketamine and (2R,6R)-HNK 
shows antidepressant effects in a CSDS model.

Results
Concentration of (2R,6R)-HNK after i.c.v. infusion of (R)-ketamine or (2R,6R)-HNK.  Using 
LC-MS/MS, we first measured the concentration of (2R,6R)-HNK in the brain samples after i.c.v. infusion of 
(R)-ketamine or (2R,6R)-HNK. Unexpectedly, lower levels of (2R,6R)-HNK in the brain were detected 1, 
3, and 6 hours after i.c.v. infusion of (R)-ketamine, which gradually declined (Fig. 1b,c). In contrast, higher 

Figure 1.  Metabolism of (R)-ketamine to (2R,6R)-HNK, and determination of (2R,6R)-HNK in the brain 
after i.c.v. infusion of (R)-ketamine or (2R,6R)-HNK. (a) (R)-ketamine is rapidly metabolized in the liver by 
microsomal cytochrome P450 enzymes into (2R,6R)-hydroxynorketamine (HNK). (b) Brain concentrations of 
(2R,6R)-HNK in the brain 1, 3 and 6 hours after a single i.c.v. infusion of (R)-ketamine or (2R,6R)-HNK. Data 
are shown as mean ± SEM. [n = 3: n = 2 for (2R,6R)-HNK (6 hr)]. (c) Typical chromatogram of the brain sample 
1 hour after i.c.v. infusion of (R)-ketamine. (d) Typical chromatogram of the brain sample 1 hour after i.c.v. 
infusion of (2R,6R)-HNK.
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levels of (2R,6R)-HNK in the brain were detected after i.c.v. infusion of (2R,6R)-HNK, which gradually declined 
(Fig. 1b,d). In particular, the tissue concentration of (2R,6R)-HNK in the brain 1 hour after i.c.v. infusion of 
(2R,6R)-HNK was markedly higher than that of (2R,6R)-HNK 1 hour after i.c.v. infusion of (R)-ketamine.

Next, we examined whether (2R,6R)-HNK was detected in the blood and liver 1 hour after i.c.v. infusion of 
(R)-ketamine or (2R,6R)-HNK. High levels of (2R,6R)-HNK were detected in the blood and liver 1 hour after 
i.c.v. infusion of (R)-ketamine (Fig. 2a,c). Furthermore, high levels of (2R,6R)-HNK were detected in the blood 
and liver 1 hour after i.c.v. infusion of (2R,6R)-HNK (Fig. 2b,d), indicating the existence of (2R,6R)-HNK in the 

Figure 2.  Determination of (2R,6R)-HNK in the plasma and liver after i.c.v. infusion of (R)-ketamine or 
(2R,6R)-HNK. (a) Typical chromatogram of (2R,6R)-HNK in the blood (or plasma) 1 hour after a single i.c.v. 
infusion of (R)-ketamine. (b) Typical chromatogram of (2R,6R)-HNK in the blood (or plasma) 1 hour after 
a single i.c.v. infusion of (2R,6R)-HNK. (c) Typical chromatogram of (2R,6R)-HNK in the liver 1 hour after 
a single i.c.v. infusion of (R)-ketamine. (d) Typical chromatogram of (2R,6R)-HNK in the liver 1 hour after a 
single i.c.v. infusion of (2R,6R)-HNK. (e) Concentration of (2R,6R)-HNK in the plasma 1 hour after a single 
i.c.v. infusion of (R)-ketamine or (2R,6R)-HNK. (f) Concentration of (2R,6R)-HNK in the liver 1 hour after a 
single i.c.v. infusion of (R)-ketamine or (2R,6R)-HNK. Data are shown as mean ± SEM. [n = 3 for (R)-ketamine: 
n = 2 for (2R,6R)-HNK].
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periphery after washout from the brain. Interestingly, the concentration of (2R,6R)-HNK in the plasma and liver 
after i.c.v. infusion of (R)-ketamine or (2R,6R)-HNK was the same (Fig. 2e,f).

Antidepressant effects of i.c.v. infusion of (R)-ketamine or (2R,6R)-HNK.  Next, we exam-
ined whether i.c.v. infusion of (R)-ketamine or (2R,6R)-HNK showed antidepressant effects in a CSDS model 
(Fig. 3a). There were no differences in locomotion among the four groups (Fig. 3b). In the TST, i.c.v. infusion of 
(R)-ketamine, but not (2R,6R)-HNK, significantly reduced the increased immobility time of susceptible mice 
after the induction of CSDS (Fig. 3c). In the FST, i.c.v. infusion of (R)-ketamine, but not (2R,6R)-HNK, signifi-
cantly reduced the increased immobility time of CSDS-susceptible mice 1 day after a single infusion (Fig. 3d). In 
the SPT, i.c.v. infusion of (R)-ketamine, but not (2R,6R)-HNK, showed anti-anhedonia effects 2, 4, or 7 days after 
a single infusion (Fig. 3e–g). These data suggest that, unlike that of (R)-ketamine, i.c.v. infusion of (2R,6R)-HNK 
does not elicit rapid and long-lasting antidepressant effects in a CSDS model.

Figure 3.  Antidepressant actions of i.c.v. infusion of (R)-ketamine, but not (2R,6R)-HNK, in a CSDS model. 
(a) CSDS was performed from day 1 to day 10, and the social interaction test (SIT) was performed on day 11. 
Saline (2 μl), (R)-ketamine (10 mg/ml, 2 μl) or (2R,6R)-HNK (10 mg/ml, 2 μl) was administered i.c.v. to CSDS 
susceptible mice on day 12. Locomotion (LMT) and tail suspension test (TST) were performed 2 and 4 hours 
after a single infusion, respectively. Forced swimming test (FST) was performed 24 hours after a single infusion. 
One % sucrose preference test (SPT) was performed 2, 4 and 7 days after a single infusion. (b) Locomotion 
(LMT) (one-way ANOVA, F3,32 = 0.04, P = 0.99). (c) TST (one-way ANOVA, F3,32 = 6.90, P < 0.001). (d) FST 
(one-way ANOVA, F3,32 = 4.11, P = 0.02). (e) SPT-1 at d14 (one-way ANOVA, F3,32 = 5.50, P < 0.001). (f) SPT-2 
at d16 (one-way ANOVA, F3,32 = 5.75, P < 0.001). (g) SPT-3 at d19 (one-way ANOVA, F3,32 = 4.35, P = 0.01). 
Data are shown as mean ± SEM. (n = 8). *P < 0.05, **P < 0.01 compared to saline-treated group of CSDS 
susceptible mice. R-KT: (R)-ketamine. R-HNK: (2R,6R)-HNK. N.S.: not significant.
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Discussion
In the present study, we found evidence of (2R,6R)-HNK in the brain after i.c.v. infusion of (R)-ketamine, although 
brain concentration of (2R,6R)-HNK was lower than those after i.c.v. infusion of (2R,6R)-HNK. Furthermore, we 
detected high concentration of (2R,6R)-HNK in the blood and liver after i.c.v. infusion of (R)-ketamine. These 
data suggest that (R)-ketamine in the periphery after washout from the brain is metabolized to (2R,6R)-HNK in 
the liver, and subsequently, (2R,6R)-HNK enters into brain tissues. In addition, we also found high concentration 
of (2R,6R)-HNK in the blood and liver after i.c.v. infusion of (2R,6R)-HNK, indicating the rapid washout into 
periphery from the brain. Nonetheless, the concentration of (2R,6R)-HNK in the brain after i.c.v. infusion of 
(R)-ketamine was lower than that after i.c.v. infusion of (2R,6R)-HNK.

In this study, we found that i.c.v. infusion of (R)-ketamine showed rapid and long-lasting antidepressant 
effects in a CSDS model, consistent with previous reports using intraperitoneal administration25,27–29,36,37. In 
contrast, i.c.v. infusion of (2R,6R)-HNK did not show any antidepressant effects in a CSDS model, although 
the concentrations of (2R,6R)-HNK in the brain were higher than those after i.c.v. infusion of (R)-ketamine. 
Furthermore, we reported that intraperitoneal administration of (R)-ketamine, but not (2R,6R)-HNK, shows 
rapid and long-lasting antidepressant effects in a CSDS model and an inflammation-induced model27. In a rat LH 
model, we recently reported that (2R,6R)-HNK (20 or 40 mg/kg, 24 h and 5 days) did not elicit any antidepressant 
effects in LH rats, although (R)-ketamine (20 mg/kg) showed sustained (24 h) and long-lasting (5 days) antide-
pressant effects in the same model30. In addition, we reported that a single bilateral infusion of (R)-ketamine into 
the infralimbic (IL) region of the medial prefrontal cortex (mPFC), CA3, and dentate gyrus of the hippocam-
pus shows long-lasting (5 days) antidepressant effects in a rat LH model38. A previous study also demonstrated 
that microinfusion of (R,S)-ketamine into IL of mPFC produces antidepressant-like effects in control unstressed 
rats39. Collectively, it is likely that (R)-ketamine itself in the brain can exert antidepressant effects in rodents with 
depression-like phenotype and that (2R,6R)-HNK in the brain does not have antidepressant effects in rodents 
with depression-like phenotype.

Recently, Pharm et al. reported that similar to (R,S)-ketamine (10 mg/kg, 24 h)-induced antidepressant-like 
effects, (2R,6R)-HNK (10 mg/kg, 24 h) increased the swimming duration (in the forced swimming test) and extra-
cellular 5-hydroxytryptamine level in the medial prefrontal cortex (mPFC) of control naive mice40. Furthermore, 
a single bilateral injection of (R,S)-ketamine (2 nmol, 24 h) or (2R,6R)-HNK (2 nmol, 24 h) into mPFC signif-
icantly increased the swimming duration of control naive mice. This study showed that (R,S)-ketamine and 
(2R,6R)-HNK have an equal intensity of antidepressant-like effects in control naïve mice, and that (R,S)-ketamine 
itself has antidepressant-like effects because (R,S)-ketamine is not metabolized to (2R,6R)-HNK in this brain 
region. These findings38–40 obtained using intra-cortical infusion support the idea that (2R,6R)-HNK is not the 
primary mediator of the antidepressant-like effects of (R,S)-ketamine,15 since (2R,6R)-HNK is not prepared in 
the brain regions.

In addition, Zanos et al. reported that the highly potent NMDAR antagonist (+)-MK-801 (Ki = 30.5 nM for 
NMDAR) failed to elicit antidepressant effects lasting 24 hours in FST15. Unlike (R,S)-ketamine, (+)-MK-801 
did not reverse social avoidance induced by CSDS, indicating a lack of antidepressant activity of (+)-MK-801 
in a CSDS model. From these findings, Zanos et al. concluded that there are NMDAR inhibition-independent 
mechanisms underlying ketamine’s antidepressant effects15. In contrast, many previous reports showed that 
(+)-MK-801 had antidepressant-like effects in control naïve rodents41–46. In addition, we reported that (+)-MK-
801 induces rapid antidepressant effects in a CSDS model, although this response is not long-lasting47. Taking 
these findings together, it is possible that NMDAR inhibition and other unknown mechanisms may play a role 
in the long-lasting (7 days) antidepressant actions of ketamine, although NMDAR inhibition may play a role in a 
rapid antidepressant effect47.

Recently, Yao et al.48 reported that a single intraperitoneal injection of (R,S)-ketamine (10 mg/kg, 1 day) 
impaired long-term potentiation (LTP) in the nucleus accumbens (NAc) of control mice but had no effects on 
the basic properties of glutamatergic transmission in this region. This loss of LTP in the NAc was maintained for 
7 days, consistent with the long-lasting antidepressant actions of (R,S)-ketamine. Furthermore, a single injection 
of (2R,6R)-HNK (10 mg/kg, 1 day) also impaired LTP in the NAc of control mice. Interestingly, (R,S)-ketamine 
(10 mg/kg) and its enantiomers (R)- and (S)-ketamine (10 mg/kg) significantly attenuated reduced dendritic spine 
density, brain-derived neurotrophic factor (BDNF) and its receptor TrkB signaling, and GluA1/PSD-95 expres-
sion in the medial prefrontal cortex (mPFC) and hippocampus (CA3 and DG) of mice with a depression-like 
phenotype, but did not alter the corresponding elevations in NAc25,28,49. In the rat LH model, we also reported 
that a single bilateral infusion of (R)-ketamine into the infralimbic region of mPFC, CA3, and DG improved 
depression-like symptoms, whereas a single bilateral infusion of (R)-ketamine into the NAc did not induce anti-
depressant effects38. These findings suggest that (R,S)-ketamine and its enantiomers exert antidepressant effects 
by normalizing BDNF−TrkB signaling and synaptogenesis in the mPFC and hippocampus, but not NAc. Taken 
together, it is unlikely that NAc plays a direct role in the antidepressant actions of (R,S)-ketamine and its two 
enantiomers.

In conclusion, the present study demonstrates that i.c.v. infusion of (R)-ketamine, but not its final metabolite 
(2R,6R)-HNK, could elicit a rapid and long-lasting antidepressant effect in a CSDS model, although low tissue 
concentrations of (2R,6R)-HNK were detected in the brain after i.c.v. infusion of (R)-ketamine. The present data 
argue against the claim made by a paper that stated that (2R,6R)-HNK is essential for the antidepressant actions 
of (R,S)-ketamine [or (R)-ketamine]15. Finally, we propose that (R)-ketamine, through NMDAR inhibition and 
subsequent unidentified mechanisms (for instance, synaptogenesis via BDNF–TrkB signaling)25,50–52, promotes 
rapid and longer-lasting antidepressant actions.
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Methods and Materials
Animals.  Male adult C57BL/6 mice, aged 8 weeks (body weight 20–25 g, Japan SLC, Inc., Hamamatsu, Japan) 
and male adult CD1 (ICR) mice, aged 13–15 weeks (body weight > 40 g, Japan SLC, Inc., Hamamatsu, Japan) 
were used. Animals were housed under controlled temperatures and 12 hour light/dark cycles (lights on between 
07:00–19:00 h), with ad libitum food (CE-2; CLEA Japan, Inc., Tokyo, Japan) and water. The study was approved 
by the Chiba University Institutional Animal Care and Use Committee (Permission number: 29–406). This study 
was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory 
Animals of the National Institutes of Health, USA. All efforts were made to minimize suffering.

Materials.  (R)-ketamine hydrochloride was prepared as previously reported24. The purity of (R)-ketamine 
was determined by a high-performance liquid chromatography with a chiral column as previously reported24. 
(2R,6R)-HNK hydrochloride was purchased from Sigma-Aldrich Co, Ltd (St Louis, MO, USA).

Determination of (2R,6R)-HNK in the brain, blood, and liver after i.c.v. infusion of (R)-ketamine 
or (2R,6R)-HNK.  Determination of (2R,6R)-HNK in the mouse samples was performed using the previous 
reports15,23,26 with a slight modification.

Experiment 1: The mice were anesthetized deeply with 5% isoflurane, and Neuros Syringes (702 N 25 μl SYR, 
Hamilton Company, Reno, NV, USA) were placed into the lateral ventricles (+0.02 AP, +1.0 ML, −1.5 DV)53. 
Subsequently, (R)-ketamine (10 mg/ml, 2 μl, i.c.v.) or (2R,6R)-HNK (10 mg/ml, 2 μl, i.c.v.) was administered to the mice. 
The mice were anesthetized deeply with 5% isoflurane, and they were sacrificed by decapitation. Then the brain sam-
ples excluding cerebellum were collected at each sampling time point (1, 3, and 6 hour). The excised brain was rinsed 
in ice-cold saline and then homogenized with 4 volumes of distilled water to prepare a brain homogenate specimen.

Experiment 2: The mice were anesthetized deeply with 5% isoflurane, and Neuros Syringes (702 N 25 μl SYR, 
Hamilton Company, Reno, NV, USA) were placed into the lateral ventricles (+0.02 AP, +1.0 ML, −1.5 DV)53. 
Subsequently, (R)-ketamine (10 mg/ml, 2 μl, i.c.v.) or (2R,6R)-HNK (10 mg/ml, 2 μl, i.c.v.) was administered into the 
mice. The mice were anesthetized deeply with 5% isoflurane 1 hour after injection, and blood was placed into a tube 
containing ethylenediamine-N,N,N’,N’-tetraacetic acid dipotassium salt dihydrate (EDTA·2 K) as an anticoagulant. 
Blood samples were immediately centrifuged (3,000 × g, 3 min) to prepare plasma samples. Liver samples were also 
collected. The excised liver was rinsed in ice-cold saline and then homogenized with 4 volumes of distilled water to 
prepare a liver homogenate specimen. These biological specimens were stored at −80 °C until bioanalysis.

Determination of (2R,6R)-HNK in the mouse samples was performed at Sumika Chemical Analysis Service, 
Ltd (Osaka, Japan). A 50-µl aliquot of the plasma or brain (or liver) homogenate specimen was mixed with 25 µl of 
1 mM ammonium hydrogen carbonate/acetonitrile (7:3, v/v), 20 µl of acetonitrile/methanol (9:1, v/v) containing 
2H4-norketamine (Sigma-Aldrich Co, Ltd, St. Louis, MO, USA) as an internal standard (I.S.) and 100 µl of 1 mM 
ammonium hydrogen carbonate. And t-butyl methyl ether, 2 mL, was added and vortex-mixed for 1 minute. After 
centrifugation at 3,000 rpm for 5 minutes, the organic layer was transferred to another empty glass tube. The solvent 
was evaporated to dryness under a stream of nitrogen gas at 25 °C. The residue was dissolved in 100 μl of 1 mM 
ammonium hydrogen carbonate/acetonitrile (7:3, v/v) by vortex-mixing for 30 seconds and sonicating for 1 min-
ute. The solution was centrifuged at 3,000 rpm for 5 minutes. A 5-µl aliquot of the supernatant resulting from the 
pretreatment was subjected to an enantioselective liquid chromatography tandem mass spectrometry (LC-MS/
MS) assay. The LC-MS/MS system was constructed using a Shimadzu LC-20A high-performance liquid chroma-
tography system (Shimadzu, Tokyo, Japan) and API5000 tandem mass spectrometer (AB SCIEX, Foster City, CA, 
USA). The MS/MS data were acquired and processed using Analyst version 1.6.1 software (AB SCIEX, Foster City, 
CA). Chromatographic separation was performed at 25 °C on a CHIRALPAK AS-3R analytical column (4.6 mm 
i.d. × 100 mm, 3 µm particles, Daicel Corporation, Tokyo, Japan) using 1 mM ammonium hydrogencarbonate/ace-
tonitrile (54:46, v/v) as a mobile phase at a flow rate of 1.0 ml/min. The selected reaction monitoring transition of 
(2R,6R)-HNK was m/z 240.5 → m/z 125.0, and the I.S. was m/z 228.1 → m/z 129.1. The lower limit of quantification 
(LLOQ) in the brain and liver was 0.5 ng/g tissue. The LLOQ in plasma was 0.1 ng/ml.

Chronic social defeat stress (CSDS) model.  CSDS was performed as previously reported25,27–29,36,37,48,54,55. The 
C57BL/6 mice were exposed to a different CD1 aggressor mouse for 10 min/day for 10 days. After the social defeat 
session, the resident CD1 mouse and the intruder C57BL/6 mouse were housed in one half of the cage separated by a 
perforated Plexiglas divider to allow visual, olfactory, and auditory contact for the remainder of the 24-hour period. All 
mice were housed individually 24 hour after the last social defeat stress session. On day 11, a social interaction test (SIT) 
was performed to divide susceptible group and resilient group to CSDS. The test was accomplished by placing mice in 
an interaction test box (42 × 42 cm) with an empty wire-mesh cage (10 × 4.5 cm) located at one end. The movement of 
the mice was tracked for 2.5 min, followed by 2.5 min in the presence of an unfamiliar aggressor CD1 mouse confined 
in the wire-mesh cage. The duration of the subject’s presence in the “interaction zone” (defined as the 8-cm-wide area 
surrounding the wiremesh cage) was recorded by a stopwatch. The interaction ratio was calculated as time spent in an 
interaction zone with an aggressor / time spent in an interaction zone without an aggressor. The cutoff for an interaction 
ratio was set as 1. Mice with scores < 1 were defined as “susceptible” to social defeat stress, and mice with scores ≥ 1 
were defined as “resilient”. Only susceptible mice were used in the behavioral experiments. Control C57BL/6 mice not 
exposed CSDS were housed in the home cage before the behavioral tests.

Behavioral tests in a CSDS model.  The CSDS susceptible mice and control mice were anesthetized deeply 
with 5% isoflurane, and Neuros Syringes (702 N 25 μl SYR, Hamilton Company, Reno, NV, USA) were placed into the 
lateral ventricles (+0.02 AP, +1.0 ML, −1.5 DV)53. Subsequently, vehicle (saline, 2 μl, i.c.v.), (R)-ketamine (10 mg/ml, 
2 μl, i.c.v.) or (2R,6R)-HNK (10 mg/ml, 2 μl, i.c.v.) was administered to CSDS susceptible mice. Vehicle (saline, 2 μl, 
i.c.v.) was also administered to control mice. Behavioral tests were performed as reported previously25,27–29,36,37,54,55.
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Locomotion.  Locomotion was performed 2 hour after i.c.v. infusion. The locomotor activity was determined 
using an animal movement analysis system (SCANET MV-40, MELQUEST Co., Ltd., Toyama, Japan). Mice were 
placed in experimental cages (length × width × height: 560 × 560 × 330 mm). The cumulative locomotor activity 
was recorded for 60 minutes. Cages were cleaned between testing session.

Tail suspension test (TST).  TST was performed 4 hour after i.c.v. infusion. A small piece of adhesive tape 
placed approximately 2 cm from the tip of the mouse tail. A single hole was punched in the tape and mice were 
hung individually, on a hook. The TST immobility time was recorded for 10 minutes. Mice were considered 
immobile only when they hung passively and completely motionless.

Forced swimming test (FST).  FST was performed 24 hours after i.c.v. infusion. The FST was performed 
using an automated forced-swim system SCANET MV-40 (MELQUEST Co., Ltd., Toyama, Japan). The mice 
were placed individually in a cylinder (diameter: 23 cm; height: 31 cm) containing 15 cm of water (23 ± 1 °C). FST 
immobility time from activity time as (total) – (active) time for 6 minutes was calculated.

Sucrose preference test (SPT).  SPT was performed 2, 4, 7 days after i.c.v. infusion. Mice were exposed 
to water and 1% sucrose solution for 48 h, followed by 4 hours of water and food deprivation. The two identical 
bottles containing water and 1% sucrose were weighed before and at the end of this period (1 hour). The sucrose 
preference was calculated as a percentage of sucrose solution consumption to the total liquid consumption.

Statistical analysis.  The data show as the mean ± standard error of the mean (S.E.M.). Analysis was per-
formed using PASW Statistics 20 (formerly SPSS Statistics; SPSS). Comparisons between groups were performed 
using the one-way analysis of variance (ANOVA), followed by post-hoc Tukey test. The P-values of less than 0.05 
were considered statistically significant.
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