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Abstract

Maize (Zea mays L.) is a staple food whose production relies on seed stocks that largely

comprise hybrid varieties. Therefore, knowledge about the molecular determinants of hybrid

performance (HP) in the field can be used to devise better performing hybrids to address the

demands for sustainable increase in yield. Here, we propose and test a classification-driven

framework that uses metabolic profiles from in vitro grown young roots of parental lines from

the Dent × Flint maize heterotic pattern to predict field HP. We identify parental analytes that

best predict the metabolic inheritance patterns in 328 hybrids. We then demonstrate that

these analytes are also predictive of field HP (0.64� r� 0.79) and discriminate hybrids of

good performance (accuracy of 87.50%). Therefore, our approach provides a cost-effective

solution for hybrid selection programs.

Introduction

Hybrid breeding is a key contributor to yield gain in maize (Zea mays L.) and offers the means

to meet the demands of the growing population [1–5]. Genetic markers have been widely used

to predict hybrid performance in different crop species [6–9] with moderate accuracies that

vary with respect to the trait of interest (e.g. r of 0.74–0.75 for grain yield and 0.88–0.99 for

grain dry matter content in maize [10]). This approach can explain the genetic contribution

and neglects the often significant environmental effect on hybrid performance with respect to

different traits. Another strategy to improve hybrid breeding is to determine the extent to

which field hybrid performance (HP) can be predicted from few quantitative molecular (e.g.

metabolic) profiles of in vitro grown parental lines. Such an approach provides a cost-effective

solution that has the potential to bridge the gap between greenhouse and field. Yet, most exist-

ing approaches of this kind either have been tested on small designs [11, 12] or use molecular

profiles from the same conditions in which HP is assessed [13, 14].

Understanding the relation between HP and molecular profiles of parents has the potential

to identify the determinants of specific heterotic traits, such as those relating to yield. As a

result, modern omics technologies (e.g. transcriptomics, proteomics, and metabolomics) have

emerged as competitive alternatives to classic genetic markers to predict HP in maize [10, 15–
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17]. Metabolomics provides quantitative data about small molecules whose pools are jointly

affected by the genotype and environment [18]. Metabolic profiles of hybrids have already

been used to predict HP in maize [14, 19] and rice [20, 21]. The modeling evidence from a

small diallel design suggests that the distance of the metabolic profiles of the hybrids from the

average metabolic profile over the best performing hybrids correlated negatively with root bio-

mass [11]. Refining this idea on a broader maize Dent × Flint panel, it was shown that the

metabolites with particularly robust profiles over the population of hybrids are predictive of

field HP [19]. However, the selection based on such modeling strategy requires tremendous

resources, since hybrids need to be created, grown, and molecularly assessed. The ultimate pre-

diction scenario is to use few metabolic profiles gathered from early developmental stages of

parental lines, preferably grown in cost-effective designs, to predict HP in the field.

Here, we validate and expand the applicability of a classification-driven modeling frame-

work [12] by using metabolic profiles from young roots of 328 test-crosses of the Dent × Flint

heterotic pattern as well as the corresponding parental genotypes. The framework is based on

the idea that parental metabolites predictive of metabolic inheritance patterns (mIPs) are also

predictive of HP (S1 Fig). We demonstrate that parental analytes predictive of mIPs in young

roots are predictive of hybrid biomass in the field, thus offering a new application of the classi-

fication-driven framework to significantly improve current hybrid breeding programs.

Results

Our study is based on data from a previously reported partial factorial breeding panel of the

European maize Dent × Flint heterotic pattern [19]. This panel comprises 24 Dent lines, 25

Flint lines and 332 Dent × Flint hybrids from crosses thereof. The metabolic profiles for 269

analytes were obtained from the roots of 3.5-day old seedlings. To remove redundancy, we

retained only those analytes that were, on average, less correlated to the rest (cf. Methods),

resulting in 136 analytes of which 106 were annotated metabolites. From the 332 evaluated

hybrids, the performance (i.e., biomass in the field) was assessed in two different field trials for

328, with 148 in 2010 and the remaining 180 in 2012 (Fig 1A, S1 Dataset, cf. Methods). The

hybrids evaluated in 2012 exhibited, on average, greater performance compared to the hybrids

evaluated in 2010 (two-tailed t-test P = 2.89 × 10−23, Fig 1B).

Encoding of the hybrid analytes using the metabolic inheritance patterns

(mIPs)

First, we assigned class labels for every analyte in each hybrid by classifying the mIP based on

the concepts of additivity, dominance and overdominance [12] (S1C Fig). We applied moder-

ated t-tests to determine the significance and sign of the differences in the levels of each of the

136 analytes, which we then used to assign labels to the analytes in every hybrid. To this end,

we employed the following procedure: If the hybrid level was (i) significantly greater/smaller

than both parental levels (positive/negative overdominance), mIP was set to +/-2, respectively;

(ii) significantly greater/smaller than a single parent (positive/negative dominance), mIP was

+/-1, respectively; (iii) indistinguishable from both parents or greater than one and smaller

than the other (additivity), mIP was 0. The resulting matrix of class labels indicated clear over-

representation of additivity over all crosses and analytes (S1 Table). To avoid excessive class

unbalance, we removed analytes with over- or under-representation of the five classes (cf.

Methods). As a result, 41 encoded analytes were kept for further analysis, each with labels for

the 332 hybrids (Fig 2).

Two-step prediction of heterosis
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Classification models predictive of mIPs

We then constructed an ncrosses × (2nanalytes) matrix of predictors, in which each row corre-

sponds to a hybrid and the columns to the analytes in the Dent concatenated to those from the

Flint parents. Since the levels of metabolites are mutually dependent due to the underlying

metabolic and regulatory networks, we used all 2nanalytes = 272 analytes to predict the mIPs of

the 41 selected. To this end, we compared the performance of seven classification methods: lin-

ear discriminant analysis following a dimension-reducing partial least-squares transformation

(PLS-DA) [22], logistic regression with the elastic net (glmnet) [23] random forests following a

dimension-reducing partial least-squares transformation (PLS-RF) [24, 25], support vector

machines (SVM) [26], support vector machines with class-specific weights (SVM-W), random

forests (RF) [24] and random forests with class-specific weights (RF-W). The models were

built to optimize a measure called Kappa that allows for comparison of classifiers; it quantifies

how closely the results of the classification match the ground truth, while controlling for the

accuracy of a random classifier as measured by the expected accuracy. In addition, we consid-

ered class-specific weights to increase the importance of correctly classifying non-additive

mIPs (cf. Methods). We did not observe large differences in the distributions of Kappa values

over the seven classifiers for the 41 investigated analytes, each modeled in five independent

repetitions. The smallest median Kappa value 0.293 (PLS-RF) suggests moderate but signifi-

cant performance, since the classifiers for permuted mIPs exhibited the largest average Kappa

of only 0.001 (SVM-W, Fig 3). While there were two analytes for which the average Kappa

over the seven classifiers was smaller than 0.20, the mIPs of 10 analytes (e.g. glycerol-3-phos-

phate, erythritol-threitol and gentiobiose) were consistently predicted with Kappa greater than

0.35 (S2 Table). A classifier with small variance and a large mean of Kappa over the 41 investi-

gated analytes provides a reliable performance. Therefore, we compared the classifiers with

respect to the coefficients of variation (CV = standard deviation / mean) and focused on

SVM-W, which exhibited the smallest CV (0.321) over the analyzed models for ranking the

predictors.

Ranking of the parental analytes and prediction of HP

To rank a parental analyte, we used its relative importance in predicting the mIP across all 41

investigated analytes (cf. Methods). The median importance ranged from 32.16% and 54.03%

and its standard deviation from 9.55% and 20.27% (Fig 4). Furthermore, we found no associa-

tion between the order of both paternal and maternal ranks, as indicated by a Kendall’s τ of

0.03 (P = 0.58). We then tested if parental analytes predictive of mIP are also predictive of HP

in the field. For this purpose, we predicted hybrid performance based on support vector

regression models (SVR) [27], each trained with different subsets of parental analytes, based

on the previously computed ranking. For this purpose, we trained SVR in twelve scenarios

with usage of different number of analytes ranked at the top, bottom, or drawn randomly from

the ranking (cf. Methods). We found that predictability (accessed by the coefficient of determi-

nation, R2) from models trained with the five top ranked parental analytes (median R2 = 0.552)

was significantly higher than that from models trained with the five bottom ranked parental

features (median R2 = 0.353, two-tailed t-test P = 1.70 × 10−17). In addition, models trained

Fig 1. Schematic representation of the Dent × Flint partial factorial mating design and distribution of field

biomass. (a) Cells denote the crosses between the 24 Dents (rows) and the 25 Flints (columns). Filled cells represent

profiled hybrids, with black denoting those with missing phenotyping data. Grey and red cells represent profiled

hybrids that were phenotyped in the trials of 2010 and 2012, respectively. (b) Distribution of field biomass in hybrids

evaluated in 2010 (grey, upper histogram) and 2012 (red, lower histogram).

https://doi.org/10.1371/journal.pone.0196038.g001
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with analytes positioned lower in the ranking tended to show, on average, lower predictabili-

ties. Furthermore, and expectedly, optimal test prediction was achieved when all analytes were

employed (median R2 = 0.679). The permutation of the biomass data, in turn, led to compara-

tively poor predictability (median R2 = 0.005), demonstrating that parental analytes are predic-

tive of HP in the field (Fig 5).

Classification models for qualitative HP

From a breeder’s perspective, distinguishing between hybrids of good and bad performance is

more efficient and profitable than quantitative predictions of HP. Here a hybrid is considered

of ‘good’ performance if its HP in the field was above a given threshold; all other hybrids were

referred to as ‘bad’. We then built classification models with SVM and different thresholds for

labeling the hybrids as ‘good’ or ‘bad’. Our findings demonstrated that the test accuracy was

consistent with the predictabilities obtained in the regression setting. The highest median test

accuracy (87.50%, with a corresponding Kappa value of 0.748) was obtained from models

trained with the five top ranked parental features and the average used as a threshold (S2 and

S3 Figs). Similar findings were obtained when the resulting models were assessed based on the

area under the receiver operating characteristic curve (AUC). The AUC from the model

trained with the top five parental features (median AUC = 0.875) was slightly smaller

Fig 2. Class distribution of analytes used in the classification-driven framework. Columns correspond to the

selected 41 analytes, whereas rows correspond to the 332 crosses. Red, orange, yellow, blue and navy blue colors

represent positive overdominance, positive dominance, additivity, negative dominance and negative overdominance,

respectively.

https://doi.org/10.1371/journal.pone.0196038.g002
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https://doi.org/10.1371/journal.pone.0196038.g003
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compared to the AUC from the full model (median AUC = 0.914, S4 Fig). An efficient hybrid

selection program must aim at high precision, which amounts to minimizing the number of

false positives. However, since there is a trade-off between precision and recall, we also com-

pared the models with respect to the corresponding precision-recall curves. An optimal com-

promise between the precision and recall was observed for the models having all parental

features and the five top ranked parental features. Moreover, we noted that for the latter, the

probability cutoff of 0.5 (the default in two-class problems) provides a good compromise
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https://doi.org/10.1371/journal.pone.0196038.g005
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between the two measures, with precision and recall taking the values of 0.964 and 0.900,

respectively (Fig 6).

Discussion

We refined and substantially expanded a two-step classification-driven framework that enables

us to predict quantitative and qualitative HP performance in the field from the metabolic pro-

files of parental lines in early developmental stages, grown under in vitro conditions. Accurate

prediction of HP from molecular markers has the potential to ultimately pinpoint the determi-

nants of heterosis. Heterotic performance has long been regarded as mainly driven by nonad-

ditive genetic variance, a paradigm that motivated existing hypotheses such as dominance,

overdominance, pseudooverdominance and epistasis [28]. However, in our large design and

across the set of modeled analytes, we observed no correlation between the proportion of ana-

lytes exhibiting non-additive mIPs and hybrid performance [29] (S1 Note). Instead, we dem-

onstrated that the metabolic inheritance pattern (mIP) in each of the selected analytes in

hybrids can be effectively predicted from the levels of analytes measured in the corresponding

parents, as confirmed by permutation of labels. We assessed the classification performance

based on Kappa, as a robust metric that contrasts the observed accuracy against the proportion

of any potentially overrepresented class [30]. Therefore, Kappa is more penalized in models

Recall

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Top 5
5 out of top 10
5 out of top 20
5 out of top 50
5 out of top 100
5 out of bottom 100
5 out of bottom 50
5 out of bottom 20
5 out of bottom 10
Bottom 5
Random 5
All
All (perm)

Fig 6. Precision-recall curves from predicting ‘good’ and ‘bad’ performers based on subsets of the ranked parental features. ‘Bad’ and ‘good’

performers were predicted using support vector machines (SVM), each trained with different subsets of parental features, based on the median relative

importance for predicting the heterotic mode of action. The models were trained with the top five parental features (‘Top 5’); five randomly drawn from the

top 10/20/50/100 features (‘5 out of top 10’/‘5 out of top 20’/‘5 out of top 50’/‘5 out of top 100’, respectively); five randomly drawn from the bottom 10/20/

50/100 features (‘5 out of bottom 10’/‘5 out of bottom 20’/‘5 out of bottom 50’/‘5 out of bottom 100’, respectively); bottom five parental features (‘Bottom 5’);

five randomly drawn from all features (‘Random 5’). In each model, the class probabilities attributed to the hybrids in the test set were then used to compute

precision and recall over multiple probability cutoffs ranging from 0 to 1. The open circle locates the point in the curve of ‘Top 5’ in which the probability

cutoff is 0.5.
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that misclassify dominance and overdominance. Finally, some models were also equipped

with the so-called class-specific weights, which directly define the relative cost of misclassifying

particular classes. In our setting, we defined a range of values that increased from additivity to

dominance to overdominance, to attribute greater importance to the correct classification of

the least representative classes. Interestingly, all seven classifiers tested exhibited similar aver-

age performances.

For ranking parental analytes we selected the method having the smallest coefficient of vari-

ation with respect to Kappa, i.e. the support vector machine with class-specific weights

(SVM-W). Minimization of the coefficient of variation favors the classifiers with high average

but also low variance, which is highly relevant in our setting with multiple responses. Based on

the cumulative relative frequencies of the Flint and Dent analytes along the ranking, our results

suggested that maternal (Dent) analytes were more important in the prediction of mIP com-

pared to the paternal (Flint) analytes [7] (S5 Fig). In addition, we found no association between

the orders of the two separate parental analyte ranks, suggesting maternal (Dent) and paternal

(Flint) analytes exhibit different predictabilities of mIP. The early metabolism and vigor of

maize seedlings is highly dependent on the endosperm composition and quality. The endo-

sperm of maize is a triploid tissue that results from the combination of the paternal sperm with

the two maternal polar nuclei in the embryo sac. Therefore, not only are extra-nuclear factors

maternally inherited (i.e. mitochondria and plastids), but also the nuclear genetic dosage from

the maternal parent (2/3) is twice that from the paternal parent (1/3) [31, 32]. As a result, this

skewness in the genetic contribution should be reflected at the metabolic level, as seen in our

setting, thus offering a putative explanation why maternal (Dent) analytes act as better predic-

tors of mIP and consequently of HP. However, here we do not consider reciprocal hybrids and

consequently cannot assert whether this is the result of parent-of-origin effects.

Finally, we found that parental analytes predictive of mIP were also predictive of HP in

both quantitative and qualitative manners. In attempt to dissect the relevance of the rank to

the predictability (i.e. R2) of HP, we compared models trained with different subsets of paren-

tal analytes based on their indices along the rank. As the subset comprised parental analytes

ranked higher, the greater the predictability of the corresponding model, up to a point in

which the difference in predictability between the best five features (R2 = 0.554) and the full

model (R2 = 0.682) is negligible compared to the difference in the number of features used in

each one (5 and 272, respectively). Interestingly, all the best five features are Dent (maternal)

analytes, rendering the prediction of HP in two distinct field trials possible without Flint

(paternal) data. These five features included threonine, xylose and valine.

The usage of a maximum mIP class balance threshold aimed at filtering out encoded ana-

lytes that i) display too few instances of underrepresented classes to cover the folds employed

in the cross-validation procedure, and ii) yield poorly performing models, consequently bias-

ing the ranking of the parental analytes. When we alternatively set a threshold of 0.9 (as

opposed to 0.75), we obtain a total of 74 encoded analytes (as opposed to 41), which upon

training for analyte ranking ultimately disrupt the predictive ability of the top ranked analytes.

More specifically, the prediction from all different subsets of analytes at the threshold of 0.9 is

as accurate as using a random subset of analytes of the same size (S6 Fig).

While the earlier study employed a small design with only 12 hybrids, seedling primary

root biomass and targeted metabolomics analysis [12], here we analysed 332 hybrids, whole-

plant fresh weight per unit of area (dt ha-1) determined from two separate field trials and

untargeted (thus more comprehensive) metabolomics analysis. In terms of predictability, the

correlation of observed and predicted HP using the five best features reported by Feher and

co-workers ranged from 0.20 to 0.80 [12]. In our broader panel, the correlation ranged from
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0.64 to 0.79 (r ¼
ffiffiffiffiffi
R2
p

), a comparatively narrower interval likely stemming from our larger

sample size. Furthermore, the previously reported genomic prediction of HP (i.e. dry weight)

with the same population used here resulted in correlations ranging from 0.25 to 0.90 [17],

highlighting the comparative performance of our approach in comparison to the contenders.

In addition, we expanded the approach to demonstrate that the two-step classification-driven

framework can effectively distinguish between ‘good’ and ‘bad’ performing hybrids (accuracy

of 87.50%).

One of the pressing points in prediction of hybrid performance with respect to a given traits

is the contribution of the potential genotype by environment (GxE) interaction component of

the trait’s variability. The gold standard approaches for HP prediction based on genomic

markers can explain the genotype proportion of the variance and would be suitable for traits

with large heritability. On the other hand, molecular profiles gathered from controlled condi-

tions (e.g. greenhouse) capture the combined effect of the environment and the genotype, thus

allowing for explaining a larger portion of a trait’s variance when they are used as predictors

(the latter hinges on the assumption that the molecular traits can serve as determinants of the

trait to be predicted). What our approach demonstrated is that metabolic (and possibly other)

phenotypes in the two-step approach can result in hybrid prediction accuracies that exhibit

smaller variability, likely attributed to the fact that these phenotypes manifest the joint effects

of genotype and environment. However, due to availability of data from only two trails we did

not attempt to determine the GxE component of HP and the extent to which it can be linked

to metabolic profiles.

Altogether, our study demonstrates the great potential of young roots of maize as an ade-

quate system for the metabolic prediction of HP in the field. The method is highly competitive

compared to current breeding practices, saving time, space and costs in the testing routines.

Materials and methods

Plant material, metabolic and field data

The 381 genotypes under analysis derive from a partial factorial mating design with the Euro-

pean maize Dent × Flint heterotic pattern (24 Dents, 25 Flints and 332 hybrids from crosses

thereof). The corresponding metabolic profiles from 3.5-day-old maize root samples, as well as

whole-plant biomass (dt ha-1) from hybrids grown in two distinct field trials (2010 and 2012,

BBCH stage 89) were previously reported [19]. To remove redundancy in the set of analytes,

we identified all pairs of analytes with a Pearson correlation coefficient (r) greater than 0.85

and remove the analyte in each pair having the greatest average r with all other analytes.

Encoding the metabolic inheritance pattern of analytes

Let D = {d1,d2,. . .,dn} and F = {f1,f2,. . .,fn} denote the sets of Dent and Flint inbred lines, respec-

tively, and H = {(di,fj) 2 D × F} denote the incomplete set of the hybrids generated from cross-

ing the ith Dent inbred line with the jth Flint inbred line.

For encoding the analytes levels in the hybrids, a n × m matrix carrying the metabolic pro-

files XPH was first constructed, with n corresponding to the total number of replicates in all

genotypes, and m the number of measured analytes. Then, |H| subsets of XPH (each subset

denoted by Xs 2 {Xs,1,Xs,2,. . .,Xs,|H|}) were generated, each carrying the replicates of the profiles

of the Dent (Xs(d,˚)), the Flint (Xs(f,˚)) and the hybrid (Xs(h,˚)) from each individual cross.

The analytes in each of these subsets were separately analyzed with the R package ‘limma’ [33]

for significance and sign of the differences in the levels among Dent, Flint and hybrid, using

moderate t-statistics without P-value adjustment. Finally, the jth analyte in the hth hybrid was

Two-step prediction of heterosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0196038 April 26, 2018 10 / 16

https://doi.org/10.1371/journal.pone.0196038


encoded with a label T(h,j) 2 {±2,±1,0} that denotes the metabolic inheritance pattern (mIP),

using the following exhaustive conditionals,

• Xs(h,j)> Xs(b,j) AND Xs(h,j)> Xs(w,j)) T(h,j) = 2

• Xs(h,j) = Xs(b,j) AND Xs(h,j)> Xs(w,j)) T(h,j) = 1

• Xs(h,j) = Xs(b,j) AND Xs(h,j) = Xs(w,j) XOR

Xs(h,j)< Xs(b,j) AND Xs(h,j)> Xs(w,j)) T(h,j) = 0

• Xs(h,j)< Xs(b,j) AND Xs(h,j) = Xs(w,j)) T(h,j) = −1

• Xs(h,j)< Xs(b,j) AND Xs(h,j)< Xs(w,j)) T(h,j) = −2

where b (resp. w) denote the parent in the set having the highest (resp. lowest) level relative to

the other. Furthermore, ±2 corresponds to positive/negative overdominance, ±1 to positive/

negative dominance and 0 to additivity, respectively. Disproportion in class frequencies was

tackled by removing encoded analytes (i.e. every T(˚,j)) having (i) any individual class repre-

sented in > 75% of the hybrids, and/or (ii) classes having less than four occurrences, unless a

single class had a single occurrence, in which case we excluded the corresponding hybrid

whenever classifying that particular analyte.

Classification of the mIPs based on parental analytes

The predictor set consists of a matrix of size |H| × (2 × m), XDF, with m corresponding to the

number of measured analytes, in which XDF(h,˚) represents the concatenated metabolic pro-

files from the Flint and the Dent parents of the hybrid h. The levels were standardized column-

wise.

In each separate encoded analyte T(˚,j), the hybrid labels were predicted using seven differ-

ent classifiers: linear discriminant analysis following a dimension-reducing partial least-squares

transformation (PLS-DA) [22], logistic regression with the elastic net (glmnet) [23], random

forests following a dimension-reducing partial least-squares transformation (PLS-RF) [24, 25],

simple support vector machines with a radial basis function kernel (SVM) [26], support vector

machines with a radial basis function kernel and class-specific weights (SVM-W), random for-

ests (RF) [24] and random forests with class-specific weights (RF-W). Class-specific weights

were symmetrically defined as W = {w−OD,w−D,wA,w+D,w+OD} = {10,5,1,5,10}. We repeated five

times the following sequence: (i) create a stratified random partition of XDF with 75% of the

samples allocated to the training set and 25% to the test set, (ii) train the model with a 3-fold

cross-validation (5 repetitions) to determine the tuning parameters that maximize Kappa [26]

(S3 Table), (iii) use the optimal model to determine Kappa in the test set. The entire procedure

was repeated with randomly permuted class labels in each of the encoded analytes.

The model exhibiting the lowest coefficient of variation of Kappa (CV = standard deviation

/ mean) over all encoded analytes was chosen for the subsequent metabolite ranking step. For

this purpose, we trained the model with the entire predictor set (XDF) for predicting each T(˚,j)
separately, using a 3-fold cross-validation (10 repetitions) and extracted the relative variable

importance (VIP). The parental analytes were then ranked by the corresponding median VIP

across models for the different encoded analytes, scaled between 0 and 1. The entire procedure

was conducted using the R package ‘caret’ [34].

Prediction of field HP

Field hybrid performance (i.e. HP, whole-plant biomass) was predicted using support vector

regression models (SVR, with a radial basis function kernel) [27], each with different subsets
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of parental features, using the previously computed ranking. For this purpose, we trained SVR

with (i) the top 5 features, (ii) 5 randomly drawn from the top 10, (iii) 5 randomly drawn from

the top 20, (iv) 5 randomly drawn from the top 50, (v) 5 randomly drawn from the top 100,

(vi) 5 randomly drawn from the bottom 100, (vii) 5 randomly drawn from the bottom 50, (viii)
5 randomly drawn from the bottom 20, (ix) 5 randomly drawn from the bottom 10, (x) the

bottom 5 features, (xi) 5 randomly drawn from the entire set, (xii) all features and finally (xiii)
all features with permutation of the biomass data. We repeated 25 times the following

sequence: (i) create a random partition of XDF with 80% of the samples allocated to the training

set and 20% to the test set, (ii) train the SVR with 3-fold cross-validation (10 repetitions) to

determine the tuning parameters that maximize R2 (i.e. predictability, S4 Table), (iii) use the

optimal model to determine R2 in the test set.

For classification, hybrids were split into ‘bad’ and ‘good’ performers, i.e. hybrids with bio-

mass smaller and greater or equal to the average biomass value, respectively. The classification

procedure was based on the sequence of steps described above, using support vector machines

(SVM, with a radial basis function kernel) [26], aiming at maximizing accuracy and the area

under the ROC (receiver operating characteristic) curves (AUC), separately. The AUC was cal-

culated using the R package ‘pROC’ [35]. The precision-recall curves were computed for each

of the different models, based on the class probabilities attributed to the hybrids in the corre-

sponding test sets, using the R package ‘ROCR’ [36]. The entire modeling was conducted

using the R package ‘caret’ [34].

Code availability

Compiled R code is available from https://github.com/monogenea/HPmodelframework.

Supporting information

S1 Fig. Schematic representation of the classification-driven framework. (a) Selected

Dent × Flint hybrid genotypes (D × F) and the corresponding Dent (D) and Flint (F) inbred

parental lines were germinated under controlled conditions. (b) The primary roots from the

germinated plants were subjected to gas chromatography separation followed by mass spec-

trometry (GC/MS) analysis. (c) For every available combination of D, D × F and F, the result-

ing metabolic profiles were compared to determine the metabolic inheritance patterns (mIPs)

using the concepts of additivity (A), dominance (D) and overdominance (OD). (d) In each

separate analyte, mIPs were predicted from the concatenated parental metabolic profiles. (e)

Finally, parental analytes were ranked based on their importance in predicting mIPs. The top

ranked analytes were selected for predicting hybrid performance in the field (HP). The data

shown are purely illustrative. Icons are freely available at https://icons8.com/.

(PDF)

S2 Fig. Accuracy in predicting ‘good’ and ‘bad’ performers based on subsets of the ranked

parental features. Hybrid field performance was encoded into two groups (i.e. ‘bad’ and

‘good’ performers) and was predicted using support vector machines (SVM), each trained

with different subsets of parental features, based on the median relative importance for pre-

dicting the heterotic mode of action. The models were trained with the top five parental fea-

tures (‘Top 5’); five randomly drawn from the top 10/20/50/100 features (‘5 out of top 10’/‘5

out of top 20’/‘5 out of top 50’/‘5 out of top 100’, respectively); five randomly drawn from the

bottom 10/20/50/100 features (‘5 out of bottom 10’/‘5 out of bottom 20’/‘5 out of bottom 50’/‘5

out of bottom 100’, respectively); bottom five parental features (‘Bottom 5’); five randomly

drawn from all features (‘Random 5’). As the subsets comprise analytes ranked lower, the
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average test accuracy decreases. The full model (‘All’) exhibits a slightly smaller median accu-

racy compared to the top five parental features, whereas upon permutation of the values of

hybrid performance (‘All (perm)’) the median accuracy is centered around 0.5.

(PDF)

S3 Fig. Test of robustness of different cutoff values for binning ‘bad’ and ‘good’ hybrids.

Nine evenly-spaced threshold values of hybrid performance (HP), including the mean, were

used to bin ‘bad’ and ‘good’ hybrids used for classification of HP. Accuracy (top) decreases as

values spread away from the average value (i.e. 592 dt ha-1) and increases again with more

extreme values. This is an artifact considered by the Kappa metric (bottom), which shows the

greatest accuracy is attained with the mean HP value.

(PDF)

S4 Fig. Area under the curve (AUC) in predicting ‘good’ and ‘bad’ performers based on

subsets of the ranked parental features. Hybrid field performance was encoded into two

groups (i.e. ‘bad’ and ‘good’ performers) and predicted using support vector machines (SVM),

each trained with different subsets of parental features, based on the median relative impor-

tance for predicting the heterotic mode of action. The models were trained with the top five

parental features (‘Top 5’); five randomly drawn from the top 10/20/50/100 features (‘5 out of

top 10’/‘5 out of top 20’/‘5 out of top 50’/‘5 out of top 100’, respectively); five randomly drawn

from the bottom 10/20/50/100 features (‘5 out of bottom 10’/‘5 out of bottom 20’/‘5 out of bot-

tom 50’/‘5 out of bottom 100’, respectively); bottom five parental features (‘Bottom 5’); five

randomly drawn from all features (‘Random 5’). As the subsets comprise analytes ranked

lower, the average test AUC decreases. The full model (‘All’) exhibits a slightly higher average

AUC compared to the top five parental features, whereas upon permutation of the values of

hybrid performance (‘All (perm)’) the average AUC is substantially lower.

(PDF)

S5 Fig. Cumulative relative frequencies of the Dent (maternal) and Flint (parental) ana-

lytes along the ranking. The cumulative relative frequency of the Dent (maternal, red) ana-

lytes is systematically higher than that of the Flint (paternal, grey) analytes along the ranking

(i.e. increasing values in the x-axis).

(PDF)

S6 Fig. Effect of miP class balance threshold relaxation on the predictability of hybrid perfor-

mance based on subsets of the ranked parental features. Hybrid field performance was predicted

using support vector regression models (SVR), each trained with different subsets of parental fea-

tures, based on the median relative importance for predicting the metabolic inheritance patterns

(mIPs) that pass a class balance threshold of 0.9, as opposed to 0.75. The models were trained with

the top five parental features (‘Top 5’); five randomly drawn from the top 10/20/50/100 features (‘5

out of top 10’/‘5 out of top 20’/‘5 out of top 50’/‘5 out of top 100’, respectively); five randomly

drawn from the bottom 10/20/50/100 features (‘5 out of bottom 10’/‘5 out of bottom 20’/‘5 out of

bottom 50’/‘5 out of bottom 100’, respectively); bottom five parental features (‘Bottom 5’); five ran-

domly drawn from all features (‘Random 5’). As the subsets comprise analytes ranked lower,

predictability (R2) decreases. The full model (‘All’) exhibits the highest median R2 whereas upon

permutation of the values of hybrid performance (‘All (perm)’) the median R2 is almost null.

(PDF)

S1 Dataset. Metabolic (log10-transformed metabolite intensities) and biomass data (dt

ha-1) with field trial designation.

(XLSX)
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S1 Table. Encoded analytes and distribution of mode of inheritance classes. Rows corre-

spond to the 136 analytes, whereas columns correspond to the 332 crosses. Red, orange, yel-

low, blue and navy blue colors represent positive overdominance, positive dominance,

additivity, negative dominance and negative overdominance, respectively.

(XLSX)

S2 Table. Coefficient of variation (CV) and average Kappa per model and encoded analyte.

Coefficient of variation (CV = standard deviation / mean) and average Kappa across the five

independent test repetitions. The 41 encoded analytes are sorted by decreasing order of the

average Kappa (AVE KAPPA).

(XLSX)

S3 Table. Model parameterization for classification of mIPs. The table summarizes the

parameters tuned for maximizing the cross-validated Kappa with each of the seven methods.

Except PLS-DA, all methods were tuned using two parameters each.

(XLSX)

S4 Table. Model parameterization for prediction of hybrid performance. The table summa-

rizes the parameters tuned for maximizing the cross-validated R2 (resp. accuracy, AUC) with

SVR (resp. SVM).

(XLSX)

S1 Note.

(DOCX)
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