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Mutual information reveals multiple structural
relaxation mechanisms in a model glass former
Andrew J. Dunleavy1,2,3, Karoline Wiesner3,4, Ryoichi Yamamoto5 & C. Patrick Royall1,2,6

Among the key challenges to our understanding of solidification in the glass transition is that

it is accompanied by little apparent change in structure. Recently, geometric motifs have been

identified in glassy liquids, but a causal link between these motifs and solidification remains

elusive. One ‘smoking gun’ for such a link would be identical scaling of structural and dynamic

lengthscales on approaching the glass transition, but this is highly controversial. Here we

introduce an information theoretic approach to determine correlations in displacement for

particle relaxation encoded in the initial configuration of a glass-forming liquid. We uncover

two populations of particles, one inclined to relax quickly, the other slowly. Each population is

correlated with local density and geometric motifs. Our analysis further reveals a dynamic

lengthscale similar to that associated with structural properties, which may resolve the

discrepancy between structural and dynamic lengthscales.
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T
he nature of the glass transition has proved a long-standing
challenge in condensed matter. Whether there is a true
thermodynamic transition at finite temperature or whether

the structural relaxation time in glass-forming liquids diverges
only at zero temperature remains controversial. Furthermore, the
solidification that is manifested in the glass transition without any
significant change in structure assumed by the constituent
particles challenges the concept that structure should somehow
underlie dynamics. An understanding of this solidification
process is crucial in key emerging technologies. Metallic glass,
for example, exhibits superior mechanical properties compared
with other materials, but exploitation is limited because large
parts cannot be fabricated. A second example is chalcogenide
glassformers that are on the brink of commercialization in next-
generation non-volatile memory1.

Among the key developments in our understanding of the glass
transition in recent years is dynamical heterogeneity. Glassy
supercooled liquids do not relax uniformly but exhibit fast and
slow regions with an associated dynamic lengthscale which
grows on deeper supercooling1,2. Dynamical heterogeneity has
various interpretations: it may be due to the formation of
‘cooperatively rearranging regions’3, which undergo entropic
melting (random first-order transition (RFOT) theory3,4); the
hierarchical interactions of mobility excitations5; or the presence
of geometric motifs such as icosahedra6.

Some of these approaches3,4,6 anticipate an increasing dynamic
lengthscale that is accompanied by a rise in a structural
lengthscale. Furthermore, the super-Arrhenius increase in
relaxation times exhibited by many glassformers implies an
increasing structural lengthscale at sufficient supercooling7. Many
attempts have been made to find coincident increases in dynamic
and structural lengthscales2, but with mixed results: some find
identical scaling between a dynamic correlation length x4 fitted to
a four-point spatiotemporal ‘dynamic structure factor’8,9

in experiment10 and computer simulation11–13. However, others
find that while x4 increases strongly, structural correlation lengths
grow weakly if at all14–19. A significant unresolved question20

is why the four-point dynamic correlation length x4 (refs 9,19)
grows to around five to ten particle diameters12,19 in the regime
accessible to simulation (around five decades of increase in
relaxation time relative to a normal liquid), while values for the
dynamic correlation length obtained from indirect measurements
around the experimental glass transition (some 14 decades of
increase in relaxation time) also grow to around five to ten
diameters21. The limit of the regime accessible to simulation
roughly coincides with the mode-coupling transition at which
divergence of x4 is suggested from some simulation data8,19;
however, deeper quenching indicates a crossover in x4 behaviour
around the transition22.

This suggests at least two possibilities: first that the dynamic
length does not change significantly in the nine decades of
relaxation time between the simulation regime and the experi-
mental glass transition and indeed definitions other than x4

exhibit non-monotonic behaviour around the mode-coupling
transition, decreasing on deeper supercooling16. Second that
dynamic correlations of the kind envisioned in, for example,
cooperatively rearranging regions3,4 might in fact correspond to a
different lengthscale to that of x4. This brings us to consider
exactly what a dynamic lengthscale might measure. Cooperative
relaxation (correlation in particle motion) is an important
quantity, and has been identified with string-like motion23,24

and dynamic facilitation5. String-like motion implies mobile
regions with a fractal dimension o3, which may be understood
within Adam–Gibbs24 and RFOT theory25 at the limited degree
of supercooling accessible to simulation. RFOT theory predicts
more compact mobile regions at deeper supercooling25.

Here we use mutual information to identify the correlated
propensity, which underlies that dynamical heterogeneity is
encoded in the structure. We consider a glass former in the
isoconfigurational ensemble in which the system is simulated
many times from one equilibrium configuration but with
randomized dynamics: at the start time, t¼ 0, the particles in
each simulation are identically positioned; as t increases,
the trajectories of the simulations diverge26. Here the
propensity is the mean displacement of the particles averaged
across the isoconfigurational ensemble. Thus far, limited
connection between structure and dynamical properties in the
isoconfigurational ensemble has been found26–29, with the
notable exception of normal modes, which are correlated with
relaxation at very short times30 and larger ‘avalanche’ events on
longer timescales31. The isoconfigurational ensemble allows us to
measure correlations in particle dynamics that are encoded in the
initial configuration of the system. By determining the mutual
information in the displacement probability distributions of pairs
of particles, we find all pairwise correlations in the propensity.
Our analysis reveals two modes of correlated motion: ‘early’
correlations that involve mobile particles and ‘late’ correlations
between particles that remain immobile until long after the
structural relaxation time ta. These two populations are
associated with distinct geometric motifs and local density. We
further identify the lengthscale of dynamic correlations found by
our method whose magnitude is similar to correlation lengths
based on structural quantities.

Results
Correlated particles reveal two modes of relaxation. Our
analysis is based on isoconfigurational simulations of a five-
component system of hard spheres (see Methods) over a range
of volume fractions f, which undergoes a glass transition
at f0E0.608 according to the Vogel–Fulcher–Tamman fit
ta(f)¼ t0exp[A/(f0�f)] as shown in Fig. 1a. Here t0 is a
timescale in the normal liquid and A is a constant related to
the fragility1,19. Our system shows no sign of crystallization.
We quote length in units of the mean diameter and timescales
in simulation time units. In an isoconfigurational ensemble,
the displacement of the ith particle at a given time is a
random variable Xi(t). The randomness of such a variable
can be quantified by the Shannon entropy H XiðtÞ½ � ¼
�
P

x2X Pr XiðtÞ ¼ x½ �log2Pr XiðtÞ ¼ x½ � where X is the set
of possible values of Xi(t). The difference between the
Shannon entropy of two random variables and the sum of
the individual entropies is a measure of correlation between
those variables, the mutual information: I[Xi(t);Xj(t)]¼
H[Xi(t)]þH[Xj(t)]�H[Xi(t),Xj(t)] where i,j index a pair of
particles (see Methods). By measuring the mutual information
between these displacement distributions, we obtain a value for
the strength of the correlation in displacement of each pair of
particles in the system as a function of time. Here we consider
vector displacements between particles. We threshold the mutual
information values (see Fig. 1c) to define a set of significantly
correlated pairs of particles. For reasonable changes of the
threshold value, our results are unaffected: see Supplementary
Fig. 1. We define ni(t) as the number of particles whose position is
significantly correlated with that of particle i at time t and ta the
structural relaxation time as the time at which the intermediate
scattering function F(k,t¼ ta)¼ 1/e (see Methods). For f¼ 0.58,
ni(t) as a function of time is shown in Fig. 1c (other state points
are shown in Supplementary Fig. 2). The value of ni(t) can be
considered a proxy for the extent of collective motion that particle
i is engaged in. As one can see in Fig. 1b, the correlated partners
of a given particle tend to be arranged locally and in a reasonably
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compact manner. Whether these regions indeed become
more compact at deeper supercooling as predicted25 is worthy
of investigation, but would require large amounts of computer
time.

Figure 1d shows the mean ni(t) (averaged over the particles) for
different f and t. As f becomes larger the mean increases, with a
maximum at tBta for low f and at tota for high f. The system
of highest volume fraction demonstrates increased correlations at
‘early’ times (toota). This indicates that the relaxation dynamics
are changing qualitatively with volume fraction. This change in
relaxation mechanism is also seen in the standard deviation of the
ni(t) distribution (Fig. 1e). At low densities, there is a single peak
in the s.d. at long times, but as the volume fraction is increased an
earlier peak grows.

These two peaks motivate us to make a distinction between
particles with high ni(t) at the time of the earlier peak (‘early’
times) and those with the later peak ni(t) at t4ta (‘late’ times).
This distinction has dynamical implications. Figures 2a and b
show correlations between propensity and ni at short (positive
correlation) and long (negative correlation) times, respectively.
Figure 2c shows the Pearson correlation coefficient between ni(t)
and particle propensity. The propensity is determined by the
displacement of the particle in each trajectory and averaged
across the isoconfigurational ensemble. High ni(t) at late times is
anticorrelated with propensity and this effect increases in
magnitude with increasing f. Conversely, at early times and
high f, ni(t) is positively correlated with propensity. This positive
correlation grows with f in a similar manner to the early peak in

the variance of ni(t): we take this as further evidence that there is
a change in dynamical behaviour as f is increased. Below we
enquire as to the structural characteristics of these early- and late-
moving regions.

We note that there are no particles at any f that have high ni(t)
at early and late times. Figure 2d shows the joint distribution of
early and late ni(t) for a high density system (f¼ 0.58). We are
able to divide the particles into early (high propensity), late
(low propensity) and ‘normal’ populations on the basis of the
ni(t) measurements. The presence of high ni(t) particles (which
are also immobile) at t4ta indicates the presence of stable
structures in the initial configuration that have long lasting
influence over the dynamics. The distribution of points in
Fig. 2d shows the relative populations of particles in these two
modes of relaxation.

Distinct populations of particles are of course the hallmark of
dynamic heterogeneity. Recently, a population of particles with a
timescale shorter than ta has been related to diffusion, which
decouples from full structural relaxation (ta) in the Stokes–
Einstein breakdown24. A second population of particles in
immobile clusters has also been identified, which relaxed on
timescales around ta. We expect that our early-moving
population may be related to such diffusive behaviour, while
late-moving particles may correspond to the second (immobile)
population in ref. 24. In Fig. 1a, we show the relaxation times of
the fast and slow populations corresponding to the peaks in the
s.d. of ni in Fig. 1e. Like diffusivity24, the timescale of the fast
population departs from that of structural relaxation, while the
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Figure 1 | Identifying correlated partners. (a) ‘Angell’ plot of relaxation time as a function of f (black symbols) fitted with a Vogel–Fulcher–Tamman

form as defined in the text. Red data points are early peaks in e and blue data points are late peaks in e. (b) Examples of particles (red) and their

significantly correlated partners (blue) in a system with f¼0.58 at 0.01ta, 0.125ta and 8ta from top to bottom. Correlated partners are typically close

together. The particles are rendered actual size. (c) The distribution of ni (the number of significantly correlated partners, see text) at selected times with

f¼0.58. The inset shows a characteristic histogram of mutual information between particle displacements. The Gaussian distribution (red dotted line)

models the noise in the mutual information estimates. A threshold is used (dashed vertical line) to define significantly correlated particle pairs. (d) The

time evolution of the mean of the distribution of ni(t) for f between 0.52 and 0.58. (e) The standard deviation of the distribution of correlated partners ni(t)

for f between 0.52 and 0.58. Note the growth of an early peak as the volume fraction is increased.
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slow population shows some signs of approaching ta at deep
supercooling.

Correlations with structure. Since the correlations discussed
here are measured in the isoconfigurational ensemble, we know
that they have a structural origin. They must be caused by the
initial particle configuration as this is the only thing in common
between the different trajectories26. To investigate structural
features relevant to the collective motion, we consider two
measures of local structure. The first of these is the local volume
fraction (flocal) around a particle, which we define in a sphere of
radius r0 centred on the particle. The local volume fraction has a
pronounced effect on the correlated motion of the system.
Figure 3a shows Pearson correlation coefficients between flocal

and ni(t) for a high-volume fraction system f¼ 0.57 (other state
points are shown in Supplementary Fig. 3).

The effect of flocal depends on the radius r0 and we identify a
regime at very short times in addition to those so far discussed.

For r0 less than a particle diameter, we find a positive correlation
between high local volume fraction and ni(t) at very short time.
Particles with high flocal at very small r0 will be nearly in contact
with one or more neighbours. This does not guarantee that the
wider locality is particularly dense, but the potential for very early
collisions means that such particles have high ni(t) at very early
times. For all f, these correlations are strongest before the
‘early’ time period when ni(t) and propensity are correlated at
high f (see Fig. 2). When r0 is increased beyond a particle
diameter, there is a negative correlation between flocal and ni(t) at
early times and a somewhat stronger positive correlation at ‘late’
times (when ni(t) and propensity are anticorrelated). Since the
particle displacements become correlated with each other through
collisions, at the very earliest times the particles in the highest
density regions of the system have more correlated partners than
average (as they have had more opportunities to collide with
other particles). However, in terms of the early and late
populations highlighted in Fig. 2d, the former are more likely
to be situated in regions of lower local volume fraction whereas
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the late particles are in regions of higher local volume fraction.
Typically, the late-moving particles have mean flocal 0.01–0.02
higher than the whole system average flocal. Figure 3b shows the
mean flocal for early, late and all particles for a range of f. All
lengthscales over which the correlated motion is measured are
larger than typical displacements. For the f¼ 0.57 data shown in
Fig. 3a, the displacements are 0.23(0.15) and 0.44(0.71) at
t¼ 0.05ta and 4ta for the early/fast and late/slow populations,
respectively. Here the data in brackets are mean displacements for
the whole system at each time. Displacements of the different
populations at times relative to ta as a function of volume fraction
are given in Supplementary Fig. 4.

More remarkable is the correlation of flocal and ni(t) with
larger r0 (the results for r0¼ 1.6 and r0¼ 3.4 are qualitatively
similar). Here there is little correlation for low global volume
fraction systems (fo0.56, see Supplementary Fig. 3) but as f is
increased there is a notable positive correlation at taoto10ta
and anticorrelation at tB0.1ta shown in Fig. 3a. These two time
periods correspond to those associated with the early- and late-
relaxing particles. We find that late-relaxing particles are more
likely to exist in denser parts of the system. This is consistent with
the discussion below concerning the nature of the local structure
of the fast and slow regions. The increase in flocal associated with
late-relaxing particles is more pronounced than the reduction
associated with early-relaxing particles, see Fig. 3b. For example,
for f¼ 0.57, the average flocal (r0¼ 1.4) for early- and late-
relaxing particles (defined in the same way as the populations in
Fig. 2d in the main text) are 0.566 and 0.582, respectively
(compared with a system-wide average of 0.569). Supplementary
Fig. 5 shows plots of flocal versus ni(t) for f¼ 0.57 at t¼ 0.1ta
and t¼ 2ta. For f¼ 0.58, the equivalent figures are 0.576 and
0.586 for early and late particles compared with a system average
of 0.578.

Our second measure of local structure is the topological cluster
classification that is based on the bond network between particles
defined through a Voronoi decomposition (see Methods). This
identifies geometric motifs whose bond network is identical to
certain clusters. Particular clusters are known to be long-lived in
hard sphere systems19. For example, particles that participate in

10B and 13A (icosahedra) have higher ni(t) at tZta and (at high
densities) low ni(t) at toota indicating that these clusters are
correlated with stability at long times 4ta (see Fig. 4). These
stable clusters are geometrically related to each other: they are all
subclusters of 13A icosahedra or 12D (the 12D cluster exists
where there are interlocking 13A clusters), and all contain three-
and five-membered shortest-path rings but no four-membered
rings. These more stable clusters are notable for incorporating a
number of pentagonal bipyramid 7A clusters (a five-membered
ring with two neighbours). Since the particles can be part of more
than one cluster, we also show the number of pentagonal
bipyramids a particle is in which we express as #7A.

There are also clusters that are correlated with particles with
high ni(t) at early times (and thus with high propensity). The
largest is the 9A cluster, which is based on a triangular prism and
includes three four-membered rings but no pentagonal bipyramid
clusters. Other clusters that are correlated with early (fast)
particles include rings of 3, 4 and 5 particles (sp3a, sp4a and sp5a
clusters, respectively), which have no adjacent ‘spindle’ particles
bonded to all members of the ring. These clusters may be thought
of as ‘missing’ a bond, which may explain the reduced local
volume fraction associated with ‘fast’ particles. By contrast,
pentagonal bipyramids that optimize local packing are correlated
with more immobile regions.

Dynamic and static lengthscales. Our approach provides a
means to investigate the lengthscales of dynamic correlations and
directly compare them with other lengthscales such as those
associated with structural motifs and the four-point dynamic
correlation length x4. In Fig. 3c, we compare the lengthscales of
the correlated motion we measure in the isoconfigurational
ensemble to x4, which is calculated from a (standard) simulation
in the microcanonical ensemble (see Methods)8. We consider two
system sizes to mitigate any finite-size effects14. Also shown is a
structural lengthscale, x10B, which measures the size of domains
of 10B clusters determined through a fit to the density–density
correlation function of particles in 10B clusters (10B is associated
with the population of slow particles)19. To obtain x10B, we fit a
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real-space Ornstein–Zernike (OZ) envelope to the pair-
correlation function for particles in 10B clusters g10B(r): g10B(r)/
g(r)B1/r exp[� r/x10B]. Further details are provided in the
Methods.

We introduce two measures to determine the lengthscale of the
correlated dynamics in the isoconfigurational ensemble: xRG is the
radius of gyration of each particle and its significantly correlated
partners; xexp characterizes the decay of mutual information with
separation between significantly correlated pairs using an
exponential fit. Both are determined at the peak value of the
mean of ni(t) (Bta ) as shown in Supplementary Fig. 6. These
dynamic lengthscales depend on a variable cij(t) that is equal to 1
when particles i and j are significantly correlated and 0 otherwise.
xRG is calculated as the radius of gyration of particles that are
significantly correlated with a central particle (this is averaged
over all particles as the central particle). xexp is calculated by
plotting cij(t) as a function of the distance between particles i and
j and fitting an exponential with decay length xexp. In both cases,
we take the maximum value (over t) as the representative for each
f. A full description of these lengthscales is given in the Methods.

The structural correlation length x10B shows a modest increase
on increasing volume fraction, comparable to that previously
observed in a wide variety of systems using many different
measures2,14–19. A similar behaviour is found for both dynamic
correlation lengths, xRG and xexp. However, our results do not
match the rapid growth of the four-point dynamic correlation
length x4. Indeed, while the generic behaviour of ni(t) (Fig. 1) is
similar to the dynamic susceptibility w4(t) (see Supplementary
Fig. 7), a significant difference is found in that ni(t) is rather
weakly dependent on f compared with w4(t).

Here we discuss the meaning of the difference between the
measures of correlated dynamic motion we have introduced, xRG

and xexp, compared with x4. First we consider any consequences
of working with the isoconfigurational ensemble which, alas, does
not lend itself to measurements of an equivalent of x4 due to the
lack of statistics. We therefore determine the dynamic suscept-
ibility w4, which we show in Supplementary Fig. 7. In the
dynamical regime accessible to simulation, the isoconfigurational
ensemble leads to a drop in w4 relative to the microcanonical
ensemble. In other models, x4 appears around a factor of 2 lower
in the isoconfigurational ensemble19,32 and we see no reason to
suppose our hard spheres would be significantly different19.
Therefore, even within the isoconfigurational ensemble, x4 is
expected to be rather larger than the dynamic length we measure.
We thus conclude that our findings should not, in a qualitative
sense, depend on the ensemble. Instead, the reason our dynamical
lengths are smaller than x4 is that the correlated motion we
measure considers whether particles influence the behaviour of
one another and the range over which this occurs. In other words,
we measure cooperative motion of the kind envisioned in the
Adam–Gibbs and RFOT theories1,3,4,33.

On the other hand, x4 measures how large the fast and slow
regions tend to be in the system, and can be affected by the average
distance between propensity excitations5 and potentially by
coupling between different mobile regions25. These do not
contribute to our measurements unless the motion is correlated
throughout although it is worth noting that propensity excitations
typically have the same lengthscale as xRG and xexp. Alternatives to
x4 have also been proposed, for example, defining a lengthscale by
considering broken bonds rather than mobility, xb. A recent
comparison with x4 indicates a similar behaviour between xb and
x4 (ref. 34). It is also possible to use quenched disorder to define a
dynamic length16. Such lengths do not increase as markedly as x4.
In fact, there is some decrease around the mode-coupling
transition that could be related to more compact mobile regions
at deeper supercooling25 and perhaps to structural lengthscales.

Since the structural length x10B behaves similarly to the
lengthscales of collective motion xRG and xexp, we suggest that a
link between structure and dynamics may be identified through
our method. Therefore, one possible resolution of the disparity
between structural and dynamic lengthscales identified pre-
viously2,15–19 is to consider dynamic lengthscales, which measure
the correlated motion. Here we have considered one model that
has specific local structures. However, in other models, although
the local structure is different, it has been shown15,18,19 that the
structural correlation lengthscales in a similar manner. Even if the
local structure may be hard to define (or not yet known), we note
that order-agnostic methods give similar behaviour for the
structural correlation lengths as we have considered here15,17. In
2D12,35 and where there can be local hexagonal order11,12, the
structural correlation length can be larger. Our analysis, therefore,
pertains to model systems with relatively high glass-forming
ability, and, for example, to metallic glassformers that exhibit
similar structural behaviour36. We find it tempting to imagine
that a correlation length related to the glass transition increases
rather more slowly than x4 in a manner consistent with structural
lengths and the dynamic lengthscales we have measured.

Discussion
By computing the mutual information between the vector
displacements of particles in an isoconfigurational ensemble of
polydisperse hard spheres, we have been able to identify
correlations between structure and dynamics that until now have
escaped detection. The initial configuration in the system
influences relaxation by predisposing particular particles to
collective motion26. In particular, encoded in the initial
structure is a population of particles with low propensity that
undergoes highly correlated motion at times longer than the
structural relaxation time ta. These slow particles are found in
regions of high local density and are associated with geometric
motifs based on pentagonal bipyramids. Approaching the glass
transition as the system becomes more dense, collective
rearrangement becomes more important to early relaxation and
we find groups of dynamically correlated early-moving fast
particles. These fast particles are associated with distinct, less-
stable structural motifs with lower local density, and we expect
that these are also correlated with low-frequency ‘soft’ normal
modes30. Our results are consistent with a change in dynamical
behaviour towards relaxation via cooperatively rearranging
regions3,4. However, one could also consider the early
correlations we find as propensity excitations5.

We offer a resolution to the conundrum concerning structural
and dynamic lengthscales based on the four-point length x4:
considering correlated motion in the isoconfigurational ensemble
provides a means to identify a dynamic length attributed to
cooperative rearrangements. This lengthscale is similar in
magnitude and increases weakly with supercooling in a similar
way to lengthscales based on structural measures. We recall that
the rate of increase of the four-point length x4 with supercooling
(see Fig. 3c) in the regime accessible to computer simulation is
sufficiently rapid as to be inconsistent with dynamic lengthscales
inferred at the molecular glass transition2,20,21. It is possible that
such a rapid increase in dynamic lengthscale as that exhibited by
x4 is not sustained on deeper supercooling16,22. Conversely, the
dynamic correlation lengths we have identified are similar to
those found directly from structural quantities and thus may
increase continuously on supercooling towards the molecular
glass transition. We hope that our work will stimulate the
development of other measures of dynamic lengthscales focussing
on correlated motion and will lead to a consensus of similar
scaling of structural and dynamical lengthscales.
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Methods
Isoconfigurational ensemble. The simulations were carried out using a poly-
disperse mixture of 1,372 hard spheres of equal mass but with different relative
diameters (0.799s, 0.861s, 0.899s, 0.938s and s)19. This mixture was evolved with
event-driven molecular dynamics using the DynamO package37 for a range of
volume fractions between f¼ 0.52 and f¼ 0.58. The relaxation time ta of the
system was calculated from the self-intermediate scattering function FqðtÞ ¼
N � 1

PN
j¼1 exp � iq: xjðtÞ� xjð0Þ

� �� �
where N is the number of particles and xj(t) is

the position of particle j at time t. We spherically averaged this expression over
|q|¼ 2p/s. In the isoconfigurational ensemble, an (equilibrium) configuration was
chosen for a set of 2,048 simulation runs. Each run was started with different
random initial velocity coordinates (drawn from the Maxwell–Boltzmann
distribution). Four isoconfigurational ensembles were simulated at each state point.

Mutual information. The set of particle displacements {ri(t)} of the system in the
isoconfigurational ensemble is a random variable X(t) with a probability density
function (pdf) fX(t)({ri(t)}). We are interested in the displacements of individual
particles: these are the random variables Xi(t) (i indexes the particles). The prob-
ability density function (pdf) of one particle fXi(t)(ri(t)) and the joint pdf of two
particles fXi(t),Xj(t)(ri(t),rj(t)) are marginal distributions of fX(t)({ri(t)}). The mutual
information between two
continuous random variables X and Y is defined as:

I X; Yð Þ ¼
Z Z

dxdy fXY ðx; yÞlog
fXY ðx; yÞ

fXðxÞfY ðyÞ
: ð1Þ

where fX(x) is the probability density function of the variable X. I(X;Y) is a
non-negative function and measures the amount of correlation between X and Y
(ref. 38).

The mutual information between the displacements of particles i and j at time t
in a given isoconfigurational ensemble was quantified using the Kraskov–
Stögbauer–Grassberger estimator39. We define two particles to be significantly
correlated if their mutual information Iij(t) is greater than a threshold I0 whose
value was chosen based on the noise floor of the mutual information measurements
(see Fig. 1c inset). On the basis of this threshold, we denote the number of
significantly correlated partners a particle i has at time t by ni(t). It is possible that
the thresholding could introduce artefacts. However, our results are robust to large
variations in the threshold value: changing the threshold merely rescales the ni(t)
values, and the mean and s.d. of ni(t) at each time and state point. Supplementary
Fig. 1 shows the effects of varying the mutual information threshold on the
correlation between ni(t) and particle mobility (measured using the Pearson
correlation coefficient). Here we set the threshold I0¼ 0.2 nats. We see that
the correlation values in change little except for I0r0.12. At these values, the
threshold is well below the noise threshold of our measurements.

Lengthscales in the system. To obtain x10B, we fit an OZ envelope to the spatial
correlations of the pair-correlation function of particles in 10B clusters.

g10BðrÞ
gðrÞ �

1
r

exp � r
x10B

� �
; ð2Þ

where

g10BðrÞ
gðrÞ ¼

P
ioj

w10BðiÞw10BðjÞ d r� xið0Þ� xjð0Þ
�� ��� �

P
ioj

d r� xið0Þ� xjð0Þ
�� ��� � : ð3Þ

where w10B(i) equals 1 for particles in 10B clusters and zero otherwise.
To measure the four-point dynamic correlation length, x4 we calculate the

dynamic susceptibility w4(t) from the immobile particles in the system where

w4ðtÞ ¼
V

N2kBT
QðtÞ2
	 


� QðtÞh i2
� �

; ð4Þ

QðtÞ ¼
XN

i¼1

XN

j¼1

w xi tþ t0ð Þ� xj t0ð Þ
�� ��� �

: ð5Þ

Here i and j index the particles and the overlap function w(|xi(tþ t0)� xj(t0)|) is
defined to be unity if |xj(tþ t0)� xl(t0)| ra, 0 otherwise, where a¼ 0.3.
Supplementary Fig. 7 shows w4(t) for various volume fractions. w4(t) exhibits a peak
at t¼ th, which corresponds to the timescale of maximal heterogeneity in the
dynamics of the particles. We then construct the four-point dynamic structure
factor S4(k,t):

S4ðk; tÞ ¼ 1
Nr

X
ij

w xi tþ t0ð Þ� xi t0ð Þj jð Þw xj tþ t0ð Þ� xj t0ð Þ
�� ��� �

e� ik�xi t0ð Þ

* +
;

ð6Þ

where i and j are particle indices and k is the wavevector. The four-point dynamic
correlation length x4 was then obtained by fitting an OZ function to the spherically
averaged S4(k,th) (ref. 8).

We calculate two dynamic lengthscales based on the mutual information. Let
the variable cij(t) be equal to 1 when particles i and j are significantly correlated and
zero otherwise and we determine a radius of gyration at time t and volume fraction
f as

Rg f; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ioj

cijðtÞ xið0Þ� xjð0Þ
�� ��2
P

j
cijðtÞ

vuuuut : ð7Þ

The second length we introduce, xexp, was calculated from the mutual
information at time t and particle distance r,

Iðr; tÞ ¼

P
ij

IijðtÞd r� xið0Þ� xjð0Þ
�� ��� �

P
ij
d r� xið0Þ� xjð0Þ

�� ��� � : ð8Þ

We fit an exponential function I(r,t)Bexp[� r/xexp(t)] to define xexp.
Supplementary Fig. 6 shows both Rg(f,t) and xexp(f,t) for various f. To obtain

a single length for a given f, we follow the procedure for calculating the dynamical
correlation length x4: we take the maximum value for each f

xRG fð Þ ¼ max
t

Rg f; tð Þ
� �

; ð9Þ

xexp fð Þ ¼ max
t

xexp f; tð Þ
� �

: ð10Þ

The value of t that maximizes these lengths generally coincides for a given f. For
xexp with lower f, the mutual information values are small enough (compared with
the noise floor) to make exponential fitting unreliable. In these cases, we take x(f)
as the maximum value for the reliable fits and make sure that this value is at a time
t close to that which maximizes Rg(f,t).
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scale at the glass transition. Phys. Rev. Lett. 104, 205704 (2010).

14. Karmakar, S., Dasgupta, C. & Sastry, S. Growing length and time scales in
glass-forming liquids. Proc. Natl Acad. Sci. USA 106, 3675 (2009).

15. Hocky, G. M., Markland, T. E. & Reichman, D. R. Growing point-to-set length
scale correlates with growing relaxation times in model supercooled liquids.
Phys. Rev. Lett. 108, 225506 (2012).

16. Kob, W., Roldán-Vargas, S. & Berthier, L. Non-monotonic temperature
evolution of dynamic correlations in glass-forming liquids. Nat. Phys. 8,
164–167 (2011).

17. Dunleavy, A. J., Wiesner, K. & Royall, C. P. Using mutual information to
measure order in model glass-formers. Phys. Rev. E 86, 041505 (2012).

18. Charbonneau, P. & Tarjus, G. Decorrelation of the static and dynamic length
scales in hard-sphere glass formers. Phys. Rev. E 87, 042305 (2013).

19. Royall, C. P., Malins, A., Dunleavy, A. J. & Pinney, R. Strong geometric
frustration in model glassformers. J. Non-Cryst. Solids 407, 34–43 (2014).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7089 ARTICLE

NATURE COMMUNICATIONS | 6:6089 | DOI: 10.1038/ncomms7089 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


20. Harrowell, P. in The Length Scales of Dynamic Heterogeneity: Results from
Molecular Dynamics Simulations (eds Berthier, L., Biroli, G., Bouchaud, J.-P.,
Cipelletti, L. & van Saarloos, W.) (Oxford Univ. Press, 2009).

21. Berthier, L. et al. Direct experimental evidence of a growing length scale
accompanying the glass transition. Science 310, 1797–1800 (2005).

22. Flenner, E. & Szamel, G. Dynamic heterogeneities above and below the
mode-coupling temperature: Evidence of a dynamic crossover. J. Chem. Phys.
138, 12A523 (2013).

23. Donati, C. et al. Stringlike cooperative motion in a supercooled liquid. Phys.
Rev. Lett. 81, 2338–2341 (1998).

24. Starr, F. W., Doulas, J. F. & Sastry, S. The relationship of dynamical
heterogeneity to the Adam-Gibbs and random first-order transition theories of
glass formation. J. Chem. Phys. 138, 12A541 (2013).

25. Stevenson, J. D., Schmalian, J. & Wolynes, P. G. The shapes of cooperatively
rearranging regions in glass-forming liquids. Nat. Phys. 2, 268–274 (2006).

26. Widmer-Cooper, A. & Harrowell, P. Predicting the long-time dynamic
heterogeneity in a supercooled liquid on the basis of short-time heterogeneities.
Phys. Rev. Lett. 96, 185701 (2006).

27. Widmer-Cooper, A. & Harrowell, P. Free volume cannot explain the spatial
heterogeneity of debye-waller factors in a glass-forming binary alloy. J. Non-
Cryst. Solids 352, 5098–5102 (2006).

28. Berthier, L. & Jack, R. Structure and dynamics in glass-formers: predictability at
large lengthscales. Phys. Rev. E 76, 041509 (2007).

29. Hocky, G. M., Coslovich, D., Ikeda, A. & Reichman, D. Correlation of local
order with particle mobility in supercooled liquids is highly system dependent.
Phys. Rev. Lett. 113, 157801 (2014).

30. Widmer-Cooper, A., Perry, H., Harrowell, P. & Reichman, D. Irreversible
reorganization in a supercooled liquid originates from localized soft modes.
Nat. Phys. 4, 711–715 (2008).

31. Candelier, R. et al. Spatiotemporal hierarchy of relaxation events, dynamical
heterogeneities, and structural reorganization in a supercooled liquid. Phys.
Rev. Lett. 105, 135702 (2010).

32. Berthier, L. & Tarjus, G. Nonperturbative effect of attractive forces in viscous
liquids. Phys. Rev. Lett. 103, 170601 (2009).

33. Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 476, 51–124 (2009).
34. Shiba, H., Kawasaki, T. & Onuki, A. Relationship between bond-breakage

correlations and four-point correlations in heterogeneous glassy dynamics:
Configuration changes and vibration modes. Phys. Rev. E 86, 041504 (2014).

35. Sausset, F. & Tarjus, G. Growing static and dynamic length scales in a
glass-forming liquid. Phys. Rev. Lett. 104, 065701 (2010).

36. Royall, C. P. & Williams, S. R. The role of local structure in dynamical arrest.
Preprint at http://arXiv.org/abs/1405.5691 (2014).

37. Bannerman, M. N., Sargant, R. & Lue, L. Dynamo: a free o(n) general
event-driven simulator. J. Comp. Chem. 32, 3329–3338 (2011).

38. Cover, T. M. & Thomas, J. A. Elements of information theory (Wiley-
Interscience, 1991).
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