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Objective. Oral leukoplakia (OLK) is the most common precancerous lesion in the oral cavity. -is study aimed to explore key
biomarkers for monitoring OLK for early diagnosis of oral squamous cell carcinoma (OSCC) and screen small-molecule drugs for
the prevention of OSCC. Method. -e Gene Expression Omnibus (GEO) database was explored to extract two microarray
datasets, namely, GSE85195 and GSE25099. -e data of the normal group, OLK group, and OSCC group were analyzed by
weighted gene coexpression network analysis (WGCNA) to identify the most significant gene module and differentially expressed
genes (DEGs). -e intersection genes were extracted as the key genes of OLK carcinogenesis. Subsequently, Gene Ontology (GO)
and Kyoto Encyclopedia of Genes andGenomes (KEGG) pathways were analyzed in themodule. ConnectivityMap andmolecular
docking were used to screen small-molecule drugs. -e diagnostic values of four key genes were identified and verified in the
GSE26549 dataset. Results. WGCNA obtained the red module (r� −0.91, p< 0.05) with the strongest correlation with cancerous
phenotype. GO enrichment analysis showed 60 pathways, including 28 biological processes, 11 cell components, and 21 molecular
functions, and KEGG enrichment analysis showed 4 pathways (p< 0.05). In the differential expression analysis, there was no
intersection between the upregulated genes and the red module genes. However, the intersection of the downregulated genes and
the red module genes yielded 4 key genes: dopachrome tautomerase (DCT), keratin 3 (KRT3), keratin 76 (KRT76), and FAM3
metabolic regulation signal molecule B (FAM3B). -e area under the curve of the diagnostic model constructed by these four
genes was 0.963 (CI� 0.913–1.000). -e sensitivity was 0.933, and the specificity was 0.923. -e diagnostic model was successfully
verified in GSE26549 (AUC� 0.745, CI� 0.638–0.851). Compared with the diagnostic models of the previous studies, the di-
agnostic efficiency of this model was the highest. -e small-molecule drugs, selumetinib and benidipine, were selected according
to the gene expression profile and showed binding activity when docking with the above molecules. Conclusions. -is study
provides new targets and drugs for OLK. -ese targets could be used as the key diagnostic molecules for long-term follow-up of
OLK. -e small-molecule drugs selumetinib and benidipine could be used for the prevention and treatment of OSCC.

1. Introduction

Oral leukoplakia (OLK) is a potentially malignant disease,
with an incidence of 409.2 per 100,000 persons in men and

70.0 in women [1]. -e pathological manifestations of OLK
are various degrees of abnormal epithelial hyperplasia,
which eventually progresses to malignant transformation
and invades the surrounding tissues [2]. OLK is the most
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common precancerous lesion in the oral cavity.-emalignant
transformation rate is between 1% and 40% [3]. Clinically,
photodynamic therapy, microwave therapy, and surgical re-
section are usually used to prevent cancer development [4].-e
clinical manifestations and pathology of patients need to be
followed up andmonitored. Currently, there is no specific drug
for oral squamous cell carcinoma (OSCC) treatment. -ere-
fore, early diagnosis is an importantmeans to reducemorbidity
and mortality and improve prognosis. Due to the insidious
onset and nonspecific symptoms of OLK, the diagnosis of OLK
is often delayed. It is well known that changes in gene ex-
pression usually precede histopathological changes and are
closely associated with the progression of cancers [5]. -ere-
fore, abnormal gene expression has become a new perspective
for the early diagnosis of OLK.

Currently, there are no clear diagnostic methods to predict
whether OLK would become cancer. Cai et al. [6] found that
SPP1 increased as normal tissues progressed to OLK and
OSCC tissues. Fernanda Herrera Costa et al. [7] found that
ALDH1A1 was positive in OLK tissues and negative in OSCC
tissues, while ALDH1A2 was negative in OLK tissues and
positive in OSCC tissues, which can be used as potential
biomarkers for early detection of OSCC.However, thismethod
only focused on the effect of the single gene, which cannot
reveal the genetic relationship and build the relationship be-
tween genes and diseases. With the development of bio-
informatics, large-sample, high-throughput gene microarray
chip sequencing technology is increasingly used for the
screening of diagnostic biomarkers. -e most important
bioinformatic analysis method is weighted gene coexpression
network analysis (WGCNA). WGCNA is a method of con-
structing an expression network by using correlations between
genes to mine gene modules that are highly related to external
biological traits. It is highly sensitive to genes with small
fluctuations and magnifies potential organisms in functional
enrichment research. -e signal has been successfully used in
the analysis of a variety of diseases. Niemira et al. [8] used
WGCNA to identify 4 new molecular targets related to
nonsmall cell lung cancer, to gain an understanding of the
pathogenesis of the disease. Yang et al. [9] used WGCNA to
construct a four-gene prognostic model for liver cancer, and its
C-index has better predictive potential than TNM staging.

In this study, the combined mRNA sequencing data of
multiple microarray chips were used for WGCNA and
differential expression analysis, pathway enrichment anal-
ysis, and protein interaction network construction to obtain
key genes and pathways for OLK carcinogenesis. -e results
were used in centralized validation of external data. We also
screened small-molecule drugs that could prevent OLK from
becoming cancerous lesions through the Connectivity Map
database with molecular docking, providing a theoretical
basis for the clinical diagnosis and treatment of OLK. -e
flow chart of this study is shown in Figure 1.

2. Materials and Methods

2.1.MicroarrayChipExpressionDataSource. -e raw data of
GSE85195 [10] and GSE25099 [11] were downloaded from
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/

geo/) and processed using R software (4.0.5). Agilent’s
microarray sequencing chip was used in GSE85195; the
sample type was Homo sapiens tissue samples; and the se-
quencing platform was the GPL6480 (Agilent-014850Whole
Human GenomeMicroarray 4× 44K G4112 F). -e samples
included 1 normal tissue, 15 OLK tissues, and 34 OSCC
tissues. Affymetrix’s microarray sequencing chip was used in
GSE25099; the sample type was Homo sapiens tissue sam-
ples; and the sequencing platform was the GPL5175
(Affymetrix Human Exon 1.0 ST Array). -e samples in-
cluded 22 normal tissues and 57 OSCC tissues. -e detailed
information is shown in Table 1. -e normal-
izeBetweenArrays function of the limma package [12] and
the RMA method of the affy [13] package was used to
perform data standardization, normalization, and gene
annotation, remove probes without annotation information,
take the average expression when the same probe appears
multiple times, and take the common gene combined data in
the two datasets.-eComBatmethod of the sva package [14]
was used to remove batch effects between multiple datasets
to obtain a gene expression matrix.

2.2. Weighted Gene Coexpression Network Analysis
(WGCNA). WGCNA package [15] was used to perform
weighted gene coexpression network analysis: First, the
hclust function was used to cluster the above gene expression
matrix, remove outliers, and construct a gene relationship
network for all the gene data in the remaining samples. -e
pickSoft-reshold function was used to select the best soft
threshold. -en, the gene module was constructed, and
blockwiseModules function was used to identify gene
modules, set the minimum number of genes in the module
to 20, the maximum number of genes to 7,000, and the tree
cutting height value to 0.25. Finally, the correlation between
each gene module and the clinical phenotype was calculated,
moduleEigengenes function was used to calculate the
module eigengene (ME) in each module, and the first
principal component in the principal component analysis
result was used to express the gene expression in each
module. -e overall level of the module’s feature values was
compared with the normal samples, OLK samples, OSCC
samples, and status (status phenotype represented the dy-
namic process of progression from normal to OLK to
OSCC). Pearson’s correlation analysis was performed, the
modules with the strongest correlation with the phenotype
were selected, and the correlation coefficient was changed in
sequence with the progression of the disease.

2.3. Functional Enrichment Analysis of Gene Modules. In
order to dig deeper into the biological functions of gene
modules, the abovementioned selected gene modules were
subjected to Gene Ontology (GO) enrichment analysis and
Kyoto Encyclopedia of Genes and Genome (KEGG) en-
richment analysis, in the Database for Annotation, Visu-
alization, and Integrated Discovery (David, https://david.
ncifcrf.gov/Home.jsp). -e biological processes, cell com-
ponents, molecular functions, and KEGG pathways were
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selected, and the results were exported to obtain pathways
related to OLK and OSCC.

2.4. �e Protein Interaction Network Diagram of Gene
Modules. -e genes in the module with the strongest cor-
relation with the clinical phenotype in the WGCNA results
were extracted, and the STRING online database (https://
string-db.org/) was used to score the genes in the module to
predict the possibility of protein interactions and construct a
protein-protein interaction network diagram. -e more
complex the structural relationship, the more important the
core gene was in the development of the disease.-e analysis
results were imported into Cytoscape (v3.8.2), and the
maximal clique centrality (MCC) algorithm in the cyto-
Hubba plugin was used to mark the top 10 key genes.

2.5.Differential ExpressionAnalysis. We compared the three
groups of samples in the abovementioned high-throughput
gene expression matrix pair by pair, and the limma package
[12] in R software (4.0.5) was used for differential expression
analysis. -e calculation method of the difference between
any two groups was that the latter was compared with the
former. -e ratio was the fold change (FC) value, and then,

the logarithmic value based on 2 was used. -is value was
represented by log2FC. If the log2FC value is greater than 0, it
means that the latter was higher than the former. It was an
upregulated gene and was represented by red. Otherwise, it
is downregulated gene and was indicated in blue. According
to the FDR criterion proposed by Benjamini and Hochberg
in 1995, the adjusted p value was calculated by multiplying
the p value by the ranking of the gene in the total genes. In
differential gene expression analysis, the difference was
considered to be meaningful when the multiplicity of dif-
ference was greater than 2, filter |log2FC| greater than 1, p

value less than 0.05, and adjusted p value less than 0.05 as
filter conditions. -e volcano map and heat map were
drawn. R software was used to compare the upregulated
genes and downregulated genes of the three groups of
normal, OLK, and OSCC with the most clinically relevant
gene modules and drew the Venn diagram to obtain the key
genes. -e key genes were used as a diagnostic model to
identify whether OLK was cancerous.

2.6. Small-Molecule Drug Prediction. Connectivity Map
(https://clue.io/) is a database of chemical reagent action
expression profiles. Researchers can use gene expression
profiles to match chemical drugs in the database. -e degree

Table 1: Microarray chip expression data source.

Year Series Experiment type Company Platform Sample type Normal OLK OSCC
2017 GSE85195 Expression profiling by array Agilent GPL6480 Tissue 1 15 34
2011 GSE25099 Expression profiling by array Affymetrix GPL5175 Tissue 22 0 57
Total 23 15 91
OLK : oral leukoplakia; OSCC : oral squamous cell carcinoma.

GSE85195 from GEO database
(including 1 normal sample, 15 OLK samples and 34 OSCC samples)

GSE25099 from GEO database
(including 22 normal sample and 57 OSCC samples)

A new dataset including 23 normal samples, 15 OLK samples and 91 OSCC samples

Weighed Gene Co-expression Network Analysis Differential Expression Analysis

Gene Ontology and 
Kyoto Encyclopedia of 
Genes and Genomes 
Pathway Enrichment

Visualization of core
genes by Cytoscape

Protein-protein
interaction

network analysis 

Molecular
docking

Small molecule 
drug screening by 
Connectivity Map

Extract gene 
expression profile 
of OLK vs OSCC

Identify key genes by taking intersection

Receiver 
operating 

characteristic 
curve analysis

Verification of
expression and

diagnostic efficiency in
GSE26549 

Compare the diagnostic 
model of previous 

studies

Pan cancer
analysis

Survival Analysis
(OS and PFS)

Verify tissue 
expression by 

Human Protein 
Atlas

Remove batch effect and merge them

Data
preprocessing 

Data analysis

Validation

Figure 1: Flow chart of this research.
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of enrichment is expressed by scores. A positive number
means that the chemical drug action is the same as the ex-
pression profile results. Negative numbers represent the
opposite.-e higher the score, the more similar and the better
the prediction effect. -e gene expression profile of OLK vs.
OSCC was entered into the Query tool in the database. We
entered the 150 upregulated genes and 150 downregulated
genes with the largest fold difference, and the top 5 small-
molecule chemical drugs with the highest scores in the results
were selected to be molecularly docked with key genes.

2.7. Molecular Docking. -e three-dimensional structure of
the protein molecules was downloaded from the AlphaFold
database (https://alphafold.ebi.ac.uk/), and the small-mole-
cule drugs were downloaded from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/). -e AutoDock Vina
1.2.0 for molecular docking was used for analyzing the three-
dimensional structure.-e PyMOL 2.5.2 software was used to
draw three-dimensional docking images, and the Discovery
Studio 2021 software was used to draw two-dimensional
docking images. It is generally believed that when the binding
energy is less than −4.25 kcal/mol, there is a certain binding
activity between the small-molecule drug and the protein.
When the binding energy is less than −5.0 kcal/mol, it is
considered that the two have good binding activity, and when
the binding energy is less than −7.0 kcal/mol, it is considered
that the two have strong binding activity.

2.8. Verification in the ExternalDataset. -eOLK group and
OSCC group were extracted in the dataset of this study, and
the expression level and diagnostic efficacy of the diagnostic
model were compared. -en, GSE26549 [16] was used to
verify the diagnostic model. Affymetrix’s microarray se-
quencing chip was used in GSE26549; the sample type was
Homo sapiens tissue samples; and the sequencing platform
was the GPL6244 (Affymetrix Human Gene 1.0 ST Array).
-e samples included 86 OLK tissues. -e median follow-up
time was 6.08 years, and 35 of the 86 patients developed
OSCC over the course. R software (4.0.5) was used to
compare the expression differences of four key genes in
different pathological grades of OLK. Since the samples of
the severe dysplasia were less than 3, 2 severe dysplasia
samples and 1 sample without pathological type were not
included in the study. But all samples are included in the
comparison of hyperplasia and dysplasia. -en, the receiver
operating characteristic curve (ROC) is analyzed, and the
diagnostic performance of different diagnostic models in the
dataset is compared. In order to dig deeper into the func-
tions of the key genes, the Gene Expression Profiling In-
teractive Analysis (GEPIA, http://gepia.cancer-pku.cn/)
database was used to calculate the overall survival rate and
disease-free survival rate, and its expression characteristics
were observed in tumors.

2.9. Protein Expression in Healthy and Tumor Tissues. -e
Human Protein Atlas (HPA, http://www.proteinatlas.org/)
database provides multispecies, multitissue, and multisite

immunohistochemical staining sections, including a large
number of normal tissues and cancer tissues. It contains
immunohistochemical staining results of a variety of pro-
teins and currently contains more than 26,000 kinds of
antibodies. It was used to compare the expression levels of
key genes in the normal head and neck tissues and squamous
cell carcinoma tissues.

3. Results

3.1. Removal of the Batch Effect of Gene Expression Profiling
Chip. After the two datasets of GSE85195 and GSE25099
were merged, they contained 13,905 genes and 129 samples,
including 23 normal tissue samples, 15 OLK samples, and 91
OSCC samples. -ere were no missing values in the gene
expression matrix. Figure 2 shows the principal component
analysis (PCA) results before and after batch correction.
Before the batch correction, the datasets were clustered and
the datasets were separated, indicating that there was an
obvious batch effect. After batch correction, the datasets
were clustered and the tissue samples were separated, in-
dicating that the batch effect had been removed and could be
used for subsequent analysis.

3.2. Construction of Gene Coexpression Network. We per-
formed cluster analysis on all samples and found no outliers
(Figure 3(a)), so all samples were included for subsequent
analysis. First, we constructed a gene relationship network:
when R2 is more than 0.8 and the average connectivity is less
than 100 (Figures 3(b) and 3(c)), the best soft threshold was
selected as 6. -en, we constructed the gene module
according to the selection of the above soft threshold. When
the branch height was less than 0.25, it was considered that
the gene similarity exceeds 75% and could be merged into
one module, and the genes that cannot match any module
were merged into a gray module. A total of 23 modules were
identified (Figure 3(d)).

Subsequently, cluster analysis was performed on all gene
modules (Supplementary Figure 1A), and a correlation heat
map was drawn (Supplementary Figure 1B). It was found
that each gene module has little correlation with other
modules and has a strong correlation with its own module.
-e adjacency relationship or topological overlap relation-
ship was represented by a heat map (Supplementary Fig-
ure 2), and it was found that each gene had a strong
correlation with the module gene. -e correlation between
the genes in the module was represented by a density map
(Supplementary Figure 3). It was found that except for the
gray module, the correlation coefficients of genes and
modules in other modules were all basically distributed
above 0.5, indicating that the genes in the module were
highly correlated with each related module. -ese results
suggested that the module construction was reasonable.
Supplementary Figure 4 shows the relationship between
module connectivity and genes. -e connectivity of each
gene in the module was the sum of its correlation with other
genes. We found that except for the gray module, the greater
the correlation coefficient between a gene and a module, the
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Figure 2: PCA before batch correction (a) and PCA after batch correction (b). -e shapes represent different datasets, the circle is
GSE25099, the triangle is GSE85195, the colors represent different tissue samples, dark blue represents normal tissue, red represents OLK
tissue, and green represents OSCC tissue.
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Figure 3: Continued.
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Figure 3: Sample clustering, and no outlier samples are generated (a).-e relationship between the scale-free topology model fit and the soft
threshold (b). -e relationship between mean connectivity and soft threshold (c). Gene coexpression module construction, Dynamic
Module is the result of the premerged module, and Merged Module is the result of the merged module (d). Heat map of the correlation
between the module and the clinical phenotype (e), red represents positive correlation, and blue represents negative correlation. -e
relationship between the GS and the MM of the red module gene (f-i). -e relationship of normal (f ). -e relationship of OLK (g). -e
relationship of OSCC (h).-e relationship of status (i). -e gene expression level of the module eigengene of the red module in each sample
(j), the abscissa is the sample, the ordinate is the gene expression in the red module, red represents high expression, green represents low
expression, the top is the heat map, and the bottom is each module eigengene of the red module in the sample.
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Figure 4: Continued.
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Figure 4: Circle graph shows the results of pathway enrichment analysis. -e left half circle represents the gene, the right half circle
represents the enriched pathway, and the two are connected by color bands (a-d). Biological process (a). Cellular component (b). Molecular
function (c). KEGG pathway (d). Protein-protein interaction network (e), dots represent proteins, lines represent interactions, and the
upper right corner is the gene encoding the protein.-e top 10 core genes in the network (f).-e darker the color, the more central the gene
is in the network.
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greater the mean connectivity of the gene, the more the gene
was at the core of the module, and the network in each
module conforms to the scale-free network.

Finally, the correlation between the gene module and the
clinical phenotype was analyzed (Figure 3(e)). It was found
that the red module had the strongest correlation with the
disease development (r� −0.91, p � 2e − 50), which con-
tained a total of 435 genes. -e correlation coefficient of
modular genes gradually decreased with the progression of
the disease. Figures 3(f)–3(i) show the correlation analysis of
module membership (MM) and gene significance (GS) in
the red module for the four phenotypes of normal, OLK,
OSCC, and status. MM was the correlation between gene
expression and module eigengene, and GS was the corre-
lation coefficient between gene and phenotype. -e corre-
lation coefficient in the normal group was 0.87
(p � 1.6e − 135), the correlation coefficient in the OLK
group was 0.52 (p � 1.7e − 31), the correlation coefficient in
the OSCC group was 0.96 (p< 1e − 200), and the correlation
coefficient in the status group was 0.97 (p< 1e − 200). We
found that in the red module, MM and GS were related to
the phenotype genes with stronger correlations that had
higher module eigenvalues, and red modules were highly
correlated with each phenotype. -e expression trend of the
red module gene in the sample showed that as the char-
acteristic value of the module increases, the expression of the
gene in the sample increases (Figure 3(j)), indicating that
this module gene could be used to describe the sample.

3.3. Functional Enrichment Analysis. -ere were 60 GO
analysis results, including 28 biological processes, 11 cell
components, and 21 molecular functions (p< 0.05), sorted
by p value from small to large. Figure 4(a) shows the top 10
biological processes, which were mainly related to melanin
biosynthetic process, vitamin D metabolic process, exog-
enous drug catabolic process, xenobiotic metabolic process,
mammary gland epithelial cell differentiation, left/right
axis specification, ion transport, steroid metabolic process,
biotin metabolic process, and epithelial cell differentiation.
Figure 4(b) shows the first 10 cellular components, which
were mainly related to melanosome membrane, melano-
some, organelle membrane, cell cortex, extracellular exo-
some, endosome membrane, mitochondrion, intermediate
filament, extrinsic component of membrane, and seroto-
nin-activated cation-selective channel complex. Figure 4(c)
shows the first 10 molecular functions, which were mainly
related to oxidoreductase activity/acting on paired donors/
with the incorporation of or reduction in molecular oxy-
gen, monooxygenase activity, heme binding, protein
homodimerization activity, oxidoreductase activity, iron
ion binding, steroid hydroxylase activity, oxygen binding,
transcription factor binding, and transcription corepressor
activity. -ere were 10 KEGG analysis results totally
shown in Figure 4(d), which were mainly related to 4
statistically significant pathways. -ey were metabolic
pathways, drug metabolism-cytochrome P450, linoleic acid
metabolism, and arginine and proline metabolisms
(p< 0.05).

3.4. Construction of a Protein Interaction Network Diagram.
-e genes in the red module were entered into the STRING
database, Homo sapiens were selected as the species, and the
noninteracting proteins were hidden. -ere were a total of
342 pairs of protein interactions. -e network diagram
formed is shown in Figure 4(e). -e MCC algorithm in
Cytoscape software could predict the protein or gene at the
core position in the network and highlight the first 10 types.
-e darker the color indicated, the gene wasmore likely to be
the core gene. -ese genes were as follows: TP53, UBC,
CYP3A4, GTPBP4, RBM28, DCT, TYR, TYRP1, PDCD11,
and CYP2C19 (Figure 4(f )).

3.5.DifferentialExpressionAnalysis. -e results of a pairwise
comparison of the normal group, the OLK group, and the
OSCC group showed that in comparing the normal group
with the OSCC group, 176 genes were screened out
according to the filter conditions, among them 101 genes
were upregulated and 75 genes were downregulated
(Figure 5(a) and 5(b)); in comparing the OLK group and the
OSCC group, 780 genes were screened out, and among
them, 337 genes were upregulated and 443 genes were
downregulated (Figures 5(c) and 5(d)); in comparing the
normal group with the OSCC group, 847 genes were
screened out, and among them, 419 genes were upregulated
and 428 genes were downregulated (Figures 5(e) and 5(f )).
-e results of the pairwise difference analysis among the
normal group, the OLK group, and the OSCC group are
intersected with the genes in the red module. -ere was no
overlap in the upregulated genes, and there were 4 key genes
in the downregulated genes, which were the dopachrome
tautomerase (DCT) gene, keratin 3 (KRT3) gene, keratin 76
(KRT76) gene, and FAM3 metabolic regulation signal
molecule B (FAM3B) gene (Figures 5(g) and 5(h)). -ese
four key genes were marked in the volcano map.

3.6. Small-Molecule Drug Screening. -e Connectivity Map
database was used to compare and analyze the gene ex-
pression profile. We selected small-molecule drugs that
could adjust the expression profile and ranked the top 5
according to the scoring from high to low (Table 2). -e first
place was selumetinib, which was a MEK inhibitor andMAP
kinase inhibitor, with an enrichment score of −96.76. -e
second place was benidipine, which was a calcium channel
blocker and L-type calcium channel blocker with an en-
richment score of −95.74. -e third place was levetiracetam,
which was an acetylcholine receptor agonist, N-type calcium
channel blocker, and synaptic vesicle glycoprotein ligand,
with an enrichment score of −93.23. -e fourth place was
ampicillin, which was a cell wall synthesis inhibitor, with an
enrichment score of −92.88. -e fifth place was amino-
levulinic acid, which was an oxidizing agent, with an en-
richment score of −92.37.

3.7. Molecular Docking. We docked selumetinib and beni-
dipine with the four molecules that were DCT, KRT3,
KRT76, and FAM3B. -e binding energy results of

10 Journal of Oncology
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Figure 5: Continued.
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Figure 5: Volcano map of normal group vs. OLK group (a). -e dotted line in the figure is the filter condition, black means that the
difference is not obvious, red means upregulated genes, and bluemeans downregulated genes. Heat map of normal group vs. OLK group (b).
Listed as samples, behavioral genes, red represents the OLK group, blue represents the normal group, red represents upregulation in the heat
map, and dark blue represents downregulation. Volcano map of OLK group vs. OSCC group (c). Heat map of OLK group vs. OSCC group
(d). Volcano map of normal group vs. OSCC group (e). Heat map of normal group vs. OSCC group (f). Intersection of differential genes in
the healthy group, OLK group, and OSCC group compared with the genes in the red module (g-h). Upregulated genes (g). Downregulated
genes (h).

Table 2: Small-molecule drugs from the connectivity map database.

Rank ID Type Name Description Score

1 BRD-
K57080016 CP Selumetinib MEK inhibitor and MAP kinase inhibitor −96.76

2 BRD-
A35519318 CP Benidipine Calcium channel blocker and L-type calcium channel blocker −95.74

3 BRD-
K49404994 CP Levetiracetam Acetylcholine receptor agonist and N-type calcium channel blocker, synaptic

vesicle glycoprotein ligand −93.23

4 BRD-
A16754160 CP Ampicillin Cell wall synthesis inhibitor −92.88

5 BRD-
K57631554 CP Aminolevulinic

acid Oxidizing agent −92.37

ID : broad identity; CP: compound.
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Table 3: Binding energy of molecular docking.

No. Receptor Ligand Minimum
(kcal/mol)

-e average of the first five
smallest values (kcal/mol)

Average of all minimums
(kcal/mol)

vina1 DCT Selumetinib −5.7 −5.24 −5.03333
vina2 DCT Benidipine −8.2 −6.56 −5.95556
vina3 DCT Levetiracetam −5 −4.58 −4.25556
vina4 DCT Ampicillin −5.5 −5.46 −5.4
vina5 DCT Aminolevulinic acid −5.1 −4.7 −4.54444
vina6 KRT3 Selumetinib −4.8 −4.46 −4.31111
vina7 KRT3 Benidipine −4.8 −4.46 −4.3
vina8 KRT3 Levetiracetam −3.5 −3.28 −3.15556
vina9 KRT3 Ampicillin −4.8 −4.6 −4.53333

vina10 KRT3 Aminolevulinic-
acid −2.9 −2.86 −2.76667

vina11 KRT76 Selumetinib −4.6 −4.44 −4.34444
vina12 KRT76 Benidipine −4.6 −4.5 −4.38889
vina13 KRT76 Levetiracetam −3.4 −3.12 −2.91111
vina14 KRT76 Ampicillin −4.4 −4.12 −4.05556
vina15 KRT76 Aminolevulinic acid −3 −2.78 −2.68889
vina16 FAM3B Selumetinib −5.6 −5.3 −5.11111
vina17 FAM3B Benidipine −6 −5.68 −5.44444
vina18 FAM3B Levetiracetam −4.4 −4.02 −3.73333
vina19 FAM3B Ampicillin −5.8 −5.48 −5.33333
vina20 FAM3B Aminolevulinic acid −3.8 −3.72 −3.54444

(a) (b)

(c) (d)

(e) (f )

Figure 6: Continued.
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(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o) (p)

Figure 6:-e three-dimensional view of the docking of selumetinib and DCT (a). Two-dimensional plan view of the docking of selumetinib
and DCT (b). -e three-dimensional view of the docking of selumetinib and KRT3 (c). Two-dimensional plan view of the docking of
selumetinib and KRT3 (d). -e three-dimensional view of the docking of selumetinib and KRT76 (e). Two-dimensional plan view of the
docking of selumetinib and KRT76 (f). -e three-dimensional view of the docking of selumetinib and FAM3B (g). Two-dimensional plan
view of the docking of selumetinib and FAM3B (h). -ree-dimensional view of the docking of benidipine with DCT (i). Two-dimensional
plan view of the docking of benidipine with DCT (j). -e three-dimensional view of the docking of benidipine and KRT3 (k). Two-
dimensional plan view of the docking of benidipine and KRT3 (l).-e three-dimensional view of the docking of benidipine and KRT76 (m).
Two-dimensional plan view of the docking of benidipine and KRT76 (n). -ree-dimensional view of the docking of benidipine and FAM3B
(o). Two-dimensional plan view of the docking of benidipine and FAM3B (p).
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Figure 7: -e expression levels of DCT, KRT3, KRT76, and FAM3B in this dataset (a). -e diagnostic efficacy of DCT, KRT3, KRT76, and
FAM3B in this dataset (b).-e diagnostic efficacy of the combined diagnosis of four indicators (c).-e difference between hyperplasia, mild
dysplasia, and moderate dysplasia (d). -e difference between hyperplasia and dysplasia (e). -e diagnostic efficacy of the combined
diagnosis of four indicators in the external dataset (f ). Comparison of the previous diagnosis model and the diagnosis model of this study (g-
m).
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molecular docking are shown in Table 3. Figures 6(a) and
6(b) show the binding site maps of selumetinib and DCT.
DCT formed hydrogen bond interactions with ligands
through TYR-244, ASN-129, ASN-246, and ASP-458. -e
binding energy of selumetinib and DCT was −5.7 kcal/mol,
showing a good binding activity. Figures 6(c) and 6(d) show
the binding site map of selumetinib and KRT3. KRT3
formed hydrogen bond interactions with ligands through
GLU-220, GLU-227, and LYS-224. -e binding energy of
selumetinib and KRT3 was -4.8 kcal/mol, showing a certain
binding activity. Figures 6(e) and 6(f ) show a map of the
binding site of selumetinib and KRT76. KRT3 formed hy-
drogen bond interactions with ligands through SER-231.-e
binding energy of selumetinib and KRT76 was −4.6 kcal/
mol, showing a certain binding activity. Figures 6(g)–6(h)
show the binding site map of selumetinib and FAM3B.
FAM3B interacted with the ligand through ASP-64 and
GLN-101 to form a hydrogen bond. -e binding energy of
selumetinib and FAM3B was -5.6 kcal/mol, suggesting that
they had a good binding activity.

-e binding site map of benidipine and DCT is shown in
Figures 6(i) and 6(j). DCT formed hydrogen bond inter-
action with ligand through ARG-205. -e binding energy of
benidipine and DCT was -8.2 kcal/mol, indicating a strong
binding activity. Figures 6(k) and 6(l) show the binding site
map of benidipine and KRT3. KRT3 did not form hydrogen
bond interactions with ligands through its own residues, but
the binding energy calculation showed that the binding
energy of KRT3 and benidipine is -4.8 kcal/mol, suggesting a
certain binding activity, and the binding of the two might be
through other interactions. Figures 6(m) and 6(n) show a
map of the binding site of benidipine and KRT76. KRT76
formed hydrogen bond interaction with ligand through
ASN-389 and ARG-396. -e binding energy of benidipine
and KRT76 was −4.6 kcal/mol, indicating a good binding
activity. Figures 6(o) and 6(p) show the binding site map of
benidipine and FAM3B. It could be seen from the figure that
FAM3B forms a hydrogen bond interaction with the ligand
through ASN-215 and ALA-212. -e binding energy of
benidipine and FAM3B was −6 kcal/mol, showing a good
binding activity.

3.8. Verification in the External Dataset. In the combined
dataset of GSE85195 and GSE25099, the expression of DCT,
KRT76, and FAM3B in the OSCC group was significantly
lower than that of the OLK group, and the expression of
KRT3 in the OSCC group was lower than that of the OLK
group (p< 0.05) (Figure 7(a)). -e ROC curve analysis
showed that the area under the curve in which DCT, KRT3,
KRT76, and FAM3B distinguished OLK fromOSCC is 0.946
(CI� 0.900–0.991), 0.665 (CI� 0.451–0.880), 0.893
(CI� 0.802–0.984), and 0.911 (CI� 0.844–0.977), respec-
tively (Figure 7(b)). When the four indicators jointly dis-
tinguished OLK from OSCC, the area under the curve was
0.963 (CI� 0.913–1.000), sensitivity 0.933, and specificity
0.923, which had high diagnostic accuracy (Figure 7(c)). -e
dataset of GSE26549 was downloaded to compare the dif-
ferences between four key genes in different pathological

grades of OLK and analyze the ROC curve of the diagnostic
model in OLK and OSCC. -e results showed that the
difference between hyperplasia and moderate dysplasia of
DCTand FAM3B was statistically significant (p< 0.05), and
the differences in other genes among the three groups were
not statistically significant (Figure 7(d)). -e comparison of
hyperplasia and dysplasia showed that the difference be-
tween the two groups of DCT was statistically significant
(p< 0.05), and the difference of other genes between the
three groups was not statistically significant (Figure 7(e)).
-e ROC curve analysis showed that the area under the
curve that distinguished OLK from OSCC was 0.745
(CI� 0.638–0.851), which had a certain diagnostic accuracy
(Figure 7(f)). By comparison, this diagnostic model had the
highest diagnostic efficiency in previous studies [6, 7, 17–21]
(Table 4), and the ROC curve is shown in Figures 7(g)–7(m).

According to the pan-cancer study of the GEPIA da-
tabase, DCT was highly expressed in skin cutaneous mel-
anoma (SKCM) and almost not expressed in normal skin
tissues and other tissues (Figure 8(a)). -e expression of
KRT3 was highest in the normal esophageal epithelium and
oral mucosal epithelium of the head and neck. It was almost
not expressed in other tissues of the body, and its expression
decreased when it underwent cancerous transformation
(Figure 8(b)). -e expression of KRT76 was the highest in
normal head and neck oral mucosal epithelial tissues, it was
almost not expressed in other tissues of the body, and its
expression was reduced when cancer occurs (Figure 8(c)).
-e expression of FAM3B in tumors of various systems was
sometimes upregulated and sometimes downregulated, and
its expression was decreased in head and neck squamous cell
carcinoma (HNSC) (Figure 8(d)), which validated our
results.

Survival analysis showed that there was a difference in
the overall survival rate between the two groups with high
and low expression of DCT gene (logrank p � 0.04)
(Figure 8(e)), and the high expression group was the risk
group. -e overall survival rate of the FAM3B gene high-
and low-expression groups was different (logrank p � 0.046)
(Figure 8(h)), and the low-expression group was the high-
risk group. -ere were also differences in the survival curves
of disease-free survival between the two groups (logrank
p � 0.013) (Figure 8(l)). -e low-expression group was the
high-risk group, and the remaining survival curves had no
statistical difference (Figures 8(f ) and 8(g), and Figures 8(i)–
8(k)).

3.9. Protein Expression in Normal and Tumor Tissues in the
HPA Database. We searched the expression levels of four
genes in normal oral epithelial tissues and tumor tissues, but
KRT3 was not found in the database. HPA database showed
that DCT expression was higher in normal oral epithelial
cells than in cancerous cells (Figures 8(m) and 8(n)). -e
cytoplasmic/membranous expression of KRT76 in oral
epithelial cells was high in normal epithelial tissues, and its
expression was reduced in squamous cell carcinoma
(Figures 8(o) and 8(p)). -e cytoplasmic/membranous ex-
pression of FAM3B in oral epithelial cells was reduced when
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Table 4: Comparison of the previous diagnosis model and the diagnosis model of this study.

Year Author Molecular mark AUC CI
2021 Verification in external dataset DCT, KRT3, KRT76, and FAM3B 0.745 0.638–0.851
2006 Norhany et al. [17] PAX5 0.521 0.395–0.647
2011 Cao et al. [18] EZH2 0.572 0.443–0.701
2011 Quitllet et al. [19] CKS1B 0.618 0.497–0.740
2017 Sakata et al. [20] SMAD4 0.541 0.412–0.670
2018 Saintigny et al. [21] MET 0.709 0.599–0.820
2019 Herrera Costa et al. [7] ALDH1A1 and ALDH1A2 0.600 0.475–0.725
2021 Cai et al. [6] SPP1 0.706 0.593–0.820
AUC : area under the curve; CI : confidence interval.
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Figure 8: Continued.
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the epithelial tissue undergoes cancerous change
(Figures 8(q) and 8(r)). -e conclusion was consistent with
our above research results.

4. Discussion

In this study, the multichip joint analysis solved the problem
of insufficient sample size in oral cancer research. -e gene
changes in the process of phenotypic changes of epithelium
from normal to abnormal hyperplasia and cancer were
analyzed.-e one-step analysis ofWGCNA among the three
groups of samples simplifies the analysis process and does
not require pairwise comparison analysis, and the correla-
tion analysis results with the clinical phenotype can be di-
rectly determined. -e key genes screened by the
intersection of the gene module with the strongest corre-
lation of WGCNA and differential expression analysis not
only retain the most relevant genes in the WGCNA results
with clinical phenotype but also retain the different genes in

the differential expression analysis results and save the step
of subjectively screening and optimizing the analysis pro-
cess. -e four genes screened in this study are not only
significantly different between OLK and OSCC, but DCT is
also different in simple hyperplasia and dysplasia, and DCT
and FAM3B are also different in hyperplasia and moderate
dysplasia. Other genes are not significantly different in
different pathological grades of OLK, and the reason may be
due to the small sample size. Severe dysplasia is most prone
to cancer, so severe dysplasia of OLK is extremely difficult to
obtain, which has a certain impact on the results.

DCT, also named as tyrosinase-related protein 2 (ty-
rosine 2, TYR2), is one of the three important enzymes for
melanin synthesis in the human body. -e lack of DCT can
cause albinism. Studies have shown that the risk of squa-
mous cell carcinoma in patients with albinism is 1,000 times
higher than that of the general population [22]. Cell ex-
periments [23] and pan-cancer studies have shown that
primary melanoma, metastatic melanoma, and nevus occur

KRT76
Normal

(o)

KRT76
Tumor

(p)

FAM3B
Normal

(q)

FAM3B
Tumor

(r)

Figure 8: -e expression of DCT in healthy tissues and tumor tissues throughout the body. Red represents tumor tissue, and black
represents healthy tissue (a).-e expression of KRT3 in healthy tissues and tumor tissues throughout the body (b).-e expression of KRT76
in healthy tissues and tumor tissues throughout the body (c). -e expression of FAM3B in healthy tissues and tumor tissues throughout the
body (d). Survival curve of DCTgene overall survival rate (e). Survival curve of KRT3 gene overall survival rate (f ). Survival curve of KRT76
gene overall survival rate (g). Survival curve of FAM3B gene overall survival rate (h). Survival curve of DCTgene disease-free survival rate (i).
Survival curve of KRT3 gene disease-free survival rate (j). Survival curve of KRT76 gene disease-free survival rate (k). Survival curve of
FAM3B gene disease-free survival rate (l). DCT expression in normal oral epithelial tissues (m). DCT expression in oral squamous cell
carcinoma (n). Expression of KRT76 in normal oral epithelial tissues (o). Expression of KRT76 in oral squamous cell carcinoma (p). FAM3B
expression in normal oral epithelial tissues (q). FAM3B expression in oral squamous cell carcinoma (r).
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when DCT is overexpressed, and squamous cell carcinoma
occurs when DCT is expressed at a low level. KRT3 and
KRT76 are the skeletal components of cells, which are
mainly distributed in the skin, mucous membrane, esoph-
agus, and other areas with a high degree of keratinization,
and their expression is significantly reduced when cancerous
change occurs. KRT3 mutations are related to corneal
dystrophy [24]. Immunohistochemistry and KRT76
knockout mouse experiments showed that the expression of
KRT76 was downregulated in normal oral tissues, oral
precancerous tissues, and oral cancer tissues [25].-e reason
for increased tumor susceptibility is related to the change in
the tumor microenvironment and immune factors [26].
FAM3B is a cytokine-like protein that regulates glucose and
lipid metabolism by interacting with the liver and pancreas.
Its elevated expression is related to type 2 diabetes, colon
cancer, prostate cancer, and more. Staining of tissue sections
showed that FAM3B expression decreased in OSCC tissues.
Mouse experiments showed that knockdown of FAM3B
promotes cell apoptosis by upregulating p53 in mice [27],
and the expression of p53 protein increases in OSCC [28].
-erefore, FAM3B might cause OSCC by upregulating p53
protein.

GO enrichment analysis in the red module showed that
OLK was related to the abnormal expression of multiple
pathways, including vitamin D metabolic process, steroid
metabolic process, exogenous drug catabolic process, and so
on. Ras activation suppressed vitamin D transcriptional
activity, vitamin D levels fell, and the risk of OLK cancer and
OSCC increased. -e prognosis and overall quality of life of
patients with OSCC were affected by abnormal expression of
the vitamin Dmetabolic pathway [29]. As a steroid hormone
derivative, vitamin D also inhibited the activation of the NF-
κB pathway mediated by lcn2 via RPS3, enhancing the
susceptibility of OSCC to cisplatin and the efficacy of
treatment [30]. Patients with OSCC had considerably greater
plasma and saliva cortisol levels than patients with OLK,
patients with OLK had higher cortisol levels than normal
people, and those with advanced stages had higher cortisol
levels than those with early stages. As a result, OSCC is
related to aberrant steroid metabolism [31]. Meanwhile, the
drug efficacy of the patients with OSCC was influenced by
the exogenous drug catabolic process. Endogenous and
external triggers such as pH, matrix metalloproteinases
(MMPs), reactive oxygen species (ROS), redox conditions,
light, and magnetic fields could activate the stimulating
response drug delivery system and improve the prognosis
[32].

KEGG enrichment analysis in the red module showed
that drug metabolism-cytochrome P450 and arginine,
linoleic acid metabolism, and proline metabolism were
related to OSCC. Cytochrome P450 2R1 (CYP2R1) is a
vitamin D 25-hydroxylase that is involved in the conversion
of dietary vitamin D to the active metabolite 25-(OH)-D3.
CYP2R1 and vitamin D receptor (VDR) mRNA expression
considerably rose in OSCC, according to the real-time RT-
PCR study [33]. Simultaneously, the expression of the
cytochrome P450 subtypes 1A1 and 1B1 (CYP1A1 and
CYP1B1) genes increased in the head and neck cancer

(HNC) cell line [34], elucidating the involvement of cy-
tochrome P450 in OSCC. In the amino acid codon 72 of the
p53 protein, there is a single-nucleotide polymorphism that
encodes arginine (Arg) or proline (Pro). -e arginine ge-
notype of the OSCC group lowered the risk of oral cancer
compared to the normal control group; however, the
proline allele raised the risk of OSCC [35], showing the
importance of arginine and proline metabolism in OSCC.
-e relevant results are consistent with the conclusions of
this study.

OLK is an important step in the process of oral mu-
cosal carcinogenesis, which requires long-term close
monitoring and follow-up. -e current monitoring of
OLK is limited to clinical manifestations and lacks clear
molecular indicators of cancer. -e key genes screened in
this study provide high-performance diagnostic indicators
for the long-term monitoring of OLK and early diagnosis
of OSCC.-e genes DCT, KRT3, and FAM3B are reported
for the first time in OSCC, and their expression remains to
be evaluated. More samples are still needed to expand to
verify the conclusions, and more intensive biological
verification should be carried out in cell experiments and
animal experiments.

Data Availability

-e data that support the findings of this study are openly
available in GSE85195, GSE25099, and GSE26549 at https://
www.ncbi.nlm.nih.gov/geo/.

Disclosure

Chunshen Li and Yingying Shi are the co-first authors.

Conflicts of Interest

-e authors declare that there are no conflicts of interest.

Authors’ Contributions

C-S L and Y-Y S conducted the study and drafted the
original manuscript. H-Y Z and Z S supervised the research.
C-S L, Y-Y S, J-L S, S C, B Z, and M-Z X analyzed the data.
C-S L, Y-Y S, L-H Z, Z Y, and X-M G screened small-
molecule drugs and carried out molecular docking. J-L S, S
C, B Z, Z Y, Z S, and H-Y Z revised the manuscript. All
authors approved the final manuscript. Chunshen Li and
Yingying Shi have equally contributed to this work.

Acknowledgments

-e authors would like to thank all participants and pro-
fessors who provided data and online database operations.
-is work was supported by the Key Scientific Research
Project of Henan Institution of Higher Education
(21A320025), the Henan Province Medical Science
(SBGJ202002116), the Henan Technology Research Plan
(212102310104), and the Beijing Kangmeng Charity Foun-
dation (TB204022).

20 Journal of Oncology

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


Supplementary Materials

Supplementary Figure 1: clustering tree between modules
(A). Clustering heat map between modules (B). -e abscissa
and ordinate are the module names. Red is high similarity,
and blue is low similarity. Supplementary Figure 2: the
relationship between gene clusters and modules in each
module. -e darker the color, the stronger the correlation.
Supplementary Figure 3: density plot of gene number and
correlation coefficient. -e abscissa is the correlation co-
efficient between genes and modules, and the ordinate is the
number of genes. It is used to observe the distribution of
correlation coefficients between each module and the gene
expression in the module. A density map of 4 modules is
drawn in each graph. Supplementary Figure 4: the rela-
tionship between connectivity and gene correlation in each
module. -e abscissa is the connectivity of each gene in each
module, and the ordinate is the correlation coefficient be-
tween each gene in each module and the module. (Sup-
plementary Materials)
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