
Cognition and Behavior

Task Modulation of Single-Neuron Activity in the
Human Amygdala and Hippocampus
Runnan Cao,1 Alexander Todorov,2 Nicholas J. Brandmeir,3 and Shuo Wang1,4

https://doi.org/10.1523/ENEURO.0398-21.2021

1Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506,
2Booth School of Business, University of Chicago, Chicago, IL 60637, 3Department of Neurosurgery, West Virginia
University, Morgantown, WV 26506, and 4Department of Radiology, Washington University in St. Louis, St. Louis, MO
63110

Abstract

The human amygdala and hippocampus are critically involved in various processes in face perception.
However, it remains unclear how task demands or evaluative contexts modulate processes underlying face
perception. In this study, we employed two task instructions when participants viewed the same faces and re-
corded single-neuron activity from the human amygdala and hippocampus. We comprehensively analyzed
task modulation for three key aspects of face processing and we found that neurons in the amygdala and hip-
pocampus (1) encoded high-level social traits such as perceived facial trustworthiness and dominance and
this response was modulated by task instructions; (2) encoded low-level facial features and demonstrated re-
gion-based feature coding, which was not modulated by task instructions; and (3) encoded fixations on salient
face parts such as the eyes and mouth, which was not modulated by task instructions. Together, our results
provide a comprehensive survey of task modulation of neural processes underlying face perception at the sin-
gle-neuron level in the human amygdala and hippocampus.

Key words: amygdala and hippocampus; dominance; face; human single-neuron recordings; task modulation;
trustworthiness

Significance Statement

The human amygdala and hippocampus play important roles in face perception, but it remains unclear how
task demands or evaluative contexts modulate neural face processing, especially at the single-neuron level
in the human brain. In this study, we comprehensively analyzed how task instruction modulates key aspects
of face processing, including low-level facial features such as face shape and texture, social trait judgment
of faces such as trustworthiness and dominance, as well as neural correlates of eye movement when view-
ing faces. Our comprehensive survey of task modulation of face processing reveals both flexible and invari-
ant neuronal processes in the human brain.

Introduction
The human amygdala and hippocampus are critically

involved in face perception (Adolphs, 2008; Todorov,
2012; Rutishauser et al., 2015a; Montagrin et al., 2018).
They play several important roles in face processing.
First, the human amygdala and hippocampus encode

social judgment of faces. Single neurons in the human

amygdala and hippocampus not only encode facial emo-
tions (Fried et al., 1997), but also subjective judgments of
facial emotions (Wang et al., 2014), as well as ambiguity in
facial emotions (Wang et al., 2017). In addition, both le-
sion (Adolphs et al., 1998) and functional neuroimaging
(Todorov et al., 2008) studies have shown that the amyg-
dala plays an important role in encoding perceived facial
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trustworthiness. Our recent data have suggested that
there exists a neuronal population code for a comprehen-
sive social trait space in the human amygdala and hippo-
campus (Cao et al., 2021a).
Second, single neurons in the human amygdala and

hippocampus encode memory of faces (Rutishauser et
al., 2015b) and demonstrate category-selective response
to faces (Kreiman et al., 2000), a key function of the amyg-
dala and hippocampus that is supported by forming a
highly sparse representation of identity at the level of sin-
gle neurons. Although a classic model for face represen-
tation in the amygdala and hippocampus argues for two
prominent properties: (1) the representation of identities is
invariant to visual features (Quian Quiroga et al., 2005;
Quian Quiroga, 2012); and (2) identity neurons encode
conceptually related (e.g., Bill Clinton and Hillary Clinton)
but not visually related identities (De Falco et al., 2016;
Rey et al., 2020), our recent data have demonstrated that
neurons in the human amygdala and hippocampus also
embody feature-based coding of faces (Cao et al.,
2020b), a mechanism that bridges the perception-driven
representation of facial features in the higher visual cortex
and the memory-driven representation of semantics in the
amygdala and hippocampus.
Third, the human amygdala and hippocampus process

information in the eyes and mouth and direct eye move-
ments to these salient face parts (Cao et al., 2021b).
Neuroimaging studies have shown that amygdala activa-
tion predicts gaze direction (Gamer and Büchel, 2009)
and monkey studies have shown that amygdala neurons
encode not only the eyes but also the gaze direction when
viewing a monkey face, as well as eye contact with the
viewed monkey (Hoffman et al., 2007; Mosher et al.,
2014).
However, crucial questions remain: are these aspects

of face processing modulated by explicit task demands or
the evaluative context? If so, which and how are these
processes dynamically modulated by tasks and contexts?
Our own prior neuroimaging studies have not only found
context-independent neural responses in the amygdala to
facial trustworthiness during approach versus avoidance
decisions (Wang et al., 2018a), but also context-depend-
ent neural responses in the amygdala to facial trustworthi-
ness during face evaluations (Cao et al., 2020a; see also
Todorov et al., 2011) for both task-dependent and task-in-
variant neural responses to facial trustworthiness in the
amygdala and hippocampus), indicating that different

aspects of face processing may be subject to context
modulations differently. Furthermore, a recent study has
shown that neurons in the human amygdala and hippo-
campus are flexibly engaged in memory retrieval (Minxha
et al., 2020). In the current study, we conducted a com-
prehensive survey of task modulation on different aspects
of face processing at the single-neuron level in humans.
We test the hypothesis that task instructions modulate
representation of social traits but not low-level facial fea-
tures. We also explored the extent to which eye move-
ment was modulated by task instructions.

Materials and Methods
Participants
Six neurosurgical patients (two male, 26–47years old;

Table 1) undergoing epilepsy monitoring participated in this
study. All neural recording sessions had simultaneous eye
tracking. All these participants providedwritten informed con-
sent using procedures approved by the Institutional Review
Board of theWest Virginia University.

Stimuli
We used the FaceGen Modeller program (http://facegen.

com; version 3.1) to randomly generate 300 faces (for
detailed procedures, see Oosterhof and Todorov, 2008).
FaceGen constructs face spacemodels using information ex-
tracted from 3D laser scans of real faces. To create the face
space model, the shape of a face was represented by the
vertex positions of a polygonal model of fixedmesh topology.
With the vertex positions, a principal component analysis
(PCA) was used to extract the components that accounted
for most of the variance in face shape. Each PC thus repre-
sented a different holistic nonlocalized set of changes in all
vertex positions. The first 50 shape PCs were used to con-
struct faces that had a symmetric shape. Similarly, because
skin texture is also important for face perception, 50 texture
PCs based on PCA of the RGB values of the faces were also
used to represent faces. The resulting 300 faces were ran-
domly generated from the 50 shape and 50 skin texture com-
ponents with the constraint that all faces were set to be
white. It is worth noting that each PC is a feature dimension
of the face space.
Notably, we have already acquired trait judgments of

these faces from healthy control raters on nine social
traits (Oosterhof and Todorov, 2008): attractiveness, com-
petence, trustworthiness, dominance, mean, frightening,
extroversion, threatening, and likability. The trait judge-
ments were measured on nine-point scales, ranging from
1 [not at all (trait)] to 9 [extremely (trait)]. Therefore, these
faces have benchmark ratings, and we can readily per-
form correlational analysis with neural responses and psy-
chometric behavioral data.

Experimental procedure
For FaceGen stimuli, participants performed two face

judgment tasks: trustworthiness judgment task and domi-
nance judgment task (Fig. 1A). In each task, there was a judg-
ment instruction, i.e., participants judged how trustworthy or
how dominant a face was. We used a 1–4 scale: 1: not
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trustworthy/dominant at all; 2: somewhat trustworthy/domi-
nant; 3: trustworthy/dominant; and 4: very trustworthy/domi-
nant. Each image was presented for 1.5 s at the center of the
screen.

Electrophysiology
We recorded from implanted depth electrodes in the

amygdala and hippocampus from patients with pharmaco-
logically intractable epilepsy. Target locations in the amygdala
and hippocampus were verified using postimplantation struc-
tural MRIs. At each site, we recorded from eight 40-mm mi-
crowires inserted into a clinical electrode as described
previously (Rutishauser et al., 2006a, 2010). Efforts were al-
ways made to avoid passing the electrode through a sulcus,
and its attendant sulcal blood vessels, and thus the location
varied but was always well within the body of the targeted
area. Microwires projected medially out at the end of the
depth electrode and examination of the microwires after re-
moval suggests a spread of;20–30°. The amygdala electro-
des were likely sampling neurons in the mid-medial part of
the amygdala and themost likely microwire location is the ba-
somedial nucleus or possibly the deepest part of the basolat-
eral nucleus. Bipolar wide-band recordings (0.1–9000Hz),
using one of the eight microwires as reference, were sampled
at 32kHz and stored continuously for off-line analysis with a
Neuralynx system. The raw signal was filtered with a zero-
phase lag 300- to 3000-Hz bandpass filter and spikes were
sorted using a semiautomatic template matching algorithm
as described previously (Rutishauser et al., 2006b). Units
were carefully isolated and recording and spike sorting quality
were assessed quantitatively (Extended Data Fig. 1-1).

Eye tracking
Patients were recorded with a remote noninvasive infra-

red Eyelink 1000 system (SR Research). One of the eyes
was tracked at 500Hz. The eye tracker was calibrated
with the built-in nine-point grid method at the beginning

of each block. Fixation extraction was conducted using
software supplied with the Eyelink eye tracking system.
Saccade detection required a deflection of .0.1°, with a
minimum velocity of 30°/s and a minimum acceleration of
8000°/s2, maintained for at least 4ms. Fixations were de-
fined as the complement of a saccade, i.e., periods with-
out saccades. Analysis of the eye movement record was
conducted off-line after completion of the experiments.
We excluded five sessions that had fewer than 10 fixa-

tions onto each facial region of interest (ROI) because of a
substantial amount of missing eye tracking data, resulting
in a total of 19 sessions for eye movement analysis.
To quantitatively compare the fixation densities within

certain parts of the face, we defined three ROIs: eyes,
mouth, and nose. Each ROI is a rectangle and the eye and
mouth ROI have the same size. The fixation density was
calculated for each participant during the entire 1 s stimu-
lus period, and was normalized within each participant.
Fixation locations were smoothed using a 2D Gaussian
kernel (30 � 30 pixels) with a SD of three pixels.

Data analysis: behavior
For behavioral data, we calculated rating consistency

for each individual by correlating his/her ratings with the
average ratings from the previous study (Oosterhof and
Todorov, 2008), which served as the benchmark ratings.
Since it has been reported that consensus ratings predict
neural responses better than individual ratings (Engell et al.,
2007), here we used the average ratings from (Oosterhof and
Todorov, 2008) for further analysis.

Data analysis: spikes
Consistent with our previous studies (Wang et al., 2014,

2017, 2018b; Cao et al., 2020b, 2021a, b), only single
units with an average firing rate (FR) of at least 0.15Hz
throughout the entire task were considered. Trials were
aligned to stimulus onset. We used the mean FR in a time

Table 1: List of patients

ID Age Sex Race Epilepsy diagnosis

Trustworthiness task Dominance task
Number of
amygdala
neurons

Number of
hippocampal

neurons

Number of
amygdala
neurons

Number of
hippocampal

neurons
Total Left Right Total Left Right Total Left Right Total Left Right

P6 33 F White Left posterior neocortical
extratemporal/parietal

6 6 0 20 20 0 9 9 0 27 27 0

P7 28 F White Right mesial temporal 3 3 0 23 21 2 8 8 0 36 36 0
P10 47 F White Right mesial temporal and

neocortical temporal
22 0 22 0 0 0 3 0 3 0 0 0

P11 33 F White Right mesial temporal and
extratemporal

17 0 17 0 0 0 15 0 15 0 0 0
7 0 7 0 0 0 12 0 12 20 0 20
5 0 5 12 0 12 3 0 3 11 0 11

P14 26 M White Bilateral amygdylar/
hippocampal

22 18 4 7 5 2 23 18 5 7 5 2
23 20 3 8 6 2 27 22 5 8 6 2
20 17 3 32 31 1 21 18 3 41 40 1
11 9 2 6 4 2 12 10 2 5 3 2

P15 37 M White Left amygdylar/
hippocampal

11 11 0 3 0 3 22 22 0 13 0 13
12 12 0 20 0 20 14 14 0 3 0 3

Sum 159 96 63 131 87 44 169 121 48 171 117 54

Each row of neurons represents a separate recording session. Total: all neurons recorded from an area that had a FR greater than 0.15Hz. Left, Neurons that
were recorded from the left side of an area. Right, Neurons that were recorded from the right side of an area.
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Figure 1. Task modulation of neural encoding of social traits. A, Task. Each face was presented for 1.5 s, followed by participants’
judgment of trustworthiness/dominance within 2 s. The overall intertrial interval was jittered between 1 and 2 s. B, Correlation be-
tween the ratings from our neurosurgical patients with consensus ratings from Oosterhof and Todorov (2008). Tru: trustworthiness.
Dom: dominance. Error bars denote 1 SEM across sessions. Asterisks indicate a significant difference from 0 using two-tailed
paired t test; ***p, 0.001. C, D, Example neurons that showed a significant correlation between the normalized FR and the z-scored
rating for (C) the trustworthiness trait and (D) the dominance trait. Each dot represents a face image, and the gray line denotes the
linear fit. Sample face images with a range of consensus trustworthiness/dominance ratings are illustrated below the correlation
plots, and the corresponding consensus ratings (z-scored) are shown under each sample face image. E, F, Scatterplot of correlation
coefficient between congruent versus incongruent conditions. Each circle represents a neuron, and the gray line denotes the linear
fit. E, Trustworthiness trait. F, Dominance trait. G–J, Correlation between neural response and social judgment ratings. Bars show
the mean correlation coefficient under each task instruction. Error bars denote 6SEM across neurons. Asterisks indicate a signifi-
cant difference from 0 (two-tailed paired t test) or between conditions (two-tailed two-sample t test); *p, 0.05, **p, 0.01,
****p, 0.0001. For each trait (trustworthiness or dominance), the left bars show the congruent conditions (i.e., the evaluated traits
were the same as the task instruction) and the right bars show the incongruent conditions (i.e., the evaluated traits were different to
the task instruction). G, All neurons (n=630). H, The same neurons that were recorded in both trustworthiness and dominance judg-
ment tasks (n=143). I, Amygdala neurons only (n=328). J, Hippocampal neurons only (n=302). Extended Data Figure 1-1 shows
assessment of spike sorting and recording quality. Extended Data Figure 1-2 shows control analyses for choices.
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window 250–1750ms after stimulus onset as the re-
sponse to each face. Fixations were aligned to fixation
onset. We used the mean FR in a time window from
200ms before fixation onset to 200ms after fixation offset
as the response to each fixation.

Data analysis: representational similarity analysis
(RSA)
Dissimilarity matrices (DMs; Kriegeskorte et al., 2008)

are symmetrical matrices of dissimilarity between all pairs
of faces. In a DM, larger values represent larger dissimilar-
ity of pairs, such that the smallest value possible is the
similarity of a condition to itself (dissimilarity of 0). We
used the Pearson correlation to calculate DMs (ratings
were z-scored and FRs were normalized to the mean
baseline of each neuron), and we used the Spearman cor-
relation to calculate the correspondence between the
DMs (Spearman correlation was used because it does not
assume a linear relationship; Stolier and Freeman, 2016).
We further used permutation tests with 1000 runs to as-
sess the significance of the correspondence between the
social trait DM and the neural response DM. We com-
pared the distribution of the correspondence between
DMs (Spearman’s r ) computed with shuffling (i.e., null
distribution) with the one without shuffling (i.e., observed
response) to derive statistical significance.
To compare between task instructions, we used a boot-

strap with 1000 runs to estimate the distribution of
DM correspondence for each task instruction. In each
run, 70% of the data were randomly selected from each
task instruction and we calculated the correspondence
(Spearman’s r ) between the social trait DM and the neural
response DM for each task instruction. We then created a
distribution of DM correspondence for each task instruc-
tion, and we compared the means of the distributions to
derive statistical significance.

Data analysis: axis-based feature coding
To identify neurons that encoded a linear combination

of facial features, we employed a simple linear regression
with all 100 features, a partial least squares (PLS) regres-
sion with five components (Yamins et al., 2014; Ponce et
al., 2019), and a classic face model with all 100 features
(Oosterhof and Todorov, 2008; Chang and Tsao, 2017).
Because only the linear regression model’s performance
could be assessed directly using R2, for the classic face
model and PLS regression model, we used the Pearson
correlation between the predicted and actual neural re-
sponse in the test dataset to assess model predictability
(the same procedure as the permutation test below). For the
classic face model, we fitted a linear model for the mean FRs
and calculated the vector of feature weights w as: w=F � r,
where r is a column vector (N� 1) of the FRs to the N faces,
and F is the feature matrix (each row is a feature and each
column is a face) that contains the feature values for each
face. We further normalized w by ||w||: w=w/||w||. The result-
ing feature vector w thus showed the optimal direction that
best captured the variation in neural response.

We used a permutation test with 1000 runs to determine
whether a neuron encoded a significant linear model of
low-level facial features (i.e., the neuron encoded a linear
combination of features of the face space). In each run,
we randomly shuffled face labels and used 70% of the
faces as the training dataset. We used the training da-
taset to construct a model (i.e., deriving regression co-
efficients), predicted responses using this model for
each face in the remaining 30% of faces (i.e., test data-
set), and computed the Pearson correlation between
the predicted and actual response in the test dataset.
The distribution of correlation coefficients computed
with shuffling (i.e., null distribution) was eventually
compared with the one without shuffling (i.e., observed
response). If the correlation coefficient of the observed
response was .95% of the correlation coefficients
from the null distribution, this face model was consid-
ered significant. This procedure has been shown to be
very effective selecting units with significant face mod-
els (Chang and Tsao, 2017). Note that the correlation
coefficient between the predicted and actual response
could index the model’s predictability and be com-
pared statistically.

Data analysis: region-based feature coding
To select neurons that demonstrated region-based fea-

ture coding (i.e., having elevated response for faces in a
certain region of the face feature space), we first esti-
mated a continuous spike density map in the feature
space by smoothing the discrete FR map using a 2D
Gaussian kernel (kernel size = feature dimension range *
0.2, SD=4). We then estimated statistical significance for
each pixel by permutation testing: in each of the 1000
runs, we randomly shuffled the labels of faces. We calcu-
lated the p value for each pixel by comparing the ob-
served spike density value to those from the null
distribution derived from permutation. We lastly selected
the region with significant pixels (permutation p, 0.01,
cluster size.1.8% of the total number of pixels of the
face space). We also applied a mask to exclude pixels
from the edges and corners of the spike density map
where there were no faces because these regions were
susceptible to false positives given our procedure. If a
neuron had a region with significant pixels, the neuron
was defined as a “region-coding neuron” and demon-
strated “region-based feature coding.”

Data analysis: response index for single fixation
For each neuron we quantified whether its response dif-

fered between fixation on the eyes and fixation on the
mouth using a single-fixation selectivity index (FSI; Eq. 1).
The FSI facilitates group analysis and comparisons be-
tween different types of cells (i.e., eyes-preferring and
mouth-preferring cells in this study), as motivated by pre-
vious studies (Wang et al., 2014, 2018b). The FSI quanti-
fies the response during fixation i relative to the mean
response to fixations on the mouth and baseline (the inter-
val right before face onset). The mean response and base-
line were calculated individually for each neuron.

Research Article: New Research 5 of 15

January/February 2022, 9(1) ENEURO.0398-21.2021 eNeuro.org



FSIi ¼ FRi �meanðFRMouthÞ
meanðFRBaselineÞ � 100%: (1)

For each fixation i, FSIi is the baseline normalized mean
FR during an interval from 200ms before fixation onset to
200ms after fixation offset (the same time interval as cell
selection). Different time intervals were tested as well, to
ensure that results were qualitatively the same and not bi-
ased by particular spike bins.
If a neuron distinguishes fixations on the eyes from fixa-

tions on the mouth, the average value of FSIi of all fixa-
tions will be significantly different from 0. Since eyes-
preferring neurons have more spikes in fixations on the
eyes and mouth-preferring neurons have more spikes in
fixations on the mouth, on average FSIi is positive for
eyes-preferring neurons and negative for mouth-prefer-
ring neurons. To get an aggregate measure of activity that
pools across neurons, FSIi was multiplied by �1 if the
neuron is classified as a mouth-preferring neuron (Eq. 2).
This makes FSIi on average positive for both types of eye-
mouth-selective neurons. Notice that the factor �1 de-
pends only on the neuron type but not fixation type. Thus,
negative FSIi values are still possible.

FSIi ¼ �FRi �meanðFRMouthÞ
meanðFRBaselineÞ � 100%: (2)

After calculating FSIi for every fixation, we subsequently
averaged all FSIi of fixations that belong to the same cate-
gory. By definition, the average value of FSIi for fixation on
the mouth will be equal to zero because the definition of
FSIi is relative to the response to fixation on the mouth
(see Eq. 2). The mean baseline FR was calculated across
all trials. The same FRMouth was subtracted for both types
of fixations.
The cumulative distribution function (CDF) was con-

structed by calculating for each possible value x of the
FSI how many examples are smaller than x. That is, F(x) =
P(X� x), where X is a vector of all FSI values. The CDF of
fixations on the eyes and mouth were compared using
two-tailed two-sample Kolmogorov–Smirnov (KS) tests.

Code accessibility
The code described in this paper is publicly available on

OSF (https://osf.io/2xrgd/).

Results
Taskmodulation of neural encoding of social traits
We employed a social judgment task where participants

rated the level of perceived trustworthiness or dominance
of each face (Fig. 1A). The same 300 faces were rated in
separate tasks for trustworthiness and dominance (order
randomized). There were 12 sessions of trustworthiness
judgment task and 12 sessions of dominance judgment
task (Table 1). Behaviorally, the ratings from our neurosur-
gical patients were consistent with the prior report
(Oosterhof and Todorov, 2008): we found that both trust-
worthiness (two-tailed paired t test of correlation coeffi-
cient against 0: t(11) = 5.84, p=1.13� 10�4; Fig. 1B) and

dominance (t(11) = 7.72, p=9.19� 10�6; Fig. 1B) ratings
were significantly correlated with the consensus ratings.
Therefore, we next used the consensus ratings to analyze
the neural response.
We recorded in total 857 neurons from the amygdala

and hippocampus and we restricted our analysis to a sub-
set of 630 neurons that had an overall FR . 0.15Hz
(Table 1). Among these neurons, 328 neurons were from
the amygdala and 302 neurons were from the hippocam-
pus (Table 1). Furthermore, 290 neurons were recorded
from the trustworthiness judgment task and 340 neurons
were recorded from the dominance judgment task (Table
1). We used the mean FR in a time window from 250 to
1750ms after stimulus onset as the response.
We first analyzed the correlation between the neural re-

sponse and the social traits of trustworthiness/domi-
nance, and compared the correlation strength between
the congruent (i.e., the response to the trustworthiness
trait in the trustworthiness judgment task and the re-
sponse to the dominance trait in the dominance judgment
task) and incongruent (i.e., the response to the trustwor-
thiness trait in the dominance judgment task and the re-
sponse to the dominance trait in the trustworthiness
judgment task) conditions. We found that neurons at the
population level encoded the level of trustworthiness and
dominance in the congruent conditions (Fig. 1G; see Fig.
1C,D for single-neuron examples), and notably, the re-
sponse differed between congruent and incongruent
conditions (Fig. 1G), suggesting that task instructions
modulated the neural encoding of social traits. This was
primarily the case for the trustworthiness trait [congruent:
Pearson’s r=0.00766 0.066 (mean 6 SD across neu-
rons); incongruent: r = �0.00756 0.062; two-tailed paired
t test: t(628) = 2.96, p=0.003]; the dominance trait only
showed a marginally significant difference between con-
ditions (congruent: r = �0.00736 0.060; incongruent:
r=0.00156 0.060; t(628) = 1.82, p=0.07). Notably, a sub-
set of 143 neurons were recorded with both task instruc-
tions, and we confirmed that the neuronal population
coding of the trustworthiness trait (congruent: Pearson’s
r=0.0176 0.062; incongruent: r = �0.00876 0.062; two-
tailed paired t test: t(142) =3.65, p=3.68� 10�4; Fig. 1H) but
not the dominance trait (congruent: r = �0.0116 0.054; in-
congruent: r=0.006160.061; t(142) =0.71, p=0.48; Fig. 1H)
was modulated by task instructions. A scatterplot of correla-
tion coefficient between congruent versus incongruent
conditions further showed a dissociation between task
instructions (Pearson’s correlation of correlation coeffi-
cient between congruent vs incongruent tasks: trustwor-
thiness trait: r(143) = 0.013, p= 0.88; dominance trait:
r(143) = 0.098, p= 0.25; Fig. 1E,F).
We conducted three control analyses. First, we found

similar results with face-responsive neurons only (i.e.,
neurons that significantly changed response compared
with the baseline). Second, we found consistent results
using each patient’s own trustworthiness/dominance rat-
ings (Extended Data Fig. 1-2F). Notably, we confirmed
that patients’ rating choices did not differ between tasks
(Extended Data Fig. 1-2A), suggesting that our results
could not be simply attributed to a choice bias between
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tasks; and we identified a subset of neurons that encoded
rating choices (Extended Data Fig. 1-2B–D), which were
further modulated by task instructions (Extended Data
Fig. 1-2E). Importantly, we found a similar pattern of re-
sults as in Figure 1G when we excluded these choice neu-
rons (Extended Data Fig. 1-2G). Third, we found that
neurons recorded in the trustworthiness judgment task
and dominance judgment task did not differ significantly
in spike sorting qualities (Extended Data Fig. 1-1H).
Do amygdala and hippocampal neurons respond differ-

ently to social trait judgments? And are amygdala and hippo-
campal neurons modulated differently by task instructions?
We next investigated the population encoding of social traits
separately for amygdala and hippocampal neurons. We
found that amygdala neurons only encoded the trustwor-
thiness trait (Fig. 1I), whereas hippocampal neurons only
encoded the dominance trait (Fig. 1J) in the congruent
tasks. Notably, task instructions modulated the encoding
of the trustworthiness and dominance traits in the amygda-
la (t(326) = 4.16, p, 0.0001; Fig. 1I) and hippocampus
(t(300) = 2.34, p=0.02; Fig. 1J), respectively. Together, our
results have revealed different roles of the amygdala and
hippocampus in coding social traits.
Lastly, we investigated whether neurons in the amygda-

la and hippocampus represented the social trait space as
a whole (i.e., neurons collectively encoded multiple social
traits and their similarities) and whether task instructions
modulated the encoding of the social trait space. We em-
ployed a RSA (Kriegeskorte et al., 2008) and constructed
the social trait DM (Fig. 2A) using consensus ratings of
nine social traits (Oosterhof and Todorov, 2008). We con-
structed neural response DMs separately for the trustwor-
thiness (Fig. 2B) and dominance (Fig. 2E) judgment tasks.
The correspondence between the neural response DM
and the social trait DM was then calculated for each task
and the significance of the correspondence was esti-
mated using a permutation test by shuffling the face la-
bels (see Materials and Methods). We found that the
neural response from the trustworthiness judgment task
(r = 0.016, permutation p=0.003; Fig. 2C) but not the
dominance judgment task (r = 0.007, permutation
p=0.06; Fig. 2F) had a significant correspondence with
the social trait space. Indeed, the neural response from
the trustworthiness judgment task had a stronger corre-
spondence with the social trait representations com-
pared with the dominance task (Fig. 2D; permutation
test comparing the mean of the trustworthiness judg-
ment task to the distribution of the dominance judgment
task: p = 0.002; permutation test comparing the mean of
the dominance judgment task to the distribution of the
trustworthiness judgment task: p = 0.015), suggesting
that task instructions impacted on the holistic encoding
of the social trait space structure.
Could the neural response DM be explained by low-

level features as well? To answer this question, we con-
structed a linear regression model that used both the so-
cial trait DM and the low-level feature DM to explain the
neural response DM (the low-level feature DM was calcu-
lated using the 50 shape features and 50 texture features;
see Materials and Methods; Fig. 2G). We first confirmed

that the regression coefficient for the social trait DM was
significant for the trustworthiness judgment task (b =
0.0024, p=0.0016) but not the dominance judgment task
(b = 0.0012, p=0.067). Interestingly, we found that the re-
gression coefficient for the low-level feature DM was not
significant for the trustworthiness judgment task (b =
�0.002, p=0.61) but significant for the dominance judg-
ment task (b = �0.008, p=0.038), although a direction
comparison showed that that the neural response from
the trustworthiness judgment task (r = 0.0006, permuta-
tion p=0.46; Fig. 2H) and the dominance judgment task
(r = �0.006, permutation p=0.83; Fig. 2I) did not have a
significant correspondence with the low-level feature
space. Therefore, low-level features were limited in ex-
plaining the neural response DM. Furthermore, we used a
pretrained deep neural network (DNN) trained for face
identification (Parkhi et al., 2015; see also Cao et al.,
2020b) to extract features from faces (note that such DNN
has been shown to contain information about social traits;
Parde et al., 2019; Lin et al., 2021). We found that for both
trustworthiness judgment task and dominance judgment
task, the neuronal population did not show a significant
correspondence with DNN layers (Fig. 2J), confirming that
the neural response DM was not likely explained by low-
level features.
Together, our results suggest that tasks and evaluative

contexts modulate the neural encoding of social traits.

Taskmodulation of neural encoding of low-level facial
features
We next investigated whether amygdala and hippocam-

pal neurons encoded low-level facial features (i.e., physi-
cal changes in the face such as face shape or skin tone)
and whether encoding of low-level facial features was
modulated by task instructions.
First, to investigate whether amygdala and hippocam-

pal neurons encode a linear combination of low-level fa-
cial features as shown in the primate inferotemporal
cortex (IT; Chang and Tsao, 2017; Ponce et al., 2019), we
employed three linear models, including a simple linear
regression model [Fig. 3A,B; number of significant neu-
rons (see Materials and Methods): n=18, 6.21%, binomial
test on the number of significant neurons against
chance-level selection (5%): p = 0.14 for the trustwor-
thiness judgment task and n = 19, 5.59%, binomial
p = 0.26 for the dominance judgment task], a classic
face model (Oosterhof and Todorov, 2008; Chang and
Tsao, 2017; n = 18, 6.21%, binomial p = 0.14 for the
trustworthiness judgment task and n = 16, 4.71%, bino-
mial p = 0.53 for the dominance judgment task; Fig. 3C,
D), and a PLS regression model (Yamins et al., 2014;
Ponce et al., 2019; n = 11, 3.79%, binomial p = 0.79 for
the trustworthiness judgment task and n = 16, 4.71%,
binomial p = 0.53 for the dominance judgment task; Fig.
3E,F). For each model, we did not succeed at selecting
a larger than expected by chance number of neurons
that encoded a linear combination of low-level facial
features (Fig. 3A,C,E). Furthermore, the neural response
could not be predicted by a weighted sum of low-level
facial features (Fig. 3B,D,F). We further replicated our
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Figure 2. RSA for social trait and neural response. A, The social trait DM. B, E, The neural response DM from (B) the trustworthiness
judgment task and (E) the dominance judgment task. Color coding shows dissimilarity values. C, F, Observed versus permuted cor-
relation coefficient between DMs. C, Correlation between the social DM and the neural DM from the trustworthiness judgment task.
F, Correlation between the social DM and the neural DM from the dominance judgment task. The correspondence between DMs
was assessed using permutation tests with 1000 runs. The magenta line indicates the observed correlation coefficient between
DMs. The null distribution of correlation coefficients (shown in gray histogram) was calculated by permutation tests of shuffling the
faces (1000 runs). D, Bootstrap distribution of DM correspondence for each task instruction. Tru: trustworthiness judgment task
(blue). Dom: dominance judgment task (red). Violin plots present the median value as the white circle and the interquartile range as
the gray vertical bars. The neural response from the trustworthiness judgment task had a stronger correspondence with the social
trait space compared with the neural response from the dominance judgment task. G–I, RSA for neural response and low-level fea-
tures. G, The low-level feature DM. H, I, Observed versus permuted correlation coefficient between DMs. H, Correlation between
the low-level feature DM and the neural DM from the trustworthiness judgment task. I, Correlation between the low-level feature DM
and the neural DM from the dominance judgment task. The correspondence between DMs was assessed using permutation tests
with 1000 runs. The magenta line indicates the observed correlation coefficient between DMs. The null distribution of correlation
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results with shape features only (Extended Data Fig. 3-
1) and texture features only (Extended Data Fig. 3-1),
and we did not succeed at selecting a larger than ex-
pected by chance number of neurons for individual fea-
tures (including the major shape features, the major
texture features, and a combination of these; all bino-
mial ps. 0.05). Therefore, amygdala and hippocampal
neurons did not parametrically correlate with low-level
facial features along specific axes in the face space
(i.e., demonstrating axis-based feature coding). This is
consistent with our previous neuroimaging finding that
the amygdala does not encode a linear combination of
low-level features (Cao et al., 2020a).
Second, our previous study has shown that amygdala

and hippocampal neurons encode a region in the feature
space and thus demonstrate region-based feature coding
(Cao et al., 2020b). Here, we further investigated whether
region-based feature coding was modulated by task in-
structions. Using the first shape and texture features to
construct a two-dimensional face space (Fig. 3G), we
found populations of neurons demonstrating region-
based feature coding (Fig. 3H,I for examples) in both
trustworthiness judgment task (n=24, 8.28%, binomial
p=0.006; Fig. 3H,J) and dominance judgment task
(n=35, 10.3%, binomial p, 0.001; Fig. 3I,J). Importantly,
the percentage of neurons demonstrating region-based
feature coding did not differ between task instructions (x2

test: p.0.05 for each group; Fig. 3J) and the coded area
by the neuronal population did not differ between task in-
structions (two-tailed two-sample t test: t(61) = 0.15,
p=0.88; Fig. 3M), although the coded regions by the neu-
ronal population differed slightly between task instruc-
tions (x2 test at each pixel: p,0.05 uncorrected for
multiple comparisons; Fig. 3K,L,N,O), which was likely be-
cause different neurons were recorded under different
task instructions and different neurons might have differ-
ent tuning regions. Furthermore, we found similar results
for the percentage of region-coding neurons within amyg-
dala neurons only (x2 test: p=0.31; Fig. 3J) and within
hippocampal neurons only (x2 test: p=0.35; Fig. 3J; see
also Fig. 3M for the percentage of encoded feature
space). In addition, we replicated our results within the
shape space (Extended Data Fig. 3-2) and within the tex-
ture space (Extended Data Fig. 3-2).
Together, although axis-based coding and region-

based coding models were not directly comparable be-
cause of different neuron selection procedures and crite-
ria (note that this study was not to compare these models
but to compare task instructions under each model), we
only found region-based coding in the human amygdala
and hippocampus, likely because the selection of neurons
for axis-based coding was more conservative (cross-vali-
dated using out-of-sample data, in contrast to the selec-
tion of neurons for region-based coding that was based
entirely on within-sample data). We further showed that

region-based coding of low-level facial features was not
modulated by task instructions or evaluative contexts.

Taskmodulation of eye movement and face part
selectivity
It has been shown that people use different facial infor-

mation in different tasks (Schyns et al., 2002). We next ex-
plored whether different task instructions could modulate
eye movement on faces. We found that neurosurgical pa-
tients had a similar percentage of fixations on the eyes
and mouth in different tasks (two-tailed paired t test,
eyes: t(17) = 0.74, p=0.47, mouth: t(17) = 0.94, p=0.36; Fig.
4A). Consistently, we found that the overall fixation den-
sity distributed similarly across tasks (Fig. 4B) and the
mean pixel-wise distance to the stimulus center was com-
parable between tasks (t(17) = 1.55, p=0.14; Fig. 4C).
Furthermore, we did not find a significant difference when
we compared the density maps pixel by pixel (Fig. 4D,E).
Therefore, our results suggest that task instructions did
not modulate the percentage of fixations onto salient face
parts (e.g., mouth) or the overall distribution of fixations.
We next explored whether different task instructions

modulated neural response to salient face parts such as
the eyes and mouth. We found neurons that differentiated
fixations onto the eyes or mouth in both tasks: we identi-
fied 41 neurons from the trustworthiness judgment task
(15.8%; binomial p=2.18� 10�11; see Fig. 5A,B for ex-
amples and Fig. 5C,D for group results; note that two ses-
sions with 31 neurons were excluded; see Materials and
Methods) and 38 neurons from the dominance judgment
task (13.6%; binomial p=8.60� 10�9; see Fig. 5F,G for
examples and Fig. 5H,I for group results; note that three
sessions with 61 neurons were excluded) differentiated
fixations on the eyes versus the mouth. Notably, the per-
centage of significant neurons did not differ significantly
between task instructions (x2 test: p=0.47). To investi-
gate the relationship between the response of these eye-
mouth-selective neurons and their behavior, we quanti-
fied the response of eye-mouth-selective neurons during
individual fixations using a FSI (see Eqs. 1, 2; Materials
and Methods). As expected, the FSI for eye-mouth-selec-
tive neurons was significantly larger during fixations on
the eyes compared with fixations on the mouth (two-tailed
two-sample KS test; trustworthiness: KS=0.34, p=1.30 -
� 10�246; dominance: KS=0.17, p=5.00� 10�70; Fig. 5E,
J). Notably, the FSI did not differ between tasks (two-
tailed two-sample t test: t(77) = 1.67, p=0.10).
Similarly, we found that 26 neurons from the trustwor-

thiness judgment task (9.92%; binomial p=3.44� 10�4)
and 25 neurons from the dominance judgment task
(8.96%; binomial p=0.0019) encoded saccades to the
eyes, and the percentage did not differ significantly be-
tween task instructions (x2 test: p=0.68). Furthermore,
we found that 18 neurons from the trustworthiness

continued
coefficients (shown in gray histogram) was calculated by permutation tests of shuffling the faces (1000 runs). J, Correlation between
the DNN feature DM and the neural DM. Null distribution was estimated using 1000 permutation runs. Red, trustworthiness judgment
task; blue, dominance judgment task. Shaded area denotes the statistical significance threshold (95% interval of the null distribution).
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Figure 3. Task modulation of neural encoding of low-level facial features. A–F, Axis-based feature coding. G–M, Region-based fea-
ture coding. A, B, A simple linear regression model. C, D, A classic face model. E, F, A PLS regression model. A, C, E, The number
of neurons showing a significant face model. Black dots show the chance number of significant neurons (5% of all neurons). B, D,
F, Model assessment. For the classic face model and PLS regression model, model predictability was assessed using the Pearson
correlation between the predicted and actual neural response in the test dataset. Error bars denote 6SEM across neurons. G,
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judgment task (6.87%; binomial p=0.069) and 22 neurons
from the dominance judgment task (7.89%; binomial
p=0.014) encoded saccades to the mouth, and the per-
centage did not differ significantly between task instruc-
tions (x2 test: p=0.68).
Together, we found that amygdala and hippocampal

neurons encoded salient face parts such as the eyes and
mouth in both tasks and their response to face parts was
similar between tasks.

Population summary
Lastly, we summarized three subpopulations of neu-

rons in the amygdala and hippocampus (Fig. 6). We found
that neurons that encoded social traits (i.e., trustworthi-
ness and dominance in the congruent task) and neurons
that demonstrated region-based feature coding were
largely distinct, because the proportion of neurons that
qualified as both was not greater than expected from in-
dependence of these two attributes (i.e., neurons that en-
coded social traits had a similar percentage of neurons
that demonstrated region-based feature coding as the en-
tire population), and this was the case for both trustwor-
thiness judgment task (x2 test: p=0.99) and dominance
judgment task (p=0.83). We also found that neurons that
encoded social traits and eye-mouth-selective neurons
were largely distinct, for both trustworthiness judgment
task (p=0.23) and dominance judgment task (p=0.54).
Furthermore, we found that neurons that demonstrated
region-based feature coding and eye-mouth-selective
neurons were largely distinct, for both trustworthiness
judgment task (p=0.44) and dominance judgment task
(p=0.90). In addition, by randomly splitting the trials into
three disjoint sets for selection of neurons for each attrib-
ute, we still found that the overlap between subpopula-
tions of neurons was not greater than expected from
independence (all ps.0.05).
Although we expected an above-chance overlap of se-

lected/significant neurons when we randomly split the tri-
als into two disjoint sets for selection of neurons, we only
found so for social trait neurons. This was likely because
(1) it was not a sensitive analysis to use the overlapping
numbers of selected neurons; (2) the thresholding for

defining significant neurons was arbitrary (i.e., neurons
may be at the borderline of significance so they may ap-
pear as significant in one split but nonsignificant in the
other split, resulting in unstable classifications); and (3) for
region-coding neurons, the distribution of faces in the
face space was different given different split of trials (note
that we used a spike density map to select region-coding
neurons, and the spike density map may vary as a func-
tion of the configuration of the face space). To further
demonstrate consistency of trials, we employed a more
sensitive parametric approach: we correlated the corre-
lation coefficient between splits of trials for neurons en-
coding social traits, and we correlated the FSI between
splits of trials for neurons encoding eye movement. We
found that both neurons encoding social traits (trust-
worthiness judgment task: r = 0.76, p = 1.83� 10�5;
dominance judgment task: r = 0.78, p = 5.38� 10�5) and
neurons encoding eyemovement (trustworthiness judgment
task: r=0.71, p=2.14� 10�7; dominance judgment task:
r=0.74, p=7.03� 10�8) showed a significant correlation
between splits of trials, suggesting consistency of trials
(note that a metric to parametrically summarize the strength
of region-based coding was not available given its two-di-
mensional nature). Notably, we found no significant correla-
tion between the correlation coefficient of social traits and
the FSI (trustworthiness judgment task: r =�0.076, p=0.22;
dominance judgment task: r=0.032, p=0.60), confirming
that these two attributes were encoded separately.
Together, the three subpopulations of neurons identi-

fied in this study were largely distinct, and they were sub-
ject to task modulation differentially.

Discussion
In this study, we comprehensively analyzed different as-

pects of face processing, and in particular, for the first
time analyzed context dependency of face perception at
the single-neuron level in humans. Specifically, (1) we
found that task instructions modulated encoding of social
traits, consistent with our previous study showing that the
amygdala has a flexible encoding of social traits (Cao et
al., 2020a). (2) We found that neurons in the amygdala
and hippocampus demonstrated region-based but not

continued
Feature space constructed by the first shape and tone/texture features that were used to generate the stimuli. Note that face shape
varied along feature dimension 1 and skin color varied along feature dimension 2. H, I, Example neurons demonstrating region-
based feature coding. The size of the squares indicates the FR. The blue/red outlines delineate the tuning regions of the neurons in
the feature space. H, An example neuron from the trustworthiness judgment task. I, An example neuron from the dominance judg-
ment task. J, Percentage of neurons (all neurons, amygdala neurons, and hippocampal neurons) demonstrating region-based fea-
ture coding. K, L, The aggregated tuning regions of the neuronal population. Color bars show the counts of overlap between
individual tuning regions. K, Trustworthiness judgment task. L, Dominance judgment task. M, The percentage of the feature space
covered by the tuning regions did not differ between the trustworthiness judgment task and the dominance judgment task for all
neurons and amygdala neurons. Error bars denote 6SEM across neurons. Asterisk indicates a significant difference between condi-
tions (two-tailed two-sample t test); *p , 0.05. N, Group difference in the aggregated tuning regions of the neuronal population
(trustworthiness � dominance). Yellow, higher counts in the trustworthiness judgment task; blue, higher counts in the dominance
judgment task; green, no difference between tasks. O, Statistical map shows areas that had a significant difference in the proportion
of neurons (i.e., the number of neurons that encoded a particular pixel divided by the total number of region-coding neurons) be-
tween tasks (yellow; x2 test at each pixel, p, 0.05 uncorrected for multiple comparisons). Extended Data Figure 3-1 shows axis-
based coding of low-level features analyzed separately for shape features and texture features. Extended Data Figure 3-2 shows re-
gion-based coding of low-level features analyzed separately for shape features and texture features.
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Figure 4. Task modulation of eye movement onto faces. A, Percentage of fixations for each ROI. Error bars denote 6SEM across
sessions. B, Fixation density maps to quantify eye movements for different tasks. Each map shows the probability of fixating a
given location within the entire stimulus period. The scale bar (color bar) is in arbitrary units. The ROIs (eye, mouth, nose) used for
analysis are shown in red (not shown to patients). C, Mean distance to the stimulus center (in pixels). Tru: trustworthiness. Dom:
dominance. D, Group difference density map (trustworthiness � dominance) shows areas that patients fixated more in the trustwor-
thiness judgment task (yellow), and vice versa (blue), with green meaning there was no difference between tasks. E, Statistical map
shows areas that had a significant difference in density maps between tasks (red; two-tailed two-sample t test between individual
density maps at each pixel, p, 0.05 uncorrected).
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Figure 5. Task modulation of face part selectivity. A–E, Trustworthiness judgment task. F–J, Dominance judgment task. A, F,
Neurons that had a significantly greater FR when fixating on the eyes compared with the mouth (selection by two-tailed t test in a
time window of �200ms before fixation onset to 200ms after fixation offset). B, G, Neurons that had a significantly greater FR when
fixating on the mouth compared with the eyes. Fixations are sorted by fixation duration (black line shows start of the next saccade).
Fixation onset is t=0. Asterisks indicate a significant difference between fixations on the eyes and mouth in that bin (p, 0.05, two-
tailed t test, after Bonferroni correction; bin size = 100ms). C–E, H–J, Population summary of all eye-mouth-selective. C, H, Average
normalized FR of eyes-preferring neurons. D, I, Average normalized FR of mouth-preferring neurons. Shaded area denotes 6SEM
across neurons. Asterisks indicate a significant difference between the fixation categories in that bin (p, 0.05, two-tailed t test,
after Bonferroni correction). E, J, Single-fixation analysis using the FSI (Materials and Methods). Shown is the cumulative distribution
of the single-fixation response of fixation-aligned eyes-preferring and mouth-preferring neurons for fixations on the eyes and mouth.
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axis-based feature coding, consistent with our previous
findings using natural real photos (Cao et al., 2020b). This
is also consistent with our prior neuroimaging report that
the amygdala does not demonstrate axis-based coding
(Cao et al., 2020a). In particular, we showed that region-
based feature coding was not modulated by task instruc-
tions or evaluative contexts. (3) We found that neurons in
the amygdala and hippocampus encoded salient face
parts, consistent with our prior study using natural real
photos (Cao et al., 2021b). We further showed that task
instructions did not modulate neuronal response to eye
movements to face parts. Together, our results showed
that some processes of face perception were modulated
by task instructions but not others.
Because of the length of the experiment, most of the

trustworthiness judgment tasks and dominance judgment
tasks were recorded in different sessions. Therefore,
most of the neurons under different tasks were not the
same, and our conclusions were largely based on the
neuron population statistics. However, we confirmed our
results with a subset of neurons recorded for both tasks.
Furthermore, although we only used computer-generated
model faces in this study, encoding of social traits (Cao et
al., 2021a), low-level facial features (Cao et al., 2020b),
and eye movement (Cao et al., 2021b) can all be repli-
cated using natural photographs of real human faces.
In each task, we found largely distinct subpopulations

of neurons for each attribute (Fig. 6), consistent with our
prior findings that only a small and distinct proportion
(;20%) of human amygdala and hippocampal neurons
are involved in coding a certain task aspect, such as at-
tention (Wang et al., 2018b, 2019), task sequence (Wang
et al., 2019), visual category selectivity (Wang et al.,
2018b), eye movement (Cao et al., 2021b), social judg-
ment (Cao et al., 2021a), as well as face identity (Cao et
al., 2020b), although other studies have suggested
nested/mixed selectivity in the monkey amygdala
(Gothard et al., 2007; Mosher et al., 2014). Mixed selectiv-
ity in the amygdala may be critical for flexible and con-
text-dependent social behavior (Gothard, 2020); and the

lack of mixed selectivity in our present and previous stud-
ies (Wang et al., 2018b, 2019) was likely because the task
attributes under investigation were not closely related.
A future study is therefore needed to systematically in-
vestigate multidimensional processing in the human
amygdala and hippocampus.
Although our previous neuroimaging study has shown

that there is a flexible encoding of social traits or low-level
facial features in various face encoding areas including
the amygdala (Cao et al., 2020a), it does not have the spa-
tial and temporal resolution to tease apart different neural
processes underlying face perception or separate the re-
sponse from different neurons. Here, we not only showed
that different neural processes were modulated by task
instructions differently, but also demonstrated that dif-
ferent subpopulations of neurons encoded different
processes of face perception. In line with this idea, our
prior report showed that during approach versus
avoidance decisions (rather than trustworthiness or
dominance judgment as in the present study) the right
amygdala’s response to trustworthiness is not modu-
lated by stimulus range or social context (Wang et al.,
2018a), although the decisions are based on facial
trustworthiness.
Our present results suggest invariant encoding of low-

level features but flexible encoding of social traits under
different contexts in the human amygdala and hippocam-
pus. On the one hand, the invariant coding of low-level fa-
cial features supports the functional role of the amygdala
and hippocampus in invariant visual representation of
face identities (Quian Quiroga et al., 2005; Quian Quiroga,
2012). On the other hand, the flexible coding of social
traits is consistent with the idea that the hippocampus
plays a critical role in flexible cognition and social behav-
ior (Rubin et al., 2014). It has been shown that neurons in
the amygdala and hippocampus flexibly encode task de-
mands and are engaged in a flexible recruitment of mem-
ory-based choice representations (Minxha et al., 2020).
Furthermore, the amygdala processes stimulus relevance
and evaluative goals and it can be dynamically modulated

Figure 6. Summary of each type of neuron in the amygdala and hippocampus. A, Trustworthiness judgment task. B, Dominance
judgment task.
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by motivations of the perceiver (Cunningham et al., 2008;
Cunningham and Brosch, 2012).
Top-down modulations in the amygdala and hippocam-

pus may originate from the frontal cortex (Corbetta and
Shulman, 2002; Zanto et al., 2011), which has extensive
anatomic and functional connections with the amygdala
(Amaral and Price, 1984; Gangopadhyay et al., 2021). The
frontal cortex reads out context or motivation in percep-
tual decision-making (Gold and Shadlen, 2007). For ex-
ample, the prefrontal cortex shows context-dependent
neural computation when monkeys flexibly select and in-
tegrate noisy sensory inputs toward a choice (Mante et
al., 2013), and the inferior frontal gyrus shows flexible
neural coding during categorical decision-making by
shaping its selectivity to reflect the behaviorally relevant
features (Li et al., 2007). Besides, social judgments modu-
late the response to faces in the inferior frontal gyrus and
dorsal medial prefrontal cortex (Bzdok et al., 2012). Many
studies have implicated the frontal cortex in modulating
face perception by integrating perceptual representations
with top-down expectations activated by task instruc-
tions, task demands, and evaluative contexts (Ratner et
al., 2013; Collins et al., 2016; Stolier and Freeman, 2016).
In line with this idea, we have shown that the neural signa-
ture from the medial prefrontal cortex indexing facial am-
biguity is modulated by context (Sun et al., 2017b) and
task instructions (Sun et al., 2017a), which is in turn re-
lated to amygdala activity (Wang et al., 2017). We have
also shown that the goal-directed attentional signal to
faces in the amygdala and hippocampus (Wang et al.,
2018b) may also originate from the medial frontal cortex
(Wang et al., 2019).
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