
© AME Publishing Company.   Transl Cancer Res 2024;13(11):5751-5770 | https://dx.doi.org/10.21037/tcr-24-683

Original Article 

Construction of ferroptosis and pyroptosis model to assess the 
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Background: Gastric cancer (GC) is a malignancy with a grim prognosis, ranking as the second most 
common cause of cancer-related deaths globally. Various investigations have demonstrated the substantial 
involvement of ferroptosis and pyroptosis in the advancement of tumors. Nevertheless, the precise 
molecular mechanisms by which distinct genes associated with ferroptosis and pyroptosis influence the 
tumor microenvironment (TME) in GC remain elusive. Therefore, this study aims to elucidate the role of 
ferroptosis and pyroptosis in GC and provide insigths for GC therapy and prognosis evaluation.
Methods: The data including gene expression, clinicopathological characteristics and survival information 
of GC samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts 
were collected, and the expression level of ferroptosis and pyroptosis genes (FPGs) in GC samples were 
analyzed. Consensus clustering analysis, Cox logistic regression, principal component analysis (PCA), and the 
“survival”, “survminer”, “limma”, “ggplot2” and other packages in R were utilized to compare the differences 
among different groups. In the level of GC cells, cell viability experiments were conducted by Cell Counting 
Kit-8 (CCK-8) assay.
Results: Through the analysis of the expression level of FPGs in GC samples from the TCGA and GEO 
cohorts, twenty-three prognostic-related and differentially expressed FPGs were collected for further 
analysis. Through consensus clustering analysis, three distinct patterns of FPGs were identified and found to 
be correlated with clinicopathological characteristics, immune cell infiltration, and prognosis in patients with 
GC. Subsequently, 684 prognostic-related genes from 1,082 pattern-related differentially expressed genes 
(DEGs) were screened for constructing the FPG_Score system to quantify FPGs patterns in individual GC 
patients and predict the prognosis. The analysis indicated that GC patients with high FPG_Score exhibited 
improved survival rates, increased tumor mutation burden (TMB), higher microsatellite instability (MSI), 
and elevated programmed cell death protein ligand 1 (PD-L1) expression. These patients with high FPG_
Score were more likely to benefit from immunotherapy and had a more favorable prognosis.
Conclusions: Our study innovatively provided a comprehensive analysis of FPGs in GC, and 
constructed the FPG_Score system for stratification of individual patients, so as to predict its benefit from 
immunotherapy and prognosis. 
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Introduction

Gastric cancer (GC) is one of the most common malignant 
tumors and ranks the second leading cause of cancer-related 
death worldwide (1). With more than 1 million new cases 
estimated each year and often diagnosed at an advanced 
stage, GC is of a high mortality rate, with approximately 
783,000 deaths reported in 2019, and the 5-year survival 
rate of advanced GC is less than 30% (2). Patients with 
early-stage GC often exhibit no symptoms, and thus 
missing the optimal window for elective treatment (https://
www.cancer.gov/). With considerable progress in recent 
years in endoscopy technology, an increasing number of 
GC patients are being diagnosed early, but the invasiveness 
and expense limit large-scale GC screening. The prognosis 
of patients with advanced GC remains poor and poses a 
great burden to families and society. Therefore, there is an 
urgent need to better understand the molecular basis of this 
disease and explore effective indicators to guide diagnosis 
and individualized treatment strategies (3).

Programmed cell death includes apoptosis, necroptosis, 
ferroptosis, and pyroptosis. Induction of programmed 
tumor cell death plays an important role in the clinical 

treatment regimen of cancer. Ferroptosis is a type of 
programmed cell death characterized by iron-dependent 
lipid peroxidation, which involves the activation of reactive 
oxygen species (ROS), iron aggression, and degradation of 
cellular glutathione peroxidase 4 (GPX4) (4,5). Our previous 
study discovered that rat sarcoma (RAS) gene mutant 
tumor cells are much more sensitive to ferroptosis (6).  
Recently, preclinical studies have shown that ferroptosis 
induction has become a promising option for cancer cell 
death, particularly for invasive malignancies with increased 
levels of intracellular iron (7,8). Several ferroptosis inducers 
including erastin, sorafenib, and dihydroartemisinin 
have been screened for their ability to effectively induce 
ferroptosis in tumor cells (9,10). Some molecules bind 
directly to GPX4, promoting lipid peroxidation, and thus 
leading to ROS accumulation (11). 

Pyroptosis is a type of programmed cell death distinct 
from apoptosis and is triggered by certain inflammatory 
vesicles, leading to gasdermin D cleavage and activation 
of inactive cytokines such as interleukin (IL)-18 and IL-1β 
(12,13). Recently, several studies have found that pyroptosis 
can affect tumorigenesis, cancer progression, and metastasis 
(14,15). Additionally, CD8 T cells kill tumor cells via 
pyroptosis, which may be related to the fact that pyroptosis 
can synergistically enhance the antitumor effects of immune 
checkpoint inhibitors (ICIs) (16). Deng et al. confirmed that 
histone methyltransferase inhibitor bix01294 can induce 
Gasdermin-E (GSDME)-mediated pyroptosis and improve 
the efficacy of chemotherapeutic drugs by activating 
autophagy in GC cells (17). Recent study has found that 
both ferroptosis and pyroptosis can affect the occurrence 
and progression of tumors. The induction of pyroptosis 
or ferroptosis showed synergistic antitumor activity with 
ICIs, even in ICI-resistant tumors (16). However, some 
differences exist in the characteristics of ferroptosis and 
pyroptosis. It has been found that anti-tumor immune cells, 
such as CD8 T cells, can promote these two types of cell 
death, simultaneously (16). CD8 T cells secret interferon-γ 
to induce ferroptosis, which could also promote the 
expression of Gasdermin-B (GSDMB) to induce pyroptosis 
(18,19). Liao et al. demonstrated that long-chain-fatty-acid-
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CoA ligase 4 (ACSL4) correlated with T-cell signatures and 
improved survival in immune checkpoint blockade (ICB)-
treated cancer patients (20). Pyroptosis was reported to play 
a dual role in tumor development, either promoting tumor 
or causing tumor regression which depends on the context 
in which tumor cells are located (21). However, most 
studies only focused on a single ferroptosis-related gene 
or pyroptosis-related gene (7,14), and the comprehensive 
effect and tumor microenvironment (TME) infiltration 
characteristics mediated by the combination of ferroptosis 
and pyroptosis genes (FPGs) have not been fully clarified. 
Distinctively, we integrated ferroptosis and pyroptosis-
related genes and systematically investigated the effect of 
two types of genes on the treatment and prognosis of GC.

In the present study, the gene expression profiles of GC 
patients were obtained from The Cancer Genome Atlas 
(TCGA) and Gene Expression Omnibus (GEO) databases. 
We obtained a comprehensive overview of the intratumoral 
immune landscape using different computational algorithms. 
First, GC patients were classified into three discrete patterns 
according to FPGs expression levels. The three patterns 
showed significant differences in clinical characteristics, 
biological processes, and immune cell infiltration. Then, 
patients were divided into three gene subtypes based on 
differentially expressed genes (DEGs) identified by three 
FPGs patterns. Finally, we constructed a set of scoring 
systems to quantify the FPGs patterns in individual patients 
and predict the prognosis of GC patients to ICIs treatment. 
Our study aims to show that FPGs play a key role in GC and 
would be used for predicting the prognosis and providing 
individualized immunotherapy for GC. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-683/rc).

Methods

Data sources

A total of 806 samples (433 samples from GSE84437 
and 373 samples from TCGA-GC) with complete gene 
expression (fragments per kilobase million, FPKM) and 
corresponding clinical information would be enrolled 
and downloaded from TCGA (available online: https://
portal.gdc.cancer.gov/), (22) and GSE84437 (GEO, 
available online: https://www.ncbi.nlm.nih.gov/geo/) (23). 
We converted the FPKM values of RNA sequencing to 
transcripts per kilobase million (TPM) values by employing 

FPKM function of the “limma” package in R (24). Two 
datasets were combined, and batch effects were eliminated 
by applying the “Combat” algorithm. We drew the diagram 
of ferroptosis and pyroptosis copy number changes of the 
chromosome based on the copy number variation (CNV) 
using the “Rcircos” package. The study was conducted in 
accordance with the Declaration of Helsinki (as revised  
in 2013).

Consensus clustering analysis of FPGs

The FPGs were retrieved from the FerrDb (http://www.
bdatjar.com:40013/bt2104/) and previous publications (25). 
Four hundred and thirty-four FPGs were differentially 
expressed between tumor and normal tissues. However, 
twenty-three FPGs were screened by Cox logistic regression 
for the significant difference in prognosis between GC 
tissues and their adjacent tissues and enrolled for further 
analysis. The “ConsensusClusterPlus” package in R was 
conducted for unsupervised cluster analysis to identify 
distinct clusters according to the expression of 23 FPGs (26).

The Human Protein Atlas (HPA)

The HPA (https://www.proteinatlas.org/) is an online 
database with protein immunohistochemistry information 
and cell-specific location of many normal and cancer tissues. 
We utilized it to obtain the expression level of targeted 
proteins in GC tissues and normal tissues according its 
guideline.

Identification of the relationship between clinical 
characteristics and FPGs patterns in GC

To investigate the clinical value of the three patterns 
determined by consensus clustering, we compared the 
relationships of clinicopathological characteristics between 
patterns. We evaluated the prognostic differences values of 
three patterns by using the Cox logistic regression model. 
In addition, Kaplan-Meier curves with the “survival” and 
“survminer” R packages were utilized to compare the 
prognosis among different patterns. To further explore the 
differences in biological processes in three patterns, gene set 
variation analysis (GSVA) was performed with the “GSVA” 
package. The gene sets of the “c2.cp.kegg.v7.4 symbol” 
were downloaded from the Molecular Signatures Database 
(MSigDB) (27). Adjusted P value <0.05 was considered 
statistically significant.
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Estimation of TME cell infiltration of three subtypes

The single-sample gene set enrichment analysis (ssGSEA) 
was used to quantify the relative abundance of each 
immune cell infiltration in GC TME (28). The collected 
gene set contains various human immune cell subtypes 
including activated CD8 T cell, activated dendritic cell, 
activated B cell, macrophage, mast cells, monocyte, natural 
killer T cell, and regulatory T cell. The ssGSEA analysis 
enrichment scores were calculated to represent the relative 
abundance of each GC sample. The difference analysis of 
TME infiltrating immune cells was utilized to observe the 
infiltration abundance of the three subtypes.

Identification of DEGs and functional annotation

DEGs among the three FPGs patterns in GC were 
determined using the “limma” R package, and an adjusted 
P<0.05 was considered statistically significant. To identify 
the biological functions and related biological pathways 
of FPGs patterns-related DEGs, Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis was conducted by using the 
“clusterProfifiler” package in R and under the condition: 
false discovery rate (FDR) <0.01.

Construction of ferroptosis/pyroptosis genes signature

Principal component analysis (PCA) was used to establish 
the FPGs relevant risk score, termed “ferroptosis/
pyroptosis score” (FPG_Score), so as to quantify the three 
FPGs patterns of GC patients. The procedures for the 
construction of FPGs signature were as follows: firstly, 
we used a univariate Cox logistic regression analysis to 
execute the prognostic analysis for all ferroptosis/pyroptosis 
pattern-related DEGs in the signature. Then, the “ggplot2” 
R package was applied to conduct PCA and construct the 
best FPGs prognostic signature, and the FPG_Score was 
calculated to quantify each GC patient. According to the 
median FPG_Score, GC samples were categorized into 
high and low groups and subjected to Kaplan-Meier survival 
analysis (log-rank tests, P<0.001).

Correlation between the FPG_Score and immune functions

To further clarify the relationship between FPG Score and 

immunity functions in GC, we applied ssGSEA to assess 
the abundance of tumor-infiltrating immune cells between 
the two FPG_Score groups and their differences in immune 
status. Additionally, a stratified analysis was performed 
to evaluate whether the FPG_Score hold its ability of 
prediction according to the tumor mutation burden (TMB). 
What’s more, differential expression densities of immune 
checkpoints, like programmed cell death protein 1 (PD-1) 
and cytotoxic T lymphocyte antigen 4 (CTLA-4), between 
the low and high FPG_Score groups were compared using 
the Wilcoxon test. Furthermore, we characterized the 
relationships between FPG_Score and immunotherapy or 
microsatellite instability (MSI) by employing correlation 
analysis.

Cell Counting Kit-8 (CCK-8) assay

BGC823 cells were bought from Beyotime (Shanghai, 
China). CCK-8 assay was conducted to measure Cell 
viability. Briefily, Cells seeded in 96-well culture plates 
(Nest, Biotechnology) were administrated with different 
concentrations of α-ketoglutarate (α-KG) in combination 
with erastin at 37 ℃. After treatment, the cell supernatant 
was replaced with a CCK-8-containing medium for 
additional 2 hours. The absorbance at 450 nm was measured 
to reflect the viability of cells.

Statistical analysis

One-way analysis of variance (ANOVA) and the Kruskal-
Wallis test were used to calculate the differences between 
groups. The “survminer” R package was utilized to 
identify the cutoff point for each dataset according to the 
relationship between patient survival time and FPG_Score. 
The difference for the survival prognosis was conducted 
via the Kaplan-Meier method and log-rank tests. The 
univariate Cox logistic regression model was employed to 
calculate the hazard ratios (HRs) for FPGs. PCA was used 
to ascertain the FPG_Score prognostic value of several 
clinical characteristics. For the statistical analysis of the data 
from in vitro experiment, differences were assessed with 
Student’s t-test and ANOVA for comparisons between two 
groups and multi groups, respectively. These analyses were 
conducted using software of R (version 4.1.0) and GraphPad 
Prism (version 5.0). P<0.05 were considered statistically 
significant. 
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Results

Genetic and transcriptional alterations of differential 
FPGs in GC

To fully understand the gene expression patterns of FPGs 
in the collected 806 GC patients. A heatmap involving the 
expression of 202 differentially expressed FPGs between 
tumor and normal tissues is shown in Figure 1A. Among 
them, 23 FPGs were screened by Cox logistic regression 
for the significant difference in prognosis and used for 
subsequent analysis. Therein, HAMP, NOX3, NOX4, 
NOX5, and CDO1 were correlated with high hazard ratios 
(HRs) in patients with GC (Figure 1B). Then we assessed 
the prevalence of mutations in these 23 prognostic-related 
FPGs for determining the genetic alterations in mRNA 
levels of FPGs in GC. In the TCGA cohort, 18.24% of 
the GC samples harbor gene alteration in these FPGs, 
among them, NOX5 had the highest mutation frequency, 
followed by LONP1, SLC2A3, and TGFBR1 (Figure 1C). 
Next, we explored somatic copy number alterations in these 
FPGs and discovered prevalent copy number alterations 
in all 23 FPGs (Figure 1D). The result shows that TXNIP, 
MYB, CHMP4C, GLS2, AIFM2, HAMP, and ZFP36 
had widespread CNV gains, while CHAC1, NNMT, 
CDO1, LONP1, GABARAPL1, and SLC2A3 showed 
CNV loss. Figure 1E shows the locations of the CNV 
alternations of the FPGs on their respective chromosomes. 
We further compared the expression of FPGs between 
GC and normal tissues. The results showed that ZFP36, 
DUSP1, TSC22D3, TXNIP, HBA1, GABARAPL1, and 
CDO1 were significantly down-regulated in tumor samples 
compared to those in normal samples. Additionally, results 
of immunohistochemistry from the HPA show most 
proteins were lower in GC tissues than in normal tissues  
(Figure S1A-S1E). However, the other 14 genes were 
significantly up-regulated in tumor samples, suggesting 
that CNV might be involved in the regulation of FPGs 
expression (Figure 1F). 

FPGs patterns and clinicopathological analysis

To further explore the expression characteristics of FPGs 
in GC, the comprehensive landscape of FPGs interactions 
was visualized in a prognosis network (Figure 2A). We 
found the FPGs were correlated with each other. Then, 
we used a consensus clustering algorithm to categorize 
the patients based on the expression level of 23 FPGs. 
The results indicated that k=3 appeared to be an optimal 

selection for sorting the entire cohort into three different 
patterns (Figure 2B, Figure S2). To comprehensively master 
the transcriptional features of the three distinct FPGs 
patterns, we then conduct the PCA and observed an obvious 
difference in the transcription profiles of FPGs among the 
three clusters (Figure 2C). The survival analysis of the FPGs 
patterns showed that patients with FPGs pattern C had 
higher survival rates than the others (P<0.001; Figure 2D). 
In addition, comparisons among clinicopathological features 
and different FPGs patterns showed massive differences in 
FPGs expression and these features (Figure 2E), FPGs were 
high expressed in FPGs pattern A, while most genes were 
low expressed in FPGs pattern B.

Characteristics of TME and biological characteristics of 
three FPGs patterns 

We performed GSVA enrichment analysis to assess the 
differences in biological functions of three FPGs patterns, 
and observed the obvious difference in functional pathways 
between different patterns. Indeed, FPGs pattern A 
was mainly concentrated in calcium signaling pathway, 
vascular smooth muscle contraction, and glycosphingolipid 
biosynthesis ganglio series; FPGs pattern B was initially 
associated with complement and coagulation cascades, 
hypertrophic cardiomyopathy, and calcium signaling 
pathways; FPGs pattern C was significantly associated 
with alanine aspartate and glutamate metabolism, base 
excision repair, homologous recombination, nucleotide 
excision repair, and DNA replication (Figure 3A-3C). 
Subsequent analysis of TME cell infiltration showed that 
the distribution of infiltration abundance of immune cells 
among three FPGs patterns was significantly discrepant 
(Figure 4A). Most of the immune cells in FPGs pattern 
A were higher than FPGs pattern B or C, including 
activated B cell, activated CD8 T cell, activated dendritic 
cell, eosinophil, gamma delta T cell, immature B cell, 
immature dendritic cell, myeloid-derived suppressor cells 
(MDSCs), macrophage, mast cell, natural killer T cell, 
natural killer cell, plasmacytoid dendritic cell, regulatory 
T cell, T follicular helper cell, and type 1 T helper cell, 
while CD56 bright natural killer cell, CD56 dim natural 
killer cell, monocyte, neutrophil, and type 17 T helper cell 
were higher infiltration in FPGs patterns B than other two 
FPGs patterns. These results demonstrated that the three 
categorized FPGs patterns harbor significantly different 
biological pathways and immune infiltration subtypes which 
could discriminate the prognosis of GC patients.

https://cdn.amegroups.cn/static/public/TCR-24-683-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-683-Supplementary.pdf
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Figure 1 Genetic and transcriptional alternations of FPGs in GC. (A) Heatmap of the FPGs between the normal and the tumor tissues. 
Blue represents low expression level; red represents high expression level. (B) The forest plot of the univariate Cox logistic regression model 
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depicts the 23 statistically significant prognostic factors of FPGs in TCGA-GC cohort. Hazard ratio >1: risk factors for survival. Hazard 
ratio <1: protective factors for survival. (C) The mutation frequency of FPGs of GC patients in the TCGA-STAD and GSE84437 cohorts. 
(D) Frequencies of CNV among the FPGs. Red represents an increase in copy number, and green represents the loss of copy number. (E) 
Location of CNV alternations in FPGs on 23 chromosomes. (F) Expression distributions of FPGs between normal and GC tissues. ***, 
P<0.001; **, P<0.01; *, P<0.05. CI, confidence interval; CNV, copy number variation; FPGs, ferroptosis and pyroptosis genes; GC, gastric 
cancer; TCGA, The Cancer Genome Atlas; STAD, stomach adenocarcinoma.

Identification of gene subtypes based on DEGs

To further explore potential gene functions and signaling 
pathways among different FPGs patterns, 1,082 DEGs 
among the three patterns were screened employing the 
“limma” package (Figure 4B). Then, GO enrichment 
analysis and KEGG pathway analysis were performed based 
on these pattern-related DEGs. The results showed that 
the DEGs were mainly involved in a variety of biological 
functions, including nuclear division, chromosome 
segregation, organelle fission, and extracellular matrix 
organization. The cellular component in which DEGs 
majorly take part were the collagen-containing extracellular 
matrix, chromosomal region, spindle, and so on. In parallel, 
these DEGs were mainly involved in the molecular 
functions of tubulin binding, extracellular matrix structural 
constituent, and cytokine binding (Figure 4C). The KEGG 
enrichment analysis indicated that these DEGs major 
enriched in cell cycle, progesterone-mediated oocyte 
maturation, and DNA replication (Figure 4D), suggesting 
that subtype-related DEGs play a significant role in cell 
metabolism. 

To further illustrate the potential biological signature of 
three FPGs patterns, 654 prognostic-related DEGs were 
screened for the consensus clustering algorithm. The GC 
patients were classified into three gene subtypes (gene 
cluster I, gene cluster II, and gene cluster III) (Figure S2). 
The heat map of relationships between clinicopathologic 
characteristics and gene subtypes revealed that the 
expression abundance of most prognostic-related genes 
was higher in gene cluster II (Figure 4E). Kaplan-Meier 
curves showed that patients with gene subtype III had the 
worst prognosis, whereas patients in gene cluster II showed 
a favorable prognosis (log-rank test, P<0.001; Figure 4F). 
As shown in Figure 5A, analysis of gene expression results 
revealed the three gene cluster subtypes showed significant 
differences in the expression of 23 FPGs. 

Construction of the prognostic FPG_Score

To further quantify the three FPGs patterns in individual 

GC patients, FPG_Score was constructed based on the 
subtype-related gene signature in individual patients. 
Patients were divided into groups with low or high 
autophagy scores. The Sankey diagram showed the flow of 
the FPG_Score and illustrated the distribution of patients 
in the three FPGs patterns, three gene subtypes, and two 
FPG_Score groups (Figure 5B). To assess the effect of the 
FPG_Score on TME, we compared the infiltration of 
immune cells between the two FPG_Score groups. The 
results show that the FPG_Score was significantly positively 
correlated with activated CD4 T cells, neutrophils, CD56 
dim natural killer cells, type 17 T helper cells, and type 2 
T helper cells (Figure 5C). To further evaluate the clinical 
relevance of the FPG_Score, we performed survival 
analysis. Patients with high FPG_Score display a prominent 
survival benefit (log-rank test, P<0.001; Figure 5D). 
Moreover, the FPG_Score differed not only in the FPGs 
patterns but also in the gene subtypes. The FPGs pattern 
C and gene subtype II harbor a higher score (Figure 5E,5F). 
These results indicated that FPG_Score could be used for 
prognostic prediction for GC patients.

Characteristics of FPGs subtypes in TMB and immune 
functions

A wealth of novel research has demonstrated that ICIs have 
become the trend in tumor therapy (29,30). Identifying 
distinct TME phenotypes would be of significance to 
predict the response to immunotherapy. It has been shown 
that TMB was a predictive biomarker, which could identify 
cancer patients who are most likely to benefit from ICIs 
(31,32). To further expand the insight of FPG_Score, the 
application of FPG_Score in the prediction of TMB and 
tumor immunology therapy was investigated. Spearman 
correlation analysis demonstrated that the FPG_Score was 
positively correlated with the TMB (P<0.001; Figure 6A). 
Increasing evidence showed that higher TMB means higher 
numbers of neoantigens, which could predict the benefit 
from immunotherapy. The analysis of the mutation data in 
the TCGA cohort showed a higher TMB in the high FPG_

https://cdn.amegroups.cn/static/public/TCR-24-683-Supplementary.pdf
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Figure 2 FPGs and clinicopathological characteristics of two distinct patterns of samples divided by consistent clustering. (A) Interactions 
among FPGs in GC. The line connecting the FPGs represents their interaction, and the line thickness indicates the strength of the 
association between FPGs. (B) The optimal number of clusters (K=3) was determined from CDF curves. (C) The scatter plot of PCA 
from three FPG patterns clusters. (D) Survival analysis based on the three FPGs patterns. (E) Differences in clinicopathologic features and 
expression levels of FPGs between three distinct patterns. FPG, ferroptosis and pyroptosis gene; TCGA, The Cancer Genome Atlas; GC, 
gastric cancer; PCA, principal component analysis; CDF, cumulative distribution function.
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Figure 3 The biological characteristics of three FPGs patterns. (A) GSVA analyzed the differences between functional pathways in 
FPGs pattern A and B. (B) GSVA analyzed the differences between functional pathways in FPGs pattern A and C. (C) GSVA analyzed 
the differences between functional pathways in FPGs pattern B and C. Blue represents the FPGs pattern A, orange represents the FPGs 
pattern B and red represents the FPGs pattern C. FPG, ferroptosis and pyroptosis gene; TCGA, The Cancer Genome Atlas; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; GSVA, gene set variation analysis. 
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C

Score group than that in low FPG_Score group (Figure 6B),  
indicating that the patients in high FPG_Score group 
might get benefits from immunotherapy. Subsequently, 
the distribution variations of the somatic mutations were 
analyzed between two FPG_Score groups in the TCGA 
cohort. The mutation frequency of the high FPG_Score 
group is 98.06%, which is higher than the low FPG_Score 
group (84.17%). The top ten mutation genes in the high 
and low FPG_Score groups were TTN, TP53, MUC16, 
ARID1A, LRP1B, SYNE1, FLG, FAT4, CSMD3, and PCLO 
(Figure 6C,6D). Then, GC samples were divided into high 
and low TMB groups according to the optimal cutoff value 
of TMB by using the minimum P value method. Survival 
analysis of TMB revealed that the prognosis of the high 
TMB group was better than that of patients in the low 
TMB group (Figure 6E). Moreover, the survival curves 
of combined TMB with the FPG_Score showed that the 
patients in both the high tumor mutation group and the 
high FPG_Score group had the best prognosis (Figure 6F).

Immunotherapy and MSI analysis

In recent years, with the application of targeted drugs 

and immunotherapeutics, such as programmed cell death 
protein 1/programmed cell death protein ligand 1 (PD-1/
PD-L1) antibodies, the treatment efficacy of the advanced 
GC has increased. In addition, research has proven that the 
expression of PD-1 and PD-L1 is related to the therapeutic 
response to ICIs in GC (33). Similarly, our results 
manifested that the expression of PD-L1 was increased in 
the high FPG_Score group, while the expression of PD-1 
did not differ between the high and low FPG_Score groups 
(Figure 7A,7B). These results suggested GC patients in 
the high FPG_Score group might be more sensitive to 
immunotherapy and thus benefit from immunotherapy 
drugs. Moreover, correlation analysis was performed to 
evaluate the effect of the FPG_Score on the survival status 
of GC patients, and the bar graph revealed that patients 
with high FPG_Score occupied a larger proportion of alive 
status (68%) than dead status (Figure 7C). Similarly, the 
box plots demonstrated that the FPG_Score of patients 
with alive status was statistically higher than that with 
dead status (Figure 7D). Kaplan-Meier analysis of survival 
rate showed that patients with the high FPG_Score had 
a better prognosis than patients with the low FPG_Score 
group both in the comparison of T1–T2 and T3–T4 stages  
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Figure 4 Characterization of TME cell infiltration and transcriptome features in three FPGs patterns. (A) The differential expression 
analysis of 23 immune cells among three FPGs patterns. ***, P<0.001; **, P<0.01; *, P<0.05. (B) Venn plots showing the overlapping 
genes in three FPGs patterns. (C) GO enrichment analysis of subtypes. (D) KEGG enrichment analysis of subtypes. (E) The heatmap of 
clinicopathologic characteristics and FPGs patterns. (F) Kaplan-Meier curves of the three gene clusters. MDSC, myeloid-derived suppressor 
cell; BP, biological process; CC, cellular component; MF, molecular function; FPG, ferroptosis and pyroptosis gene; TCGA, The Cancer 
Genome Atlas; TME, tumor microenvironment; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 5 The development of ferroptosis and pyroptosis signature. (A) Differences in the expression of 23 FPGs among the three gene 
clusters. ***, P<0.001; *, P<0.05. (B) Sankey diagrams of different genotypes. (C) The correlation analysis between the FPG_Score and 
immune cells, * represents statistical significance; the larger the circle, the smaller the P value. (D) Survival analysis of the high FPG_
Score group and low FPG_Score group. (E) Differential expression analysis of FPG_Score among the three FPGs patterns. (F) Differential 
expression analysis of FPG_Score among the three gene clusters. FPG, ferroptosis and pyroptosis gene; FPG_Score, ferroptosis/pyroptosis 
score; MDSC, myeloid-derived suppressor cell.
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Figure 6 The characteristics of FPG_Score and TMB. (A) Spearman correlation analysis of the FPG_Score and TMB. (B) Correlations 
between FPG_Score and TMB calculated by CIBERSORT algorithm. (C,D) The waterfall plot displays the somatic mutation features that 
are stratified by high or low FPG_Score. The blue and yellow box represents high and low FPG_Score, respectively. The upper or right bar 
plot displayed the TMB and proportion of different mutation types, respectively. (E) Kaplan-Meier curves of survival probability of patients 
with gastric cancer in low or high TMB group. (F) Survival analysis among four groups of gastric cancer samples according to both levels of 
TMB combined with FPG_Score. FPG_Score, ferroptosis/pyroptosis score; H, high; L, low; TMB, tumor mutation burden.
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Figure 7 Comprehensive analysis of the prognostic value according to FPG_Score. (A,B) Expression levels of PD-L1 and PD-1 in the two 
FPG_Score groups. (C,D) Stratified analysis of the FPG_Score for GC patients by status. (E,F) Kaplan-Meier analysis of the FPG_Score 
for GC patients by T stages. (G,H) Relationships between FPG_Score, MSI, and MSS. FPG_Score, ferroptosis/pyroptosis score; PD-L1, 
programmed cell death protein ligand 1; PD-1, programmed cell death protein 1; MSS, microsatellite stability; MSI-L, low microsatellite 
instability; MSI-H, high microsatellite instability; GC, gastric cancer.
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(Figure 7E,7F). Increasing evidence suggests that patients 
with high microsatellite instability (MSI-H), a biomarker for 
response to ICIs (34), are more sensitive to immunotherapy 
and get benefit from it. Correlation analysis revealed that 
a high FPG_Score was positively correlated with MSI-H 
status, while a low FPG_Score was associated with the status 
of microsatellite stable (MSS) (Figure 7G,7H), suggesting a 
benefit from immunotherapy for patients with high FPG_
Score. Collectively, the FPGs may provide significant 
insights for tumor-targeted therapy with immunotherapy 
together.

Exploration of ferroptosis-pyroptosis related risk model in 
single-cell level

The protein-protein interaction (PPI) network was 
constructed by Cytoscape, and TXNIP, DUSP1 and 
ZFP36 were identified as core regulators in the established 
model (Figure 8A) .  Then, t-distributed stochastic 
neighbor embedding (t-SNE) was performed on principal 
components (PC0-13) to classify all cells into 14 clusters 
(Figure 8B). Epithelial cells, tissue stem cells, endothelial 
cell, hepatocytes, B cells, as well as smooth muscle cells 
were main cell types in these clusters (Figure 8C). The 
expression level of each ferroptosis-pyroptosis related gene 
in different clusters was displayed in Figure 8D. TXNIP 
highly expressed in endothelial cells, DUSP1 highly 
expressed in hepatocytes, and ZFP36 highly expressed in 
tissue stem cells (Figure 8E). The expression and percentage 
of ferroptosis-pyroptosis related genes in different cell 
subsets were showed in Figure 8F.

The combination of ferroptosis inducer and pyroptosis 
inducer can exert a synergistic anti-cancer effect

Emerging evidence shows that triggering ferroptosis 
and pyroptosis exert efficient antitumor activity (35,36). 
Our previous results showed that FPGs are vital for GC’s 
prognosis. Hence, we treat BGC823 cells with erastin 
(ferroptosis inducer) and α-KG (pyroptosis inducer). 
The cell viability result indicated that erastin exhibits a 
synergistic effect with α-KG (Figure 9A,9B), presenting the 
promising value of combined therapies of ferroptosis and 
pyroptosis.

Discussion

Recently, increasing attentions have been focused on the 

ferroptosis and pyroptosis in the occurrence and progression 
of tumors. Yet the comprehensive effect and TME 
infiltration characteristics mediated by the combination 
of FPGs have not been fully understood. Therefore, this 
study aimed to study FPGs combined with TME in GC 
patients, which will guide more effective tumor-targeted 
immunotherapy strategies and prognosis evaluation. Firstly, 
we analyzed the genetic and transcriptional alterations of 
the FPGs in GC. As previously reported, the expression 
abundance of FPGs, such as LONP1, GLS2, and METTL3 
was higher in GC than in normal tissues (37-40). Similarly, 
LONP1 is revolved in ferroptosis via regulating GPX4 (38).  
Moreover, it has been reported that the expression of GLS2 
inhibits ferroptosis and anti-tumorigenesis (39). METTL3 
serves as a prognostic marker, which plays a significant 
role in the progression of GC (40). The high-risk genes 
include NOX5, NOX3, NOX4, and HAMP. NADPH 
oxidases (NOXs) are a family of transmembrane proteins 
that generate ROS (41). NOXs participate in numerous 
crucial physiological processes, including host defense, the 
post-translational processing of proteins, cellular signaling, 
regulation of gene expression, and cell differentiation (42). It 
is reported that patients with colon cancer had high NOX5 
expression and poor prognosis (41). Hepcidin (HAMP), as 
a peptide hormone, plays a vital role in regulating systemic 
iron homeostasis (43). Recent new research suggests that 
high HAMP expression may serve as an independent 
prognostic biomarker through the immune pathway in 
patients with GC (43). These results indicated that FPGs 
might have the potential to act as a biomarker of GC. 

According to the first consensus clustering, we 
recognized three FPGs patterns with prognostic differences 
based on the gene expression of FPGs. The survival analysis 
showed that FPGs pattern C had the best survival outcome, 
while FPGs pattern A had the worst. These results suggest 
that FPGs patterns were correlated with the prognosis 
of GC. Furthermore, immune analyses showed that the 
immune cell infiltration was significantly different among 
the three patterns. Li et al. (44) found that patients with 
well-differentiated GC had higher levels of CD4 T cells. 
Consistently, our results showed that the FPGs pattern 
A had higher activated B cells, activated CD8 T cells, 
activated DCs, γδT cells, immature B cells, immature 
DCs, and so on. These results reveal that the FPGs are 
involved in the shaping of the TME directly. Meanwhile, 
GO enrichment analysis and KEGG pathway analysis were 
performed according to the different genes of the three 
patterns, which showed that pattern-related DEGs were 



Shi et al. Ferroptosis and pyroptosis model in GC patients5766

© AME Publishing Company.   Transl Cancer Res 2024;13(11):5751-5770 | https://dx.doi.org/10.21037/tcr-24-683

Figure 8 The expression of ferroptosis-pyroptosis-related genes in cell identities. (A) The PPI network for TXNIP and FPGs by 
Cytoscape. (B) Identification of cell clusters by t-SNE. (C) A cell annotation of clusters identified by t-SNE. (D) The expression level of 
each ferroptosis-pyroptosis-related risk model gene in different clusters. (E,F) The violin plot of expression of ferroptosis-pyroptosis-
related genes in cell subsets 8F the bubble diagram of expression of ferroptosis-pyroptosis-related genes in cell subsets. t-SNE, t-distributed 
stochastic neighbor embedding; FPG, ferroptosis and pyroptosis gene; PPI, protein-protein interaction.
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involved in a variety of cellular and biological functions 
and affected the growth and proliferation of tumor cells. 
Moreover, via applying intersection analysis, three distinct 
gene subtypes based on DEGs were identified. The survival 
analysis showed that gene subtype II had the best survival 
outcome, while gene subtype III had the worst. Our results 
indicated that FPGs may be used as an indicator to predict 
the clinical outcome of GC. To assess the prognosis of GC 
patients steps further, we constructed a scoring model. 
Patients in low and high-risk FPG_Score group showed 
obviously different clinicopathological characteristics, 
prognosis, mutation, TME, immune checkpoints, MSS, and 
MSI index.

In recent years, more and more evidence has proved the 
important contribution of the TME to predicting cancer 
progression and therapeutic drug resistance (45), especially 
in GC (46). The regulation of inflammatory response caused 
by ferroptosis and pyroptosis plays an important role in the 
TME. ICIs have been applied as major treatment strategies 
for various malignant tumors. Currently, commonly used 
ICIs, including monoclonal antibodies inhibit PD-1, PD-L1, 
and CTLA-4 (47,48), and their safety and effectiveness have 
been proven by numerous clinical studies (49,50). Our results 
showed the expression level of PD-L1 in the high FPG_
Score group was higher than that in the low FPG_Score 
group, indicating that patients in high FPG_Score are more 
likely to benefit from immune checkpoint therapies. TMB 
is defined as the number of somatic/acquired mutations 
per coding area of a tumor genome mutation per megabase 
(Mut/Mb) that were sequenced in specific cancer (51)  

and has emerged as a potential predictive biomarker of 
response to ICIs, especially in early-stage solid tumors. It’s 
worth noting the evidence that TMB can be applied as a 
prognostic biomarker of GC (52). Interestingly, our results 
show that FPG_Score was positively correlated with TMB, 
which indicated patients in high FPG_Score group obtained 
better benefits from ICIs. The transcription factor p53 
promotes pyroptosis to inhibit tumor growth in non-small 
cell lung cancer (NSCLC) patients (53,54). Ferroptosis 
is also induced by P53 in liver fibrosis and effectively 
inhibits hematopoietic stem cell (HSC) activation (55).  
These suggest that P53 is a key factor in the induction 
of pyroptosis and ferroptosis. Our study showed that the 
high FPG_Score has a higher mutation rate, indicating 
high mutation frequency genes including TTN, TP53, 
and MUC16, which can be used as targets for anti-tumor 
diagnosis.

MSI is caused by mismatched gene repeat sequences due 
to abnormal DNA mismatch repair mechanisms, which play 
an important role in tumorigenesis and progression (56).  
Moreover, MSI is considered to be closely related to 
the occurrence and development of a variety of tumors, 
including GC, colorectal cancer, endometrial cancer, and so 
on (52,57,58). What’s more, MSI-H tumors were reported 
to show potential sensitivity to immunotherapy due to high 
TMB and high expression of immune checkpoints like PD-
L1 (59). Previous study has shown that GC patients in the 
MSI-H group had unique clinicopathological features, were 
associated with the earlier stage, tended to be more sensitive 
to immune checkpoint therapies, and had better survival (60).  

Figure 9 The combined effects of ferroptosis inducer and pyroptosis inducer on cell viability and ROS. (A) The BGC823 cells were exposed 
to erastin and α-KG, then cell viability was measured by CCK-8 assay. *, P<0.05; **, P<0.01. (B) The BGC823 cells were exposed to erastin 
and α-KG, and ROS level was measured by flow cytometry. α-KG, α-ketoglutarate; DCF, 2,7-dichlorofluorescein; ROS, reactive oxygen 
species; CCK-8, Cell Counting Kit-8.
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Our results showed that the MSI-H group had a higher 
FPG_Score, suggesting that patients in the high FPG_Score 
group are more likely to benefit from immune checkpoint 
therapies. We also observed that the high FPG_Score 
group had higher levels of PD-L1 expression and were 
more susceptible to immune checkpoint therapy including 
PD-L1 and CTLA-4 immunotherapy. Above all, the high 
FPG_Score group had a longer survival time, higher TMB, 
higher expression of PD-L1, and a larger proportion of 
MSI-H. These results suggest that FPG_Score may be an 
independent and effective prognostic biomarker for GC, 
and FPGs may be used as diagnostic markers to provide 
new directions for tumor-targeted immunotherapy for GC. 
Despite a comprehensive evaluation and analysis using 
multiple platforms and databases, there are limitations and 
the conclusions need further experiments to elucidate the 
underlying mechanisms.

Conclusions

Inducing programmed death of tumor cells is an important 
way of anti-cancer therapy. We innovatively combined 
ferroptosis and pyroptosis and constructed a scoring system 
to predict the prognosis and response to immunotherapy. 
This study provides some new insights to formulate 
immunotherapy interventions for GC patients.
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