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Disentangling bacterial invasiveness from lethality
in an experimental host-pathogen system
Tommaso Biancalani & Jeff Gore*

Abstract

Quantifying virulence remains a central problem in human health,
pest control, disease ecology, and evolutionary biology. Bacterial viru-
lence is typically quantified by the LT50 (i.e., the time taken to kill
50% of infected hosts); however, such an indicator cannot account
for the full complexity of the infection process, such as distinguishing
between the pathogen’s ability to colonize versus kill the hosts.
Indeed, the pathogen needs to breach the primary defenses in order
to colonize, find a suitable environment to replicate, and finally
express the virulence factors that cause disease. Here, we show that
two virulence attributes, namely pathogen lethality and invasiveness,
can be disentangled from the survival curves of a laboratory popula-
tion of Caenorhabditis elegans nematodes exposed to three bacterial
pathogens: Pseudomonas aeruginosa, Serratia marcescens, and Salmo-
nella enterica. We first show that the host population eventually
experiences a constant mortality rate, which quantifies the lethality
of the pathogen. We then show that the time necessary to reach this
constant mortality rate regime depends on the pathogen growth rate
and colonization rate, and thus determines the pathogen invasive-
ness. Our framework reveals that Serratia marcescens is particularly
good at the initial colonization of the host, whereas Salmonella enter-
ica is a poor colonizer yet just as lethal once established. Pseu-
domonas aeruginosa, on the other hand, is both a good colonizer and
highly lethal after becoming established. The ability to quantitatively
characterize the ability of different pathogens to perform each of
these steps has implications for treatment and prevention of disease
and for the evolution and ecology of pathogens.
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Introduction

Quantifying virulence is challenging because the mortality induced

by a pathogen is determined by a complex series of interactions

between the pathogen and the host (Méthot & Alizon, 2014). The

virulence of a pathogen will depend upon the level of invasiveness,

governed by the pathogen’s ability to colonize and grow within the

host, as well as the level of lethality, governed by the mortality that

is induced following colonization due to factors such as toxicity

(Casadevall & Pirofski, 1999). Moreover, both the invasiveness and

lethality of a pathogen will depend upon host characteristics such as

age, immune system, and microbiome (Casadevall & Pirofski, 2001).

Historically, it has been proposed that virulence attributes are

controlled by evolutionary trade-offs (Anderson & May, 1982;

Alizon et al, 2009), and theoretical studies have demonstrated that

they constrain the evolutionary (Roy & Kirchner, 2000) and ecologi-

cal (Sansonetti, 2011) fate of the host–pathogen system.

Despite these results, there is still no consensus on how to disen-

tangle the various pathogen attributes from the survival curves of a

host–pathogen system. In the majority of experimental studies,

survival curves are merely boiled down to the phenomenological

indicator LT50, which denotes the median lethal time (e.g., in pest

control (Abrol, 2013) and toxicology (Comprehensive Toxicology—

3rd Edition)). The usage of LT50 is often justified on grounds of

simplicity, despite the fact that this indicator suffers from being

highly sensitive to experimental conditions (as shown later). Most

importantly, LT50 does not describe a specific characteristic of the

pathogen but rather provides a rough account of all factors that

cause virulence. Hence, it is not possible to use LT50 to disentangle

whether the hosts are dying because of a highly invasive pathogen

or a highly lethal one. The question can also be posed conversely:

What pathogen attributes need to be known to fully determine the

survival curves of the hosts?

Here, we use an experimentally tractable host–pathogen model

system to disentangle how pathogen invasiveness and lethality lead

to pathogen virulence. We study the dynamics of a laboratory popula-

tion of hosts (the nematode C. elegans) exposed to three bacterial

human pathogens that also cause mortality in C. elegans: P. aerugi-

nosa, S. marcescens, and S. enterica. This experimental system, espe-

cially with the pathogen P. aeruginosa, has been used to investigate

molecular mechanisms of virulence (Mahajan-Miklos et al, 1999; Tan

et al, 1999), animal immunity (Kim et al, 2002), and mechanisms for

pathogen aversion (Zhang et al, 2005). Quantitative analysis of

survival curves of worms exposed to all three pathogens revealed that

the worms eventually experienced a host–pathogen-specific per capita

mortality rate. This pathogen-specific mortality rate was independent

Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
*Corresponding author. Tel: +1 617-715-4251; E-mail: gore@mit.edu

ª 2019 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 15: e8707 | 2019 1 of 11

https://orcid.org/0000-0003-4583-8555
https://orcid.org/0000-0003-4583-8555
https://orcid.org/0000-0003-4583-8555


of pathogen exposure, indicating that it reflects the intrinsic lethality

of the pathogen against this host. A theoretical model incorporating

host colonization and pathogen growth predicts that the constant host

mortality rate emerges from pathogen load saturating within the host,

and this prediction is confirmed experimentally. The time necessary

to reach this exponential phase where the host experiences a constant

mortality rate reflects the pathogen invasiveness, due to the pathogen

colonization rate and growth rate within the host. Our integrated

experiments and modeling approach therefore allow us to disentangle

the invasiveness from the lethality and to see how each quantitatively

depends upon the pathogen colonization rate, the growth rate within

the host, and the pathogen lethality.

Results

Experiments show that survival curves display an
exponential phase

Our initial aim was to analyze how the C. elegans host survival

curves are affected by exposing the hosts to the same pathogen at

different pathogen densities. On agar plates with rich media, we

spread a lawn of P. aeruginosa and incubated for either 4 h (low),

24 h (mid), or 48 h (high), so that the pathogen density can reach

different densities (e.g., high = high pathogen density). On each

agar plate, we then added a population of approximately fifty

C. elegans adult nematodes, which are same age, reproductive ster-

ile, and initially germ-free. The nematodes feed on the pathogens,

which colonize the worm gut and disrupt the epithelium provoking

the death of the host. Using standard worm picking protocols, we

monitor the fraction of worms surviving over time (Kirienko et al,

2014; see Materials and Methods).

As expected from previous experimental results (Clark & Hodgkin,

2014), the worms die due to bacterial infection over the course of a

few days, whereas in the absence of the pathogen, the worms would

live for a few weeks. Consistent with the expectation that higher

bacterial densities will be more virulent, we find that the lethal time

for 50% of worms to die (LT50) is approximately 95 h for worms fed

at low bacterial density (that is, pre-incubated for 4 h) and 55 h for

worms fed at high bacterial density (pre-incubated for 48 h; Fig 1A).

The measured LT50 therefore depends not only on the particular

pathogen and host being studied, but also on the details of the experi-

mental protocol, in this case the pre-incubation time of the pathogen.

It would be ideal if there were some features in the survival

curves that were independent of the pathogen lawn density, as this

would indicate an attribute that was intrinsic to the pathogen and

its host. Encouragingly, the survival curves plotted on a semi-log

scale show a linear regime, indicating that over longer times the

worms are dying at a constant (per capita) rate (Fig 1A). In this

regime, the fraction of worms surviving decays exponentially; thus,

we refer to this regime as the exponential phase. The slopes of the

survival curve lines, ds, correspond to host mortality rates. Unlike

LT50s, we find that the slopes are the same for the different initial

pathogen densities, in the sense that we did not observe statistically

significant differences between the mean mortality rates (one-way

ANOVA, F(2,15) = 0.2, P =0.8). The observed mortality rate is d
0.055/h, corresponding to 70% of the host population dying every

day. Our experimental observation that the mortality rate in the

exponential phase is independent of pathogen densities suggests

that the mortality rate reflects the intrinsic lethality of the pathogen.

We next tested whether pathogen-induced mortality with (even-

tual) constant rate occurs ubiquitously across pathogens. We

repeated the experiment under identical conditions but using patho-

gens P. aeruginosa (Pa), S. marcescens (Sm), and S. enterica (Se;

Fig 1B). All survival curves exhibited an exponential phase,

although the slopes of the lines are different for the three pathogens.

In Pa, we confirm the result found in the previous experiment,

whereas in Sm and Se, we find dSm 0.02/h (~40% population death

rate per day) and dSe 0.03/h (50%). We also confirmed that the

lethalities dSm and dSe are independent of the lawn pathogen density

(Fig EV1), as we already showed for dPa. These results indicate that

exponential death occurs in our experimental system for many dif-

ferent pathogens and that the lethality d is a characteristic indicator

of the host–pathogen interaction.

We note that ranking the pathogens by their lethalities is not

consistent with the ranking obtained by their LT50s (Fig 1B inset).

In fact, 50Sm 70 h and 50Sm 120 h suggest that Sm is more virulent

than Se, whereas the slopes dSm and dSe indicate the converse. This

discrepancy arises because to fully understand survival curves, we

also need to consider the time taken to enter the exponential phase

(henceforth denoted by s), in addition to the lethality d. Indeed,

LT50 is strongly correlated to the time s, whereas the lethality d is

not (Fig 1C). In Se, the time required to enter exponential phase is

twice the time in Sm (sSe 102/h and sSm 50/h), although the expo-

nential phase in Se is characterized by a sharper decline (dSe > dSm).
This signifies that Sm kills the hosts with a higher rate than Se at the

early stages of the infection but is then surpassed by Se as the infec-

tion progresses. Therefore, the indicator pair (s, d) provides a more

comprehensive description of the host survival curves than LT50.

Theoretical model disentangles pathogen invasiveness and
lethality from the survival curve of host population

To explain the previous results, we use a simple population dynamics

model that incorporates a pathogen colonization rate c, pathogen growth

rate r, and saturating population size K within the host. We assume that

the pathogen population size within a worm, denoted by N, follows

dN

dt
¼ ðrN þ cÞ 1� N

K

� �
(1)

This simple model ensures that the pathogen population satu-

rates at carrying capacity K (as compared to the similar choice for

the right-hand side of equation (1) rN(1–N/K) + c, but this choice

does not lead to any significant difference in our conclusions). We

also assume that host mortality is linearly proportional to the

pathogen load. In this case, the fraction of worms surviving w(t)

will change according to:

dw

dt
¼ �dw

N

K
(2)

where the constant d is the lethality of the pathogen at saturation.

Although models of wild disease are often sophisticated (Gog et al,

2015), we find that this exceedingly simple model suffices in our
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Figure 1. Host survival curves enter an exponential death phase (visualized as a line in semi-log scale), whose slope d is characteristic of pathogen lethality.

A Survival curves obtained by exposing a population of Caenorhabditis elegans nematodes to pathogen Pseudomonas aeruginosa. Shade of green corresponds to different
initial pathogen densities (high, mid, and low), obtained by pre-incubating the pathogen lawn for different times prior to adding the hosts. Markers correspond to
experimental data averaged across six technical replicates. Error bars correspond to standard errors. Survival curves enter an exponential phase with a slope
independent of the initial pathogen densities.

B Survival curves obtained for bacteria P. aeruginosa (Pa), S. marcescens (Sm), and S. enterica (Se). For each pathogen, we report an exponential phase with a
characteristic lethality (inset): LT50 does not correlate with the lethality d. Markers correspond to experimental data averaged across six technical replicates. Error
bars correspond to standard errors.

C LT50s (left) and ds (right) of different pathogens (colors matched panel B and Fig EV1), are plotted against the incubation time of the pathogen lawn. Unlike LT50, the
lethality d does not change with the initial pathogen density. Markers correspond to experimental data averaged across six technical replicates. Error bars correspond
to standard errors.

Source data are available online for this figure.
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setting. Moreover, equations (1) and (2) with our initial conditions

can be exactly solved and yield predictions for the survival curve

w and the pathogen load N in terms of the pathogen colonization

rate, growth rate, and lethality (see the Appendix).

Our model predicts that the survival curves enter an exponential

phase after a time s, as the pathogen load reaches carrying capacity

K (Fig 2). When N(t) = K, equation (1) reduces to _w ¼ �dw, indi-
cating that the per capita death rate, _w=w, is given by the constant

d. The time taken to enter the exponential phase s, which we refer

to as the invasion time, can be formally defined as the abscissa

of the intersection point between the lines w = 1 and the asymptote

of the exponential phase (see Fig 2). The invasion time can be

written as:

s ¼ 1

r
logð1þ K

r

c
Þ: (3)

We note that the invasion time s does not depend on the

lethality d, but rather provides a mechanistic summary of the

pathogen’s ability to invade the host, which is a combination of

the ability to colonize and grow within the host. Indeed, a predic-

tion of our model is that the time that it takes for the host

mortality curves to reach the exponential phase (invasion time)

corresponds also to the time that it takes the pathogen population

to reach saturation within the host, which we will refer to as the

saturation time. The quantity s�1 therefore measures the pathogen

invasiveness.

Survival curves enter exponential phase as the pathogen load is
at carrying capacity

Next, we tested the model prediction that the time taken to enter the

exponential phase corresponds to the pathogen load growing to

carrying capacity in the host population. The model also provides

expressions for the survival curve and the pathogen load curves in

terms of the pathogen colonization rate c, the growth rate r, and the

lethality d (see the Appendix). Fitting the theoretical predictions to

experimental data would indicate that these three parameters deter-

mine the host–pathogen dynamics.

Our initial objective was to measure the pathogen load at a

certain point in time. To do so, we collected approximately 10

worms, washed their cuticles to remove the external bacteria,

grounded the sample population using a motorized pestle, and

finally estimated the content of their intestines by colony counting

(Fig 3A). Following this protocol, we measured the in-host growth

curves for the three pathogens, the survival curves of which we

already showed in Fig 1B (Fig 3B). After exposing the hosts for a

day to a fully grown lawn, we measure significantly different

number of cells: NSe(24 h) 5 × 103 cells, NSm(24 h) 104 cells, and

NPa(24 h) 2 × 104 cells. This variation at early times reflects the

varied colonization abilities of the pathogens, such as their survival

rates as they pass through the grinder, the C. elegans tooth-like

structure that crushes most bacteria prior to digestion (Cook, 2006).

After a few days, all pathogen loads saturated to carrying capacity

which differs up to an order of magnitude: KSe 1.7 × 106 cells, KSm

1.1 × 105 cells, and KPa 2.8 × 105 cells. We note that Se is the slow-

est colonizer but reaches the largest carrying capacity. In general,

we found that the three pathogens exhibit different colonization

abilities and carrying capacities within the hosts.

We then normalized the pathogen load curves by their carrying

capacities to visualize these curves against the survival curves. In

this way, we could test whether the entrance in the exponential

phase occurs as the pathogen load curve plateaus (Fig 3C). We con-

firm that this is the case for the three pathogens: The times taken to

enter exponential phase, s, were markedly distinct in the three cases

Figure 2. A theoretical model predicts that the survival curves enter the exponential phase as the pathogen abundance inside the hosts (i.e., pathogen load)
reaches carrying capacity.
Ourmodel formulates predictions for the survival curvew and the pathogen loadN, starting from the pathogen growth rate inside the host r, the pathogen colonization rate c,
the pathogen lethality d, and the pathogen-carrying capacity K. We use the initial conditions N(0) = 0 and w(0) = 1. The right panel shows the fraction of worms surviving
(solid blue line) and the per capita pathogen load normalized by the carrying capacity, N/K (solid red line). The model disentangles the invasion phase, in which the worm
mortality rate increases over time, from the exponential phase, where host mortality occurs with constant (maximum) rate d. The time taken to enter the exponential phase s
is given by the intersection between the exponential phase asymptote (diagonal dashed line) and w = 1 (horizontal dashed line).

Source data are available online for this figure.
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(from 50 to 110 h), yet the invasion times are approximately equal

to the saturation times, as predicted by our model (Fig 3D). Indeed,

we observed that the pathogen load curves neatly plateaued as the

survival curves reached the regime of constant death rate (Fig 3C).

We tested whether our model quantitatively fit the pathogen load

and survival curve. We already measured the death rate d and carry-

ing capacity K for the three pathogens, and we determined the colo-

nization rates c and the growth rates r by inspection. We found

similar values for the growth rates of the three species (r ~ 0.08/h),

whereas the colonization abilities of Pa and Sm (~250 cells/h) are

better than Se (~40 cells/h). The agreement between theory and

data indicates that pathogen-induced mortality increases approxi-

mately linearly with pathogen load. We note that this did not have

to be the case, as the pathogens could express virulence factors at

any time during the infection process. Moreover, a simpler model in

which host mortality is constant after exposure to the pathogen is

not consistent with our data, as it could not explain the delay before

the onset of host mortality (Fig 1A).

Invasion time s can be separated into colonization and
replication time intervals

Next, we use our model and experiments to show that the invasion

time s can be split between a time period that is colonization-domi-

nated and a time period that is replication-dominated: s = sc + sr
(Fig 4A). In the first-time interval, sc, the pathogen influx is mostly

due to external colonization rather than replication, since the hosts

are initially sterile; in the second interval, sr, colonization becomes

negligible and the internal pathogen growth is the dominant effect.

From our model, equation (2), we can show that (see the

Appendix).

sc ¼ 1

r
logð2Þ; (4)

which, interestingly, shows that the time interval in which coloniza-

tion dominates corresponds to the pathogen doubling time and is

therefore independent of the colonization rate (although we have

assumed r ≫ 4 in the derivation of equations (3) and (4), which is

always the biological case). This result means that the time in which

pathogen abundance is dominated by colonization is equal to the

pathogen replication rate. During time sc, the pathogen abundance

grows until it reaches N* = c/r, after which replication becomes

dominant. The invasion time s can be rewritten as s = sc + sr = r�1

log (1 + K/N*) which also shows that sr depends on N*. Therefore,

the time in which colonization dominates is largely independent of

the lawn pathogen density (which, in our experiment, determines

the colonization rate c).

From our data, we can estimate the colonization time scale sc,
the replication time scale sr, and the killing time scale d�1, for the

three pathogens (Fig 4B). Since the pathogens have similar growth

rates, the colonization time intervals sc are approximately equal. In

contrast, sc (and hence s) is much larger in Se compared with those

of Pa and Sm, due to the difference in carrying capacity. The killing

time scale of Se (1/d) is greater than the killing time scale of Sm

which, again, is due to the difference in carrying capacity (in fact,

Sm has a greater lethality per cell). It is also worth noting that the

LT50s for these three pathogens fall in the killing time interval

(which follows the invasion phase), meaning that more than 50% of

the hosts die in the exponential phase.

Finally, we inquired whether our model retains its predictive

power when the colonization rates are varied experimentally. We

analyzed the Pa pathogen load curves obtained for different

pathogen incubation times (Fig 1A) and found that, as expected,

only the colonization rate c needs to be varied to fit the three curves

(Fig 4C). These results illustrate how the dynamics of pathogen

colonization and growth are determined by the underlying processes

by which the pathogen invades the host. In addition, the coloniza-

tion rate c also depends upon the specific host–pathogen pair. For

example, it depends on the survival probability of a pathogen cell as

it goes through the grinder, the C. elegans structure that grinds

bacterial cells prior to digestion.

Discussion

In this study, we have demonstrated that integrating quantitative

analysis of survival curves with mathematical modeling allows one

to determine how the dynamics governing pathogen invasion of the

host lead to the different time scales associated with host mortality.

In particular, we find that the pathogen invasion time s and lethality

d provide a better assessment of virulence than using LT50. The

invasion time s can be thought of as the time taken by the pathogen

to reach carrying capacity in the host population. After such time,

the host population dies with a constant rate that is given by the

lethality d. For both indicators, we have formulated mathematically

precise definitions (see Fig 2 and sub-section B of the Results

section). Extracting s and d from the survival curves allows us to

disentangle whether the salient pathogen characteristic is to be a

good invader or a good killer, which is not possible to determine

just by using LT50. These indicators also inform us about the shape

of the survival curve according to the pathogen attributes. Skillful

invaders exhibit a survival curve that drops rapidly into the expo-

nential phase. Lethal pathogens are characterized by a survival

curve that sharply declines once the pathogen reaches carrying

capacity, suggesting that the host mortality rate is greater in the late

stages of the infection. These results might lead to novel insight in

studies in which various pathogens are screened (e.g., in C. elegans;

Diard et al, 2007), and contribute to demonstrate that a reductionist

approach to infection is possible (Hall et al, 2017). They also show

that C. elegans is an excellent model system for unraveling simple

quantitative laws in biology, as already recently proved in other

fields such as aging (Stroustrup et al, 2016) and eco-evolutionary

dynamics (Thutupalli et al, 2017).

Disentangling virulence into its causal attributes is necessary to

understand the ecology and evolution of host–pathogen systems.

Plant–pathogen systems provide the longest standing example that

pathogens excel at a certain attribute in spite of others (e.g., Meyer

et al, 2010), an effect that results from co-evolution (Fineblum &

Rausher, 1995). Indeed, hosts can cope with pathogens by diminish-

ing their invasiveness (host resistance) or by decreasing their lethal-

ity (host tolerance; Medzhitov et al, 2012). Such trade-offs have

been observed in plants (Fineblum & Rausher, 1995) and animals

(Råberg et al, 2007). However, there was no obvious trade-off

between lethality and invasiveness among our three pathogens
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(Figs 4B and EV2-left). Host resistance (K�1) and tolerance (Kd�1),

defined as in Råberg et al (2007), show that hosts are more resistant

to Sm and Pa, but they have higher tolerance for Se (Fig EV2-right).

These two indicators, however, do not account for how fast the

pathogen invades, as they depend on K and d, but not on the

pathogen colonization rate c or the pathogen growth rate r. In

contrast, our indicator s provides a time scale for invasion, and

might therefore be important for host survival and for the

A

B

C

D

Figure 3. Experiments confirm that hosts enter the exponential death phase at the same time that the pathogens saturate within the host.

A Illustration of the protocol used to measure the pathogen load within the hosts.
B Per worm pathogen growth curves. Pathogen abundances data are obtained by averaging 3 or 4 replicates, each replicate consisting of a population of 10 worms.

Error bars denote standard errors; dashed lines correspond to estimated pathogen-carrying capacities.
C Pathogen abundance data normalized by their carrying capacity (red markers) are plotted against the survival curve data (blue markers) of Fig 1B. Data are fitted by

our model predictions (solid red and blue curves; parameter values in Dataset EV2; see Materials and Methods section for fitting procedure). 6 technical replicates,
error bars are standard errors.

D As predicted by our model, the time taken by the pathogen population to saturate within the hosts is equal to the time necessary for the hosts to enter the
exponential death phase (invasion time defined in Fig 2). Solid lines: saturation and invasion times estimated from data in Fig 1B and panel (B). Dashed lines: times
estimated from data in Figs 1A and 4C. 6 technical replicates, error bars are standard errors.

Source data are available online for this figure.
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epidemiology of a disease, especially in light of recent findings

where pathogen strategies in human disease are disentangled

(Regoes et al, 2014).

A key observation in this study is that survival curves enter an

exponential death phase, namely the hosts eventually experience a

constant mortality rate. The interpretation of this result is that the

damage of virulence is “memoryless”, in the sense that the damage

does not accumulate with time. We expect that this finding will not

hold in more complex animals than C. elegans, where more effects

are in play (e.g., adaptive immunity). Although to our knowledge

this is the first report in an experimental host–pathogen system,

exponential laws are already well-established in many other areas

of biology. It is textbook knowledge that microbes die exponentially

after stress (for pH stress see e.g., (Withell, 1942), for temperature

stress (Peleg & Cole, 1998)) or prolonged starvation (Madigan et al,

2017), even though density-dependent deviations have been

observed (Phaiboun et al, 2015), which can be due to cell memory

effects (Mathis & Ackermann, 2016). The most frequent example of

exponential statistics is perhaps found in the logistic growth of

microorganisms, where the exponential face is usually preceded by

a lag phase (Madigan et al, 2017). Interestingly, the expression that

relates the lag time is remarkably similar to our equation (3) (Man-

hart et al, 2018), which highlights a parallel between microorganis-

mal growth and host decay (Wang & Goldenfeld, 2010). In this

respect, our pathogen lethality d plays the analog of the bacterial

growth rate, which has recently shown to be one of the few key

fundamental parameters determining the state of the cell (Scott

et al, 2010). Finally, obligatory parasites have been recently shown

to decay exponentially in a biphasic fashion, when found outside

the host (Brouwer et al, 2017).

We found that the decay in C. elegans populations reaches an

exponential phase after exposure to three well-studied pathogens,

although when the hosts are exposed to non-pathogenic bacteria

such as Pseudomonas chlororaphis we find that there is no exponen-

tial phase (Fig EV3). Indeed, even after 10 days of feeding on

P. chlororaphis the host mortality rate had not yet stabilized. In

contrast, the bacterial load saturates after 3 days, remains stable for

the successive 3 days, and then starts growing again. This effect

might be due to the fact that the bacterial carrying capacity increases

as the worm ages (Portal-Celhay et al, 2012). Further work will be

required to clarify whether our framework has a more general appli-

cability. With recent technological advances (Lee et al, 2016), it

might be possible to adopt automatized protocols that would allow

to repeat our investigations with higher throughput. Indeed, we

corroborate our findings by analyzing survival curves of a C. elegans

population from Levine Lab (Lee et al, 2016), where mortality is

induced by a pathogen, and from Fontana’s Lab (Stroustrup et al,

2016) in which instead senescence occurs (Fig EV4). The data from

the Levine Lab, obtained using the same C. elegans/P. aeruginosa

system but using a microfluidic chamber setting, seem to exhibit an

exponential phase with an exponent consistent with our findings. In

the case of age-induced death, the survival curve from Fontana’s Lab

exhibits (over time scale significantly longer than the ones moni-

tored in our experiments) a non-linear dynamics that cannot be fully

described by a single exponent. This is in agreement with the fact

that senescence is thought to follow Gompertz’s law (Abrams &

Ludwig, 1995), even though a recent study suggests that, in humans,

senescence might possess an exponential plateau (Barbi et al, 2018).

A

B

C

Figure 4. Invasion phase can be further disentangled into a colonization
phase and a replication phase.

A Invasion phase (see Fig 2) is initially dominated by colonization for a time
sc = r�1ln2. As the pathogen load reaches N = c/r, replication is the leading
effect for the remaining time sr. The difference between colonization phase
and replication phase results in a slope change in the normalized pathogen
abundance (solid red line).

B Time scales for the three pathogens (parameters values in Dataset EV2).
C Pa growth curves corresponding to survival curves shown in Fig 1A. Solid

lines are model predictions for normalized pathogen abundances, obtained
for same parameter values but different colonization rates (Dataset EV1).
Invasion times for different colonization rates are shown. 6 technical
replicates, error bars are standard errors.

Source data are available online for this figure.
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Finally, our investigations have been limited to single pathogens in

sterile host populations, thus neglecting the interaction between the

pathogen and the host microbiome. Recent works have demonstrated

that C. elegans is a suitable model system for microbiome investiga-

tions (Vega & Gore, 2017; Zhang et al, 2017), and demonstrated the

profound effects that gut commensal bacteria might have in fending

off pathogen of affecting host life span (Clark & Hodgkin, 2014).

For example, it is known that nematodes previously colonized

with certain microbes exhibit enhanced survivability during a

pathogen infections (Portal-Celhay & Blaser, 2012; Montalvo-Katz

et al, 2013; King et al, 2016). With our framework, we can quantify

how each pathogen attribute is affected as a function of the micro-

biome composition, thus formulating novel hypotheses for elucidat-

ing interspecies mechanics. In future work, it would be interesting

to pre-colonize the host population with a commensal bacteria,

before exposing the population to a pathogen. In this way, it would

be possible to investigate how the invasion time s and the lethality d
change in the pre-colonized population, thus revealing in a quantita-

tive fashion the role of the microbiome in fending off the pathogen.

It is our hope that simple quantitative laws of host–pathogen

dynamics revealed by our system may provide insight into patho-

genesis in more complex host–pathogen systems.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental models

PA14 (P. aeruginosa) Ausubel’s Lab (Harvard)

Db10 (S. marcescens) CGC

LT2 (S. enterica) CGC

OP50 (E. coli) CGC

SS104 (C. elegans) CGC glp-4(bn2)

Chemicals, enzymes, and other reagents (e.g., drugs, peptides, recombinant proteins, and dyes)

Triton X-100 Sigma-Aldrich X100-5ML

Levamisole hydrochloride Sigma-Aldrich #1359302

Gentamicin sulfate Sigma-Aldrich #1289003

Carbenicillin disodium salt Sigma-Aldrich C1389

Poly(ethylene glycol) methyl ether Sigma-Aldrich #81316

Software

Wolfram Mathematica 11 https://www.wolfram.com/mathematica/

R 3.5.2 https://www.r-project.org/

Other

Kimble Kontes tubes Grainger # 6HAY2

Pellet pestles Sigma-Aldrich Z359947

Pellet pestles cordless motor Sigma-Aldrich Z359971

Methods and Protocols

Worm and bacterial strains
The bacterial strains used in the paper are Pseudomonas aeruginosa

PA14 (from Ausubel’s Lab, Harvard), Serratia marcescens Db10

(Caenorhabditis Genetics Center, CGC), Salmonella enterica LT2

(CGC), Escherichia coli OP50 (CGC), and Pseudomonas chlororaphis

(ATCC 9446). Throughout the work, we used Caenorhabditis

elegans strain SS104 (glp-4(bn2)) obtained from CGC. Due to the

glp-4 mutation, this strain is able to reproduce at 15°C but is

reproductive sterile at 25°C; use of this strain prevented the worms

from producing progeny during experiments, ensuring that the

only changes in worm population were due to pathogen-induced

mortality.

Preparation of worm cultures
Synchronized (i.e., same age) worm cultures were obtained using

standard protocols (Stiernagle, 2006). For propagation of worms,

SS104 cultures were maintained at 15°C on NGM agar plates with

lawns of the standard food organism E. coli OP50. For synchroniza-

tion, worms from several nearly starved plates were washed with

sterile distilled water and treated with a bleach-sodium hydroxide

solution; the isolated eggs were placed in M9WB overnight to hatch,

and then transferred to NGM + OP50 plates at the sterility-inducing

temperature (25°C) for 2 days to obtain synchronized adults.

Worms were then washed from plates using M9 worm

buffer + 0.1% Triton X-100 (Tx) and then rinsed with M9 worm

buffer. Worms were then transferred to S medium + 100 lg/ml

gentamicin + 5X heat-killed OP50 for 24 h to kill any OP50
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inhabiting the intestine, resulting in germ-free synchronized worms.

To test for antibiotic efficacy, we grind the worm population (see

Pathogen load assay sub-section) and plate the solution on three LB

agar plates which we then incubate at 30°C for 48 h. Antibiotic is

considered effective as we did not find any colony-forming units in

agar plates. These 3-day-old synchronized adult worms were then

rinsed in M9PG (M9WB + 0.1% PEG; PEG is used to prevent the

worms from sticking to the pipette tip), washed via sucrose flotation

to remove debris, and rinsed 3X in M9PG worm buffer to remove

sucrose before use in experiments.

Survival curves assay
To generate the data of Fig 1A and B, we used a variation of a

previously published protocol (Kirienko et al, 2014). For a single

condition (i.e., a survival curve on Pa), we run our assay in a 6-

well plate where each well (4 cm diameter) represents a technical

replicate. Each well is filled with 4 ml of SK agar media (recipe in

[16]). To prevent worms from exiting the plate, we add 15 ll of

palmitic acid (10 mg/ml in EtOH) to each well border. Pathogen

monocultures are grown for 24 h at 30°C in 5 ml LB, after which

the monocultures reach saturation. Then, 7 ll of culture is pipetted

to the center of each plate and spread using a small metal cell

spreader to create a pathogen lawn. The 6-well plate is then paraf-

ilmed to prevent evaporation and incubated at 25°C for the desired

time (Fig 1A: 4 h, low density; 24 h, mid-density; 48 h, high density.

Figure 1B: 48 h). To each well, we then add off-lawn a population of

~50 adult reproductive sterile germ-free worms suspended in M9PG,

as described in the previous section. As the buffer is quickly absorbed

by the plate, the worms start feeding on the pathogen lawn. We keep

the 6-well plate parafilmed and incubated at 25°C throughout the

whole experiment, and we monitor the number of worm surviving

using standard worm picking protocols (Kirienko et al, 2014).

Pathogen load assay
Our protocol is a variation of previously published protocols (Ale-

gado et al, 2003; Portal-Celhay & Blaser, 2012; Portal-Celhay et al,

2012). Briefly, we use two buffers: TXLV (M9WB with 1% Triton-

X + 50 mM levamisole) and TXAB (TXLV + gentamicin and

carbenicillin ~210 lg/ml). We prepare 6-well plates as described in

the previous section. Since measurement of the pathogen load is

destructive, we could not use the same worm population to measure

both the pathogen load and the survival curve. Thus, we prepared a

group of plates under identical conditions and separated them into

two groups: We estimated the survival curve from one group and

the pathogen load from the other, thus assuming that the two

groups possess equal average dynamics. To measure the pathogen

load, we collected each day 30 alive worms by washing the plates

with M9WB. We then washed worm resuspension, four times in

TXLV. Due to levamisole, worm peristalsis is interrupted in a few

seconds, and the mouth and anus of the worm remain shut, thus

preventing the internal bacteria to be flushed out. We then resus-

pended the worm population in TXAB and incubated for 1 h at 25°C

with gentle shaking. Every 20 min, we washed and resuspended the

population in fresh TXAB. The purpose of the incubation is to

remove the external bacteria attached to the worm cuticle. We then

washed the worms 3–4 times in TXLV to remove the antibiotic and

transfer the population to a small Petri dish. Using a dissecting scope,

we removed the worms that were not fully paralyzed. We then split

the worm population into three Kontes tubes so that each tube

contains 50 ll TXLV and 10 worms. Each tube constitutes a technical

replicate. We homogenize the worms in a tube with a pellet pestle for

1 min continuously. We then dilute the solution in M9WB, and plate

to LB agar plates for colony counting. Pathogen load is reported as

the mean � SEM of the three technical replicates.

Statistical analysis

Details of our statistical analysis are provided as a supplementary R

notebook.

Markers in Fig 1A and B represent mean survival curve averaged

across 6 technical replicates. Corresponding LT50s were determined

graphically from mean survival curve. Solid lines in Fig 1A and B

were obtained by fitting the mean survival curve using a linear

model. The consistency of the mortality rates in Fig 1A (and analo-

gous figures, Fig EV1) has been tested using one-way ANOVA

(results in main text).

In Fig 1C, we reported lethalities of different pathogens, estimated

for different initial densities. The corresponding survival curves are

shown in Figs 1A and EV1. To estimate lethalities, we determined the

fitting region from the mean survival curve, and then fitted each tech-

nical replicate using a linear model. Next, we computed average

lethality and their standard errors obtaining the values in the tables

below. These values are consistent with those in Dataset EV1, which

were obtained with a non-linear fit, as described later.

Pa (high) Pa (mid) Pa (low)

Average lethality d(/h) 0.057 0.053 0.052

Standard error (/h) 0.009 0.003 0.006

Sm (high) Sm (mid) Sm (low)

Average lethality d(/h) 0.034 0.031 0.028

Standard error (/h) 0.005 0.004 0.004

Se (high) Se (mid) Se (low)

Average lethality d(/h) 0.035 0.031 0.034

Standard error (/h) 0.005 0.003 0.005

In Fig 1B, we repeated the experiment with a single incubation

time but using 12 technical replicates for each pathogen. We esti-

mated lethalities following same procedure described above. We

find the following values:

Pa Sm Se

Average lethality d(/h) 0.058 0.022 0.033

Standard error (/h) 0.004 0.002 0.006

Markers correspond to mean pathogen loads averaged over 3–4

technical replicates obtained for different initial pathogen densities.

Pathogen loads are rescaled by the carrying capacity Kpa = 2.8 × 105

cells, which we determined by inspection. The mean pathogen loads
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are fitted using the solution of equation (1) (see the Appendix). To

carry out the fitting procedure, we imposed the same growth rate r

for the three conditions, but different colonization rates: chigh, cmid,

and clow. For each condition, we computed the sum-of-square

error between the solution of equation (1) and the mean pathogen

load data. We estimated the four parameters r, cPa,48, cPa,24, and

cPa,4 by minimizing the sum of the errors for the three fits. To

provide errors for the fitted parameters, we bootstrapped the

pathogen loads data and repeated the fitting procedure, hence

obtaining different values for r, cPa,48, cPa,24, and cPa,4. We repeated

the fit 500 times and computed the standard deviations of the four

parameters, which represent our errors on the fitted data. Values

and errors are shown in the Dataset EV1.

Figure 1B show mean pathogen load data averaged over 3–4

technical replicates for each pathogen. These curves are used to

determine (by inspection) the carrying capacities (see Dataset

EV2). We then fit the model solutions of equations (1) and (2)

(explicit formulae in the Appendix) to the normalized pathogen

load data and the corresponding survival curves in Fig 1B. Our

fitting procedure is similar to that in Fig 4C. We estimated the

parameters r, c, and Λ d for the three pathogens by minimizing

the sum of the square errors for the pathogen load and the

growth curve. Errors to these parameters are given by bootstrap-

ping. Values and errors are shown in the Dataset EV2.

Data availability

Raw data and R notebook containing the statistical analysis are

available at https://github.com/lewlin/disentangling-pathogens-

SM.

Expanded View for this article is available online.

Author contributions
TB and JG designed the study. TB carried out the experiments, analyzed the

data, and performed a mathematical analysis of the model. TB and JG wrote

the paper.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Abrams PA, Ludwig D (1995) Optimality theory, gompertz’ law, and the

disposable soma theory of senescence. Evol. Int. J. Org. Evol. 49: 1055 – 1066

Abrol DP (ed) (2013) Integrated pest management: current concepts and

ecological perspective, 1st edn. Amsterdam, Boston: Academic Press

Alegado RA, Campbell MC, Chen WC, Slutz SS, Tan M-W (2003)

Characterization of mediators of microbial virulence and innate immunity

using the Caenorhabditis elegans host–pathogen model. Cell Microbiol 5:

435 – 444

Alizon S, Hurford A, Mideo N, Baalen MV (2009) Virulence evolution and the

trade-off hypothesis: history, current state of affairs and the future. J Evol

Biol 22: 245 – 259

Anderson RM, May RM (1982) Coevolution of hosts and parasites.

Parasitology 85: 411 – 426

Barbi E, Lagona F, Marsili M, Vaupel JW, Wachter KW (2018) The plateau of

human mortality: demography of longevity pioneers. Science 360:

1459 – 1461

Brouwer AF, Eisenberg MC, Remais JV, Collender PA, Meza R, Eisenberg JNS

(2017) Modeling biphasic environmental decay of pathogens and

implications for risk analysis. Environ Sci Technol 51: 2186 – 2196

Casadevall A, Pirofski L (1999) Host-pathogen interactions: redefining the basic

concepts of virulence and pathogenicity. Infect Immun 67: 3703 – 3713

Casadevall A, Pirofski L (2001) Host-pathogen interactions: the attributes of

virulence. J Infect Dis 184: 337 – 344

Clark LC, Hodgkin J (2014) Commensals, probiotics and pathogens in the

Caenorhabditis elegans model. Cell Microbiol 16: 27 – 38

Comprehensive Toxicology - 3rd Edition https://www.elsevier.com/books/c

omprehensive-toxicology/mcqueen/978-0-08-100601-6 [Accessed May 11,

2018]

Cook A (2006) Electrophysiological recordings from the pharynx. WormBook

http://www.wormbook.org/chapters/www_pharyngealrecording/pharyngea

lrecording.html [Accessed May 17, 2018]

Diard M, Baeriswyl S, Clermont O, Gouriou S, Picard B, Taddei F, Denamur E,

Matic I (2007) Caenorhabditis elegans as a simple model to study

phenotypic and genetic virulence determinants of extraintestinal

pathogenic Escherichia coli. Microbes Infect 9: 214 – 223

Fineblum WL, Rausher MD (1995) Tradeoff between resistance and tolerance

to herbivore damage in a morning glory. Nature 377: 517 – 520

Gog JR, Pellis L, Wood JLN, McLean AR, Arinaminpathy N, Lloyd-Smith JO

(2015) Seven challenges in modeling pathogen dynamics within-host and

across scales. Epidemics 10: 45 – 48

Hall MD, Bento G, Ebert D (2017) The evolutionary consequences of stepwise

infection processes. Trends Ecol Evol 32: 612 – 623

Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-

Hino M, Hisamoto N, Matsumoto K, Tan M-W et al (2002) A conserved

p38 MAP kinase pathway in Caenorhabditis elegans innate immunity.

Science 297: 623 – 626

King KC, Brockhurst MA, Vasieva O, Paterson S, Betts A, Ford SA, Frost CL,

Horsburgh MJ, Haldenby S, Hurst GD (2016) Rapid evolution of microbe-

mediated protection against pathogens in a worm host. ISME J 10:

1915 – 1924

Kirienko NV, Cezairliyan BO, Ausubel FM, Powell JR (2014) Pseudomonas

aeruginosa PA14 Pathogenesis in Caenorhabditis elegans. In Pseudomonas

methods and protocols, Filloux A, Ramos J-L (eds), pp 653 – 669. New York,

NY: Springer New York

Lee KS, Lee LE, Levine E (2016) HandKAchip - Hands-free killing assay on

a chip. Sci Rep 6: 35862

Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA (2017) Brock

biology of microorganisms, 15th edn. New York, NY: Pearson

Mahajan-Miklos S, Tan M-W, Rahme LG, Ausubel FM (1999) Molecular

mechanisms of bacterial virulence elucidated using a Pseudomonas

aeruginosa–Caenorhabditis elegans pathogenesis model. Cell 96: 47 – 56

Manhart M, Adkar BV, Shakhnovich EI (2018) Trade-offs between microbial

growth phases lead to frequency-dependent and non-transitive selection.

Proc R Soc B Biol Sci 285: 20172459

Mathis R, Ackermann M (2016) Response of single bacterial cells to stress

gives rise to complex history dependence at the population level. Proc

Natl Acad Sci USA 113: 4224 – 4229

Medzhitov R, Schneider DS, Soares MP (2012) Disease tolerance as a defense

strategy. Science 335: 936 – 941

Méthot P-O, Alizon S (2014) What is a pathogen? Toward a process view of

host-parasite interactions. Virulence 5: 775 – 785

10 of 11 Molecular Systems Biology 15: e8707 | 2019 ª 2019 The Authors

Molecular Systems Biology Tommaso Biancalani & Jeff Gore

https://github.com/lewlin/disentangling-pathogens-SM
https://github.com/lewlin/disentangling-pathogens-SM
https://doi.org/10.15252/msb.20188707
https://www.elsevier.com/books/comprehensive-toxicology/mcqueen/978-0-08-100601-6
https://www.elsevier.com/books/comprehensive-toxicology/mcqueen/978-0-08-100601-6
http://www.wormbook.org/chapters/www_pharyngealrecording/pharyngealrecording.html
http://www.wormbook.org/chapters/www_pharyngealrecording/pharyngealrecording.html


Meyer SE, Stewart TE, Clement S (2010) The quick and the deadly: growth

versus virulence in a seed bank pathogen. New Phytol 187: 209 – 216

Montalvo-Katz S, Huang H, Appel MD, Berg M, Shapira M (2013) Association

with soil bacteria enhances p38-dependent infection resistance in

Caenorhabditis elegans. Infect Immun 81: 514 – 520

Peleg M, Cole MB (1998) Reinterpretation of microbial survival curves. Crit

Rev Food Sci Nutr 38: 353 – 380

Phaiboun A, Zhang Y, Park B, Kim M (2015) Survival kinetics of starving bacteria

is biphasic and density-dependent. PLoS Comput Biol 11: e1004198

Portal-Celhay C, Blaser MJ (2012) Competition and resilience between

founder and introduced bacteria in the Caenorhabditis elegans gut. Infect

Immun 80: 1288 – 1299

Portal-Celhay C, Bradley ER, Blaser MJ (2012) Control of intestinal bacterial

proliferation in regulation of lifespan in Caenorhabditis elegans. BMC

Microbiol 12: 49

Råberg L, Sim D, Read AF (2007) Disentangling genetic variation for

resistance and tolerance to infectious diseases in animals. Science 318:

812 – 814

Regoes RR, McLaren PJ, Battegay M, Bernasconi E, Calmy A, Günthard HF,

Hoffmann M, Rauch A, Telenti A, Fellay J et al (2014) Disentangling

human tolerance and resistance against HIV. PLoS Biol 12: e1001951

Roy BA, Kirchner JW (2000) Evolutionary dynamics of pathogen resistance

and tolerance. Evolution 54: 51 – 63

Sansonetti PJ (2011) To be or not to be a pathogen: that is the mucosally

relevant question. Mucosal Immunol 4: 8 – 14

Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010)

Interdependence of cell growth and gene expression: origins and

consequences. Science 330: 1099 – 1102

Stiernagle T (2006) Maintenance of C. elegans. WormBook http://www.wormb

ook.org/chapters/www_strainmaintain/strainmaintain.html [Accessed May

31, 2018]

Stroustrup N, Anthony WE, Nash ZM, Gowda V, Gomez A, López-Moyado IF,

Apfeld J, Fontana W (2016) The temporal scaling of Caenorhabditis elegans

ageing. Nature 530: 103 – 107

Stroustrup N, Ulmschneider BE, Nash ZM, López-Moyado IF, Apfeld J, and

Fontana W (2013) The Caenorhabditis elegans Lifespan Machine. Nature

Methods 10: 665 – 670

Tan M-W, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM (1999)

Pseudomonas aeruginosa killing of Caenorhabditis elegans used to

identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 96:

2408 – 2413

Thutupalli S, Uppaluri S, Constable GWA, Levin SA, Stone HA, Tarnita CE,

Brangwynne CP (2017) Farming and public goods production in

Caenorhabditis elegans populations. Proc Natl Acad Sci USA 114: 2289 – 2294

Vega NM, Gore J (2017) Stochastic assembly produces heterogeneous

communities in the Caenorhabditis elegans intestine. PLoS Biol 15:

e2000633

Wang Z, Goldenfeld N (2010) Fixed points and limit cycles in the population

dynamics of lysogenic viruses and their hosts. Phys Rev E 82: 011918

Withell ER (1942) The significance of the variation in shape of time-survivor

curves. J. Hyg. 42: 124 – 183

Zhang Y, Lu H, Bargmann CI (2005) Pathogenic bacteria induce aversive

olfactory learning in Caenorhabditis elegans. Nature 438: 179 – 184

Zhang F, Berg M, Dierking K, Félix M-A, Shapira M, Samuel BS,

Schulenburg H (2017) Caenorhabditis elegans as a model for

microbiome research. Front Microbiol 8: 485

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

ª 2019 The Authors Molecular Systems Biology 15: e8707 | 2019 11 of 11

Tommaso Biancalani & Jeff Gore Molecular Systems Biology

http://www.wormbook.org/chapters/www_strainmaintain/strainmaintain.html
http://www.wormbook.org/chapters/www_strainmaintain/strainmaintain.html

