
REVIEW
published: 23 December 2020

doi: 10.3389/fmed.2020.603047

Frontiers in Medicine | www.frontiersin.org 1 December 2020 | Volume 7 | Article 603047

Edited by:

Claudia A. Staab-Weijnitz,

Helmholtz Zentrum

München, Germany

Reviewed by:

Marta Bueno,

University of Pittsburgh, United States

Jonathan Baker,

Imperial College London,

United Kingdom

*Correspondence:

Maor Sauler

maor.sauler@yale.edu

Specialty section:

This article was submitted to

Pulmonary Medicine,

a section of the journal

Frontiers in Medicine

Received: 04 September 2020

Accepted: 09 November 2020

Published: 23 December 2020

Citation:

Omote N and Sauler M (2020)

Non-coding RNAs as Regulators of

Cellular Senescence in Idiopathic

Pulmonary Fibrosis and Chronic

Obstructive Pulmonary Disease.

Front. Med. 7:603047.

doi: 10.3389/fmed.2020.603047

Non-coding RNAs as Regulators of
Cellular Senescence in Idiopathic
Pulmonary Fibrosis and Chronic
Obstructive Pulmonary Disease
Norihito Omote and Maor Sauler*

Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale University School of Medicine,

New Haven, CT, United States

Cellular senescence is a cell fate implicated in the pathogenesis of idiopathic pulmonary

fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Cellular senescence

occurs in response to cellular stressors such as oxidative stress, DNA damage, telomere

shortening, and mitochondrial dysfunction. Whether these stresses induce cellular

senescence or an alternative cell fate depends on the type and magnitude of cellular

stress, but also on intrinsic factors regulating the cellular stress response. Non-coding

RNAs, including both microRNAs and long non-coding RNAs, are key regulators of

cellular stress responses and susceptibility to cellular senescence. In this review, we

will discuss cellular mechanisms that contribute to senescence in IPF and COPD and

highlight recent advances in our understanding of how these processes are influenced

by non-coding RNAs. We will also discuss the potential therapeutic role for targeting

non-coding RNAs to treat these chronic lung diseases.

Keywords: COPD–Chronic Obstructive Pulmonary Disease, IPF–Idiopathic Pulmonary Fibrosis, cellular
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are
chronic lung diseases that disproportionately affect the elderly and impose a significant global
health burden. IPF is characterized by chronic and progressive lung scarring while COPD is
characterized by heterogenous manifestations of emphysema, small airway disease, and chronic
bronchitis. Despite their distinct pathologic features, both diseases are epidemiologically and
biologically associated with aging (1–3). The prevalence of COPD amongst individuals aged ≥75
years is approximately 10% compared with 3–4% in those 25–44 years (1, 4) and the prevalence
of IPF amongst individuals aged ≥75 years is 0.2–0.3% compared to 0.004–0.012% cases in those
aged 35–44 years (5). Additionally, the pathogenesis of IPF and COPD involve biologic “hallmarks
of aging” (1, 2, 6–10). These “hallmarks of aging,” first described by Lopez-Otín et al., are cellular
processes that occur more frequently with age, contribute to aging-related functional decline, and
can be experimentally manipulated to accelerate or slow aging in model organisms (11). One
biologic “hallmark of aging” that has emerged as a therapeutic target for ILD, COPD, and other
age-related disorders is cellular senescence.

Cellular senescence is a cell fate that occurs in response to diverse causes of cellular stress,
such as DNA damage, oxidative stress, telomere shortening, and oncogene activation (12, 13).
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Cellular senescence is characterized by permanent cell
cycle arrest due to persistent activation of p16INK4a-RB
(retinoblastoma) and p53-p21CIP1/WAF1 pathways (14, 15).
However, senescent cells frequently have altered cellular
metabolisms, reorganized chromatin, and activated damage
sensing pathways (e.g., p38 MAPK and NF-κB), and are
apoptosis resistant. They also adopt a senescence associated
secretory phenotype (SASP) and secrete high levels of cytokines,
chemokines, and matrix metallopeptidases (MMPs). The
biologic consequences of cellular senescence are complex
because senescence has both beneficial and detrimental effects.
Cellular senescence is critical for embryogenesis, promotes
wound healing, and mitigates malignant transformation.
However, the accumulation of senescent cells with age also
causes chronic inflammation, extracellular matrix alterations, a
decline in tissue regeneration, and an increased risk for many
aging-related disorders (16).

Cellular senescence is just one of many potential cell
fates. Cells maintain diverse stress responses that can resolve
cellular stress or activate alternative cell fate pathways such as
programmed cell death (e.g., apoptosis/necroptosis), quiescence,
or differentiation. While cell fate is influenced by the type,
magnitude, and duration of cellular stress, microenvironmental
and intracellular factors also influence cell fate “decisions”
through modulation of intracellular signaling networks.
Consequently, susceptibility to cellular senescence varies across
cell/tissue types and with age and in disease (17). There is
increasing recognition for the important role of non-coding
RNAs in the regulation of signaling networks that influence
susceptibility to cellular senescence (18, 19). In this review,
we will highlight non-coding RNAs that regulate senescence-
associated molecular pathways in the context of IPF and COPD
pathogenesis and discuss current approaches and challenges for
therapeutically targeting non-coding RNAs for these diseases.

CELLULAR SENESCENCE AND ITS
CAUSES IN THE PATHOGENESIS OF IPF
AND COPD

Cellular senescence is now considered an important mechanism
of IPF and COPD pathogenesis (20, 21). In IPF, cellular
senescence markers are increased in epithelial and mesenchymal
cells within remodeled areas of fibrotic lung, and eliminating
senescent cells using genetically modified mice or pharmacologic
agents decreases disease severity in animal models of pulmonary
fibrosis (22–26). Singe-cell RNA sequencing studies suggest
epithelial senescence in IPF occurs in a unique subpopulation
of cells that reside adjacent to myofibroblasts and may arise
from the persistence of a transitional alveolar epithelial cell state
(27, 28). These cells express p16, p21, certain basal cell markers,
developmental and epithelial-mesenchymal transition markers,
and may be a source of pro-fibrotic SASP signaling (29, 30).
Additionally, while fibroblast senescence is important for normal
wound healing, IPF pathogenesis may involve the persistence
of senescent fibroblasts that secrete pro-fibrotic mediators and
senescent myofibroblasts that are apoptosis resistant (23, 31).

Lungs of patients with COPD demonstrate increased markers of
cellular senescence in epithelial cells, fibroblasts, and endothelial
cells and many (albeit not all) studies have demonstrated genetic
or pharmacologic inhibition of cellular senescence can mitigate
disease severity in animal models of COPD (32–37). It has
also been postulated that chronic inflammation and airway
remodeling in COPD may arise from the production of pro-
inflammatory SASP factors (38). Additionally, impaired tissue
repair may be the result of reduced replicative capacity in
senescent progenitor cells.

Cellular senescence in IPF and COPD is commonly caused
by oxidative stress and DNA damage (39). Oxidative stress
refers to an imbalance between reactive oxygen/nitrogen species
(ROS/RNS) and cellular antioxidants. While ROS can arise from
many exogenous sources (e.g., cigarette smoke) and chronic
inflammation, one of the most abundant sources of ROS are
mitochondria. There is increased mitochondrial ROS production
and mitochondrial dysfunction with age and in IPF and COPD
(40–42). In addition, IPF and COPD are associated with
increased oxidative biomarkers, and consequences of oxidative
stress includingmacromolecular damage (e.g., protein, DNA, and
organelle damage), inflammation, cellular senescence and cell
death (26, 32, 43). DNA damage is another important cause of
cellular senescence, through activation of p53, increased p21 and
p16 transcription, and stabilization of GATA4 (12, 15, 44). DNA
damage is increased in IPF and COPD, and inadequate DNA
repair capacity may contribute to disease progression in COPD
(45–47). Telomere shortening can also activate DNA damage
responses (17, 48). Normally, a shelterin complex protects
telomeric strands from being recognized by DNA damage
responses. However, telomere shortening can cause loss of the
shelterin complex, telomere “uncapping,” DNA damage response
activation, and cellular senescence. In IPF, shortened telomeres
and mutations in telomere maintenance genes are well-described
risk factors for disease (49–51). Similarly, telomerase mutations
are risk factors for early onset emphysema and telomere length
is associated with severity of airflow limitation, increased risk for
acute exacerbations, and increased mortality (34, 52–55).

To combat cellular stress, cells maintain a repertoire of cellular
stress responses, but many of these adaptive responses wane with
age or are decreased in IPF and COPD. For example, NRF2 is
a transcription factor that promotes the production of cellular
antioxidants and detoxifying enzymes. However, NRF2 activity
decreases with age and impaired NRF2 activity is implicated
in the pathogenesis of IPF and COPD (31, 56–59). Another
adaptive stress response is autophagy, a process in which cells
degrade and “recycle” damaged proteins and organelles through
lysosome-dependent pathways. With age, there is reduced
autophagy and mitophagy, a selective type of autophagy for the
specific degradation of mitochondria. Consequently, there is a
reduced capacity to alleviate consequences of oxidative stress
and increased susceptibility to cellular senescence (60, 61). In
IPF, reduced autophagy in epithelial cells and fibroblasts increase
susceptibility to cellular senescence and disease pathogenesis
(62–66). Similarly, deficient mitophagy and its mediators,
including PINK1 and SIRT3, impair mitochondrial function,
increase mitochondrial ROS production, and contribute to
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progressive fibrosis in IPF (9, 10, 67). While autophagy is an
adaptive response, persistent autophagy can cause activation
of cell death and cell senescence pathways as well (68, 69).
Autophagy and mitophagy are increased in severe COPD, and
both insufficient and excess autophagy and mitophagy are
implicated in COPD pathogenesis (70–74).

Collectively, these findings underscore the increasing evidence
that the pathogeneses of IPF and COPD involve cellular
senescence and dysregulation of stress responses that mitigate
cellular senescence. Therefore, regulatory factors that increase or
reduce susceptibility to cellular senescence may represent novel
therapeutic targets for these diseases.

NON-CODING RNAs IN AGING, IPF, AND
COPD

Non-coding RNAs lack protein coding capacity but still regulate
diverse cellular processes including those implicated in aging
biology, cellular senescence, and the pathogeneses of IPF
and COPD. Non-coding RNAs are mainly classified into two
groups, microRNAs (miRNAs) and long non-coding RNAs
(lncRNAs). miRNAs are small 18–25 base single stranded RNA
molecules (75). They are initially transcribed as primary-miRNA
(pri-miRNA) molecules that fold into a stem loop structure.
Subsequently these pri-miRNAs undergo sequential processing
by enzymes Drosha and Dicer to generate miRNA strand
duplexes. The mature miRNA strand of the duplex is then
loaded into a miRNA-induced silencing complex (miRISC)
where it binds complementary mRNA sequence to inhibit mRNA
translation or promote mRNA degradation. Typically, miRNAs
bind the 3′ untranslated region (UTR) of mRNA but can bind
other regions as well. Because one single miRNA can target
hundreds of mRNAs, miRNAs can modulate complex biologic
processes including those related to lifespan and aging (76, 77).
In humans, age-related changes in miRNA expression have been
identified in lung, peripheral blood mononuclear cells (PBMCs)
and serum (18, 78–81).

LncRNAs are a diverse group of non-coding RNAs longer
than 200 nucleotides (82, 83). Certain lncRNAs are transcribed
from intergenic regions (long intergenic non-coding RNAs
or lincRNAs), while others are derived from excised introns.
Sense lncRNAs are located in proximity to a coding gene
on the sense strand while antisense lncRNAs are transcribed
from the opposite strand of a coding gene. Certain lncRNAs
undergo capping, splicing, and polyadenylation much like
mRNAs, while others undergo alternative post-transcriptional
processing, such as forming circular molecules or processing
by RNase P to form stabilizing triple helix structures at their
3′ ends (84). LncRNAs are also functionally diverse. They
can act as cis- or trans- regulatory elements to enhance or
inhibit mRNA transcription and/or mRNA translation. LncRNAs
can mediate their regulator effects by affecting chromosomal
architecture, modulating the recruitment of chromatinmodifiers,
binding DNA directly to form complex structures that interfere
with transcriptional machinery, or binding complementary

mRNA transcripts to regulate their stability, splicing, or post-
transcriptional modification (84–86). Similar to microRNAs,
lncRNAs have also been implicated in aging biology (87, 88).

Non-coding RNAs are implicated in the pathogeneses of IPF
and COPD and are emerging targets for therapeutic intervention.
Approximately 10% of miRNAs are significantly changed in IPF
lungs, including a decrease in miR-29, miR-30, let-7, miR-96,
and miR-17–92 family members and an increase in miR-154,
miR-155, miR-34, miR-26, miR-200 and miR-21 family members
(89–91). miRNA expression can be altered by cigarette smoke
or by the presence of COPD (92, 93). Studies profiling miRNAs
in COPD lung tissue samples have demonstrated increased
expression of miR-34a, miR-146a, miR-144, miR-15b, miR-570,
and decreased expression of miR-24 and mir-218 (94–99). Other
studies evaluating the expression of miRNAs in serum and
sputum samples have found differential expression of miR-21,
let-7c, miR-610, miR-34 a/b/c, let-7c, miR-146a, miR-125b, and
miR-199a with COPD (93, 95, 97, 100–102). The differentially
expressed lncRNAs in IPF or animal models of lung fibrosis
include MEG3, TERRA, SIRT1-AS, MALAT1, FENDRR, and
DNM3OS (103–108). Studies of lncRNAs in COPD lung tissue
have identified differential expression of MEG3, ANRIL, SAL-
RNA, and SCAL1 with COPD (97, 109, 110). Many of these
differentially expressed non-coding RNAs in IPF and COPD have
been shown to regulate various aspects of aging biology and
cellular senescence. Below, we provide examples of such non-
coding RNAs and discuss how their regulation of aging biology
and cellular senescence may contribute to disease pathogenesis
(Tables 1, 2).

Non-coding RNAs in COPD and IPF
miR-34 and miR-570 Regulation of Sirtuins in IPF and

COPD
The miR-34 family consists of three members: miR-34a, miR-
34b, and miR-34c. They are direct transcriptional target of
p53 and therefore can be induced by oxidative and genotoxic
stress (111). Members of the miR-34 family are encoded by
two different genes; miR-34a is encoded within chromosome 1
whereas miR-34b and miR-34c are encoded within chromosome
11. Studies show miR-34a expression increases with age and can
promote cellular senescence in part through negative regulation
sirtuins, particularly SIRT1 and SIRT6 (111–113). Sirtuins are
nicotinamide adenine dinucleotide (NAD)-dependent molecules
that promote longevity by regulating diverse cellular processes
including: cellular senescence, inflammation, DNA repair,
autophagy, mitochondrial generation and mitochondrial ROS
production (114, 115). For example, SIRT1 can function as a
histone deacetylase to negatively regulate NF-κB, mitochondrial
biogenesis, p53, p21, and p16 (116, 117). In the lung, miR-
34a is expressed in type II alveolar epithelial cells (AECs)
and fibroblasts, and increased miR-34a expression coupled with
reduced SIRT1 and SIRT6 expression are associated with IPF and
COPD (118–123).

Previous studies demonstrate miR-34a is increased in type
II AECs from patients with IPF and in murine models of
lung fibrosis (124, 125). Both in vitro and in vivo experiments
demonstrate miR-34a promotes cellular senescence in part
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TABLE 1 | Aging related non-coding RNAs in IPF.

Non-coding RNAs Expression in IPF In vivo role in fibrosis Senescence related mechanisms

microRNAs mir-34a ↑Lung Antifibrotic (young) Inhibits cellular senescence through SIRT1 in AECs

and fibroblastsProfibrotic (aged)

mir-29 ↓Lung Antifibrotic Increases AEC antioxidants (SOD2, MnSOD,

catalase) Inhibits apoptosis in AECs by regulating

FOXO3A

mir-17∼92 ↓Lung Antifibrotic Inhibits mTOR, promotes autophagy, decreases

cellular senescence

mir-200 family ↓Lung Antifibrotic Inhibits AEC cellular senescence and epithelial

mesenchymal transition

lncRNAs SIRT1-AS ↓Lung – Inhibits miR-34a-mediated targeting of SIRT1

TERRA ↑Lung – Promotes telomere maintenance

MALAT1 ↓Lung Antifibrotic Stabilizes the antioxidant NRF2

LincRNA-p21 ↑Lung – Promotes cellular senescence through activation of

p53 and p21

AEC, alveolar epithelial cells.

TABLE 2 | Aging related non-coding RNAs in COPD.

Non-coding RNAs Expression in COPD In vivo role in COPD Senescence related mechanisms

microRNAs mir-34a ↑Lung Increases susceptibility to

emphysema

Promotes cellular senescence by inhibition of

SIRT1/6

↓BAL

mir-570 – – Promotes cellular senescence by inhibition of SIRT1

mir-24 ↓Lung Protects against

emphysema

Inhibits DNA repair and apoptosis

mir-126 ↓Blood outgrowth

endothelial cells

– Inhibits DNA damage response

mir-218 ↓Lung and Sputum Protects against cigarette

smoke induced

inflammation

Inhibits cellular senescence via BMI1

lncRNAs ANRIL ↓Plasma – Inhibits p16 expression and SASP cytokine

production(CDKN2B-AS1)

SCAL1 ↑Airway epithelium – Activates antioxidant responses downstream of

NRF2

MEG3 ↑Lung – Promotes p53 activity

through inactivation of SIRT1 and increased mitochondrial
dysfunction (118, 119, 124). Interestingly, the consequences
of miR-34a genetic deletion in mice are age-dependent. miR-
34a protects against lung fibrosis by increasing fibroblast
susceptibility to cellular senescence in young mice, while miR-
34a promotes lung fibrosis by increasing alveolar epithelial
susceptibility to cellular senescence and apoptosis in old mice
(119, 124). The divergent roles formiR-34a in young and oldmice
underscore the complex temporal- and cell type-specific roles for
cellular senescence in disease pathogenesis.

miR-34a is also increased COPD lungs. In airway epithelial
cells and lung tissue, miR-34a expression is induced by
oxidative stress and inversely correlates with SIRT1 and SIRT6
expression (99, 126). In a murine model of COPD, miR-34a
inhibitors increase SIRT1 and SIRT6 expression and reduce
NF-κB signaling, matrix metalloproteinase expression, cellular

senescence, and emphysema severity. (121–123, 126). Another
sirtuin regulator in COPD is miR-570, which is located at
chromosome 3 and targets the 3′-UTR of SIRT1 mRNA for
degradation. miR-570 expression is induced by oxidative stress
and increased in lung tissue and airway epithelial cells from
patients with COPD (98). Inhibition of miR-570 reduces cellular
senescence and the secretion of SASP factors such as IL-6, IL-
1, and CXCL8. Together, these data demonstrate the important
roles of miR-34a andmiR-570 in regulation of cellular senescence
and susceptibility to IPF and COPD through modulation
of sirtuins.

miR-29 and IPF
The roles of miR-29 family members in IPF are context
dependent and underscore the complex interactions of
microRNAs, aging biology, and disease pathogenesis. There
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are three mature members of the miR-29 family, miR-29a,
miR-29b, and miR-29c, which are encoded within two bicistronic
clusters (miR-29a/miR-29b-1 located on chromosome 7 and
miR-29b-2/mir-29c located on chromosomes 1) (127, 128). In the
lung, miR-29 is largely expressed in mesenchymal and epithelial
cells where its expression is associated with oxidative stress, DNA
damage, and cellular senescence (129–131). However, miR-29c
is decreased in IPF lung tissue samples and experimentally
induced fibrosis in mouse lungs (124, 132). miR-29c deficiency
in type II AECs increases susceptibility to apoptosis and reduces
their capacity for epithelial renewal while miR-29c mimics
protect type II AECs from apoptosis by regulating FOXO3A
and increasing expression of ROS-neutralizing enzymes such
as SOD2, MnSOD and catalase (133). miR-29b mimics can
inhibit bleomycin-induced lung fibrosis, fibroblast production
of extracellular matrix, expression of IGF-1 and production
of inflammatory cytokines such as IL-4 and IL-12 (128, 134).
Therefore, an increase in miR-29 with oxidative stress, cellular
senescence, or with age may be an endogenous response that
protects against fibrosis, and a loss of this adaptive response may
contribute to the pathogenesis of IPF.

miR-17∼92 Cluster and miR-200 Family in IPF
Both the miR-17∼92 cluster and miR-200 family regulate
susceptibility to cellular senescence in IPF. The miR-17∼92
cluster encodes 6 miRNAs (miR-17, miR-18a, miR-19a, miR-20a,
miR-19b-1, and miR-92a) on chromosome 13 and is frequently
decreased in multiple tissue types with age and in senescent cells
(135). miR-17∼92 decreases susceptibility to cellular senescence
through diverse mechanisms including targeting cell cycle
proteins, inhibition of the mechanistic target of rapamycin
(mTOR), and activation of autophagy (136). Members of the
miR-17∼92 cluster are hypermethylated in lung tissue samples
and fibroblasts from IPF patients, and the use of epigenetic
methylation inhibitors to promote expression of the miR-17∼92
cluster attenuates fibrosis in bleomycin-murine models (90).
Similarly, mice overexpressing miR-17 have highly proliferative,
albeit poorly differentiated, epithelial cells and decreased number
of senescent cells in their lung (137, 138).

The miR-200 family consists of five members within two
clusters, miRs-200a/b/429 on chromosome 1 and miRs-200c/141
on chromosome 12. These microRNAs can regulate oxidative
stress, DNA repair, and cellular senescence, although the
direction of effect can be context dependent (139, 140). Levels
of miR-200a and miR-200c are significantly decreased in IPF
lungs and in the lungs of mice with experimental lung fibrosis
(141). Transfection of AECs with miR-200a and miR-141 reduces
epithelial mesenchymal transition (EMT) and the expression of
cellular senescence markers including p16 and p21, but does
not improve AEC proliferation capacity. In contrast, transfection
with miR-200b/c increases differentiation of senescent type II
AECs into type I AECs, decreases EMT, and reduces disease
severity in animal models of pulmonary fibrosis (142–145).

miR-24 and miR-126 Regulate DNA Damage

Responses in COPD
miR-24 is a member of a poly-cistronic miR-23∼27∼24 miRNA
clusters that occur in two genomic loci in humans. The

miR-23b-27b-24-2 cluster is located in an intronic region of
chromosome 9 while the miR-23a∼27a∼24-1 cluster is located in
an intergenic region of chromosome 19 (146, 147). Dysregulation
of miR-23∼27∼24 signaling has been identified in multiple age-
related disorders including diabetes and Alzheimer’s disease, and
both oxidative and genotoxic stress have been shown tomodulate
expression of these miRNAs, although the direction of effect
is context dependent (148, 149). In COPD, miR-24 expression
inversely correlates with COPD disease severity as measured
by FEV1 percent predicted and radiographic emphysema (150).
miR-27a and miR-23a expression also inversely correlates with
disease severity, albeit it to a lesser degree that miR-24. In
a mouse model, inhibition of miR-24 increases susceptibility
to cigarette smoke-induced emphysema. Others have found
that inhibition miR-24-27-23 cluster in T-cells increases allergic
airway inflammation and goblet metaplasia (151). miR-24 can
inhibit the expression of p16 by targeting its 3′ UTR to inhibit
cellular senescence (152). However, miR-24 can also inhibit DNA
repair and the translation of DNA repair genes including H2AX,
TOP1, and BRCA1, which can promote cellular senescence in
certain contexts (148). Interestingly, anothermiRNA that inhibits
DNA damage responses and is decreased in COPD is miR-
126 (153–155). These collective findings suggest that microRNA
inhibition of DNA damage responses may protect against
COPD pathogenesis, although whether this occurs by changing
susceptibility to cellular senescence remains to be determined.

miR-218 and COPD
The mature form of miR-218 can be transcribed from intronic
regions of SLIT2 and SLIT3 located on chromosomes 4 and 5,
respectively (156). miR-218 is decreased in bronchial epithelial
cells of smokers and in lungs and sputum from COPD
patients (93, 96). In a murine model of COPD, inhibition
of miR-218 increases susceptibility to emphysema and airway
inflammation with increased production of IL-8 and CCL2
(96). Notably, one of the downstream targets of miR-218 is
BMI-1, a polycomb repressive group protein which inhibits
p16 expression and cellular senescence (157). This raises the
possibility that decreased miR-218 expression promotes cellular
senescence and disease progression in COPD, although further
studies are warranted.

LncRNA
Lnc ANRIL (CDKN2B-AS1) and Lnc SIRT1-AS
ANRIL is transcribed from the antisense strand of CDKN2A/2B,
the genes that encode cyclin-dependent kinase inhibitors
p15 and p16, on chromosome 9 (158). ANRIL mediates
transcriptional repression of these antisense genes through RNA-
RNA interactions, as well as histone methylation and chromatin
remodeling of polycomb repressive complexes (PRC) (158, 159).
ANRIL activity is highly variable and dependent on tissue
type. There are 21 ANRIL splice variants, including linear and
circular isoforms, and ANRIL activity is highly influenced by
methylation activity in its promoter region (158). In addition to
its role in regulating p15 and p16, ANRIL suppresses NF-κB and
can inhibit chronic inflammation (160). In one study, ANRIL
expression in plasma was decreased during acute exacerbations
of COPD and ANRIL expression negatively correlated with SASP
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related cytokines such as TNF-α, IL-1β, IL-8 and LTB-4 in
stable COPD patients (161). LncRNA SIRT1 antisense (SIRT1-
AS), is transcribed from the antisense strand of SIRT1 and can
form RNA hybrid double strands with SIRT1 mRNA to increase
its stability (162). SIRT-AS protects SIRT1 mRNA degradation
by inhibiting miR-34a binding to the 3′UTR of SIRT1 (162).
In one study of bleomycin-induced lung fibrosis, SIRT1-AS
overexpression inhibited TGF-β-mediated EMT (163). Despite
these data, more studies will be necessary to confirm the roles
of ANRIL and SIRT1-AS in COPD and pulmonary fibrosis.

TERRA (Telomere Repeat-Containing RNA)
TERRAs are important for telomere maintenance and
characterized by 5′-(UUAGGG)-3′ repeats (164, 165). These
lncRNAs are commonly transcribed from the subtelomeric 20q
locus in humans in response to cellular stress and telomere
shortening, the later as a consequence of reduced methylation
marks and loss of telomeric heterochromatin (166). TERRAs
are recruited to telomeres where they form DNA-RNA hybrid
R-loops. This R-loop formation regulates telomere maintenance
through interactions with chromatin modifiers, telomerase,
and promoting DNA repair (166, 167). TERRAs also facilitate
telomere replication and promote the assembly of shelterin
proteins (168, 169). However, TERRA expression is increased
in the PBMCs from IPF patients and inversely correlated with
the percentage of predicted force vital capacity (106). While
not well-defined, TERRAs may have an important role in
IPF pathogenesis.

MALAT1 (Metastasis Associated in Lung

Adenocarcinoma Transcript-1) and SCAL1

(Cancer-Associated lncRNA-1)
Both MALAT1 and SCAL1 are lncRNAs that regulate cellular
responses to oxidative stress and cellular senescence. MALAT1
is an 8.7kbp lncRNA transcribed from human chromosome
11 and is ubiquitously express in almost all human tissue
(170). MALAT1 is frequently found in nuclear “speckles” and
can interact with pre-mRNA splicing factors to modulate
alternative mRNA splicing (171, 172). Consequently, MALAT1
can regulate the expression of cell cycle genes and can also
stabilize NRF2 to attenuate oxidative stress and DNA damage
(173). MALAT1 is decreased in senescent cells and in bleomycin-
induced murine fibrosis where myeloid deletion of MALAT1
increases susceptibility to fibrosis and the number of profibrotic
M2 macrophages (19, 108). SCAL1, a lncRNA located on
chromosome 5, can be induced by oxidative stress through
NRF2-mediated transcriptional activity and is increased in
the airway epithelium of smokers compared to nonsmokers
(97, 174). Inhibition of SCAL1 in airway epithelial cells
augments cytotoxicity induced by cigarette smoke extract in
vitro, suggesting SCAL1may act downstream of NRF2 tomediate
protective antioxidant responses.

LincRNA-p21 (Long Intergenic Non-coding RNA p21)

and MEG3 (Maternally Expressed Gene 3)
Both lincRNA-21 and MEG3 are downstream targets of p53 and
mediate many p53-dependent transcriptional responses.

LincRNA-p21 is a transcriptional target of p53 located
approximately 15 kb upstream from CDKN1A (175). LincRNA-
p21 functions as a repressor of p53-dependent transcription by
binding to hnRNP-K (heterogeneous nuclear ribonucleoprotein
K) and interacting with PRC1 and PRC2, although these same
interactions also promote p53 activity at the p21 promoter to
increase p21 transcription (176, 177). In one study, lincRNA-p21
inhibited fibroblast collagen expression through downregulation
of THY1 expression (178). Maternally expressed gene 3 (MEG3)
is a maternally imprinted gene located on chromosome 14, and
increases with age in human lung tissue and PBMCs due to
changes in promoter methylation (87, 179). Like lincRNA-21,
MEG3 also promotes p53 activity. MEG3 interactions with p53
inhibit p53 ubiquitination and MDM2-mediated degradation.
MEG3 can also selectively upregulate certain p53 target genes,
such as GDF15, and interact with PRC1/2 to mediate p53-
dependent gene silencing (180–182). Intriguingly, there are 27
known splice variants of MEG3, and changes in the relative
abundance of these slice variants in response to cellular stress
can modulate p53 activity (183). MEG3 is increased in the lungs
of patients with COPD (184, 185). Additionally, epithelial MEG3
expression has been shown to be induced by cigarette smoke,
correlate with disease severity, and promote inflammation and
apoptosis through a mechanism involving miR-218 (186). MEG3
expression is also increased in atypical IPF epithelial cells and
can impair basal cell differentiation, which may contribute to
abnormal tissue remodeling (105). Notably, p53 can induce
both cellular senescence and apoptosis in a context-dependent
manner, but the role of lincRNA-p21 and MEG3 in regulating
p53-mediated cell fate responses in the lung remain unknown.
Additionally, while p53 is implicated in the pathogenesis of IPF
and COPD, more studies are necessary to determine the roles of
lincRNA-p21 and MEG3 in these diseases (187).

Therapeutic Targeting of Non-coding RNAs
There is a growing interest in targeting non-coding RNAs to treat
chronic lung diseases due to their regulatory functions and roles
in disease pathogenesis (85, 188). Therapeutic approaches for
RNA targeting utilize nucleotides with complementary sequences
to prevent RNA transcription, promote RNA degradation, or
interfere with post-transcriptional processing of target RNAs.
Catalytically dead RNA-guided CAS9 endonucleases that target
specific DNA sequences can be used to hinder RNA transcription.
Single-stranded antisense oligonucleotides (ASOs) that bind
RNA molecules through complementary sequences promote
RNA degradation through RNAase-H dependent cleavage,
although newer ASOs inhibit mRNA translation through steric
hindrance or interfering with normal mRNA splicing. Similarly,
double-stranded RNA molecules, including small interfering
RNA (siRNA) or miRNA mimics, utilize the RISC complex to
inhibit transcription or promote RNA degradation.

Nucleotide-based approaches for targeting non-coding RNAs
are attractive for a variety of reasons. Many non-coding
RNAs, particularly lncRNAs, are expressed in a tissue- or cell-
specific manner (189). Therefore, augmenting or inhibiting their
expression in a cell- or tissue- specific manner can reduce off-
target effects and increase the therapeutic window. Additionally,
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generating oligonucleotide sequences complementary to their
target sequence is a much easier task using currently available
technologies than identifying small-molecule inhibitors or
antibodies that can specifically target proteins of interest.
Even if targeted antibodies or small molecules are identified,
they commonly reduce rather than augment target molecule
activity. In contrast, oligonucleotide therapies can increase
the concentration of target molecule production through
inhibition of negative regulators such as miRNAs. Finally, many
therapeutic targets, while pathologic in certain contexts, also
have important homeostatic functions. For example, oxidative
stress is deleterious, but ROS are critical intracellular signaling
molecules. Similarly, cellular senescence promotes aging related
disorders but also prevents malignant transformation. Rather
than inhibiting such integral pathways completely, a more
effective therapeutic strategy may be to focus on modulating
these pathways by targeting regulatory non-coding RNAs.

However, nucleic acid-based therapies are not without
challenges (190). First, oligonucleotides are susceptible to
degradation by extracellular and intracellular nucleases. To
overcome this challenge and increase oligonucleotide stability,
researchers have used chemically modified phosphate backbones.
For example, antagomirs are ASOs that commonly contain
2′-O-methyl or phosphonothioate modifications to improve
stability. Locked nucleic acids are another commonly used
ASO that utilizes a modified RNA-DNA-RNA backbone
to increase binding affinity and improve stability. Certain
oligoribonucleotides possess targeting moieties that can
deliver nucleic acid-based therapies to specific tissue. Another
challenge is that nucleotides are large negatively charged
molecules and therefore do not easily cross the cell membrane.
Therefore, lipid-, peptide-, and polymer-based nanoparticles
have been used to deliver oligonucleotides to the cytosol.
Some of these nanoparticles promote the specific uptake of
oligonucleotides into the lung or increase retention within
the lung following inhalation. (191, 192). Nucleic acid-based
therapies are capable of promoting inflammation through
toll-like receptors and other innate immune receptors for
foreign DNA and RNA, although this problem can be
mitigated through assays to test for immune activation and
reducing CpG elements (85). Finally, non-coding RNAs can
target hundreds of genes and/or function through diverse
mechanisms, and therefore targeting non-coding RNAs may
cause unwanted effects.

Several oligonucleotide therapies that target mRNAs
have already been approved by the U.S. Food and Drug
Administration for treating disease, and there are currently
multiple clinical trials targeting non-coding RNAs. For example,
Remlarsen, a first-generation miR-29 mimic, is currently being
evaluated in a Phase 2 clinical trial assessing its safety and efficacy

in skin fibrosis (193). MRX-34 is a liposomal nanoparticle
formulation of a miR-34 mimic that was under investigation
in a Phase I trial for cancer, but the study was stopped short
because of serious adverse events (194). While lncRNAs have
not been tested in clinical trials, therapeutic manipulation
of MALAT1 and MEG3 have shown benefit in preclinical
transgenic and xenograft models of cancer (195–197). Lin et
al. reported that the knockdown of lncRNA MALAT1 via tail
injection of RNAi can improve septic lung injury in mice (198).
Additionally, intraperitoneal administration of ASO targeting
lncRNADNM3OS, a regulator of the TGF-β pathway, attenuated
bleomycin-induced lung fibrosis in mice (104). These pre-clinical
and clinical studies suggest the possibility that non-coding RNAs
may have a potential therapeutic role for treating lung diseases
such as IPF and COPD.

CONCLUSION

Diverse cellular processes implicated in aging biology, including
cellular senescence, contribute to the pathogenesis of IPF
and COPD. In these diseases, cellular senescence can occur
from oxidative stress, DNA damage, telomere shortening,
or mitochondrial dysfunction. While these processes occur
commonly with age, their impact on cell fate and disease
susceptibility are influenced by diverse regulatory factors.
Additionally, many of the cellular responses to these stressors,
including senescence, have homeostatic functions and are
not universally pathologic. Therefore, nuanced therapeutic
approaches will be required to target these processes. Such
approaches may need to be cell- or tissue- specific or have
modulatory rather than inhibitor effects on key pathways.
Because of the fundamental regulatory role of non-coding RNAs,
and the growing capacity for cell-specific targeting, non-coding
RNAs may emerge as ideal therapies to target chronic lung
disease and other age-related disorders.
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