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Summary
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food

supply to sustain the human population. Apart from relying on natural plant immune systems to

combat biological agents or waiting for the appropriate evolutionary steps to occur over time,

researchers are currently seeking new breakthrough methods to boost disease resistance in

plants through genetic engineering. Here, we summarize the past two decades of research in

disease resistance engineering against an assortment of pathogens through modifying the plant

immune components (internal and external) with several biotechnological techniques. We also

discuss potential strategies and provide perspectives on engineering plant immune systems for

enhanced pathogen resistance and plant fitness.

Introduction

Plants have evolved a sophisticated immune system to protect

against pathogen invasion. Preformed immunity, including

physical and chemical barriers such as leaf trichomes, cell walls,

and surface pH, is utilized early in the attack of the pathogen.

However, some pathogenic organisms can overcome this

immunity and cause diseases in plants. To survive, plants have

evolved innate immunity as a barrier, comprising complex

pathogen-interfering patterns called induced immunity, which

is based on the recognition and activation of different immune

receptors that sense the presence of pathogens (Deslandes and

Rivas, 2012; Jones and Dangl, 2006; Zipfel and

Robatzek, 2010). Transmembrane pattern recognition receptors

(PRRs) are typically utilized in the first layer of this system to

recognize virulence factors such as pathogen-/microbe-/damage-

associated molecular patterns (PAMPs/MAMPs/DAMPs, hereafter

MAMPs) to induce a basal response known as pattern-triggered

immunity (PTI; Zipfel, 2009, 2014). Once PTI is activated, a series

of defence responses is triggered to suppress the colonization of

the pathogen (Bigeard et al., 2015; Torres et al., 2006). How-

ever, many pathogens can suppress PTI by introducing interfer-

ing molecules (called effectors) into the cell (Iswanto

et al., 2021b; Stergiopoulos and de Wit, 2009; Tampakaki

et al., 2010). Effectors target various host proteins to facilitate

pathogen replication, colonization, and pathogenicity in plants

to cause effector-triggered susceptibility (ETS; Deslandes and

Rivas, 2012; Raffaele and Kamoun, 2012). In turn, plants have

developed a strategy to recognize specific effectors using

intracellular nucleotide-binding and leucine-rich repeat receptors

(NLRs; Bonardi et al., 2012; Nguyen et al., 2021; Su

et al., 2018; Takken et al., 2006). Once the plant cell has

sensed the effectors, it undergoes a robust and timely effector-

triggered immunity (ETI) response. ETI is often associated with

programmed cell death and typically involves a hypersensitive

response (HR) at the site of infection and systemic acquired

resistance (SAR) in distal plant tissue to limit pathogen growth

and proliferation (Cui et al., 2015; Durrant and Dong, 2004; Fu

et al., 2012; Greenberg and Yao, 2004). Recent studies

revealed the consequential relationship between PRR-mediated

PTI and NLR-mediated ETI during bacterial infection (Ngou

et al., 2021; Nguyen et al., 2021; Yuan et al., 2021). The

continuous adaptation and evolution of PTI, ETS, and ETI have

further strengthened the improvisation of both the host and

pathogen to simultaneously diversify effector and resistance

proteins (Delaux and Schornack, 2021; Deslandes and

Rivas, 2012).

The plant immune system comprises a complicated system of

immune genes with positive or negative effects. Immune recep-

tors and positive regulators of plant immunity contribute to the

recognition of intruders and help transmit signals to activate a

series of downstream events after sensing the presence of the

pathogen. The activation of these signalling cascades often

enhances immune responses (Durrant and Dong, 2004; Fu

et al., 2012; Greenberg and Yao, 2004; Kachroo and

Robin, 2013). By contrast, genes that encode proteins that

facilitate the compatibility of pathogens and plants are defined

as susceptibility (S) genes (Koseoglou et al., 2022). S genes

encode negative regulators of plant defence and facilitate

pathogen invasion and susceptibility. Some negative regulators

encoded by S genes also control the activation of positive

regulators of plant defence under normal conditions to avoid the

abnormal plant growth and autoimmune responses (Kim

et al., 2010; Mackey et al., 2003).
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Crop improvement has continuously aimed to achieve higher

yields and more substantial tolerance against various pathogens.

Traditional breeding methods have been used to select desirable

traits within crossbreeding plants. However, conventional meth-

ods have some disadvantages, such as a long production time,

the need for large populations, labor-intensive procedures, and a

limited gene pool. Therefore, new genome editing techniques

have been developed to facilitate plant breeding and increase its

efficiency, such as oligonucleotide-directed mutagenesis (ODM;

Sauer et al., 2016), transcription activator-like effector nucleases

(TALENs; Joung and Sander, 2013), zinc finger nucleases (ZFNs;

Petolino, 2015), the clustered regularly interspaced short palin-

dromic repeats (CRISPR)/CRISPR-associated (Cas) system (Cong

et al., 2013; Iswanto et al., 2021a; Jinek et al., 2012; Shmakov

et al., 2017; Zetsche et al., 2015), and modified versions on the

CRISPR/Cas system, such as base editor and prime editor,

according to the needs of the scientist (Anzalone et al., 2019;

Gaudelli et al., 2017; Kang et al., 2018; Lin et al., 2020; Zou

et al., 2022). Compared to traditional breeding, these tech-

niques allow researchers to rapidly make more precise genome

changes to generate plants with desirable traits (Abdallah

et al., 2015).

Remarkable advancements in elucidating plant immune com-

ponents have been utilized for the genetic engineering of crop

plants. Several reviews have discussed some aspects of engi-

neering plant resistance, but a thorough summary of the

engineering of plant innate immunity from a different point of

view is needed. In this review, we summarize recent advances in

plant immune engineering based on important publications over

the past two decades. We divide the engineering targets into

three types: PTI-related receptors, ETI-related receptors, and

other downstream components. We also discuss the novel

concept of transferring pathogen genes into plants to counter

their aggressiveness.

Engineering PTI receptors to confer broad-
spectrum resistance

Overview of pattern recognition receptors

PRRs are membrane-localized receptor proteins that are divided

into two types: receptor-like kinases (RLKs) and receptor-like

proteins (RLPs; Boutrot and Zipfel, 2017; Couto and Zipfel, 2016;

Zipfel, 2014). RLKs possess an ectodomain in the extracellular

space, a transmembrane domain, and an endokinase domain in

the cytoplasm. The ectodomain functions in ligand perception,

while the endokinase domain is required for signal transduction

and to activate defence responses in the cell (Boutrot and

Zipfel, 2017). Unlike RLKs, RLPs lack an endokinase domain.

Therefore, RLPs normally associate with other RLKs to sense the

presence of MAMPs or DAMPs. The leucine-rich repeat (LRR)

domain, epidermal growth factor-like domain, and lysin motif

(LysM) have been identified as common ectodomains that guard

the apoplast environment following successful infection by

intruders and the onset of plant disease. The recognition signals

are transduced into the cytoplasm through the endokinase

domain, triggering downstream events such as protein oligomer-

ization, auto- and transphosphorylation, and the release of

negative regulators of immunity, thereby inducing PTI (Boutrot

and Zipfel, 2017; de Vries, 2015). PTI responses confer broad-

spectrum resistance in plants. However, in many cases, the plant

lacks PRRs to recognize particular pathogens, or the current

immune system is insufficient to fend off the invasion. Here, we

summarize two strategies of PTI-related engineering to make

more durable and sustainable resistance in the field.

Transformation-based engineering to transfer PRRs
across species

The bacterial peptide elf18, derived from the well-known MAMP

elongation factor thermo unstable (EF-Tu), is recognized by the RLK

EF-Tu receptor (EFR) in Arabidopsis (Arabidopsis thaliana). EFR

binds to EF-Tu to prevent the transmission of bacterial genetic

material and protein synthesis, triggering basal defence responses

against the bacterial pathogen (Kunze et al., 2004; Zipfel

et al., 2006). Since EFR is only present in the plant family

Brassicaceae, the ability of plants from other families to recognize

EF-Tu is limited. In 2010, Lacombe et al. successfully transferred

EFR from the cruciferous plant Arabidopsis (AtEFR) into the

solanaceous plants Nicotiana benthamiana and tomato (Solanum

lycopersicum) to induce broad-spectrum resistance to different

phytopathogens (Lacombe et al., 2010). Moreover, potato (Sola-

num tuberosum) plants exogenously overexpressingAtEFR showed

significant resistance to bacterial wilt caused by the bacterium

Ralstonia solanacearum (Boschi et al., 2017). AtEFR was also

recently introduced into barrel clover (Medicago truncatula) and

orange (Citrus sinensis) to prevent infection by R. solanacearum

and Xanthomonas citri subsp. citri (Xcc) and Xylella fastidiosa

subsp. pauca (Xfp), respectively (Mitre et al., 2021; Pfeilmeier

et al., 2019). Notably, interspecies transfer of AtEFR into apple

(Malus domestica) significantly reduced the extent of tissue

necrosis associatedwith Erwinia amylovora infection, which causes

fire blight disease (Piazza et al., 2021). The success of this study

demonstrates the feasibility of using biotechnological strategies to

tackle the devastating fire blight disease in apple trees, which

causes substantial losses to cultivated apple productionworldwide.

Several studies have demonstrated the power of constitutively

expressing AtEFR to increase plant immunity in both dicotyledons

and monocotyledons such as rice (Oryza sativa) and common

wheat (Triticum aestivum) in response to Xanthomonas oryzae pv.

oryzae and Pseudomonas syringae pv. oryzae, respectively (Lu

et al., 2015; Schoonbeek et al., 2015).

Another well-studied PRR in plants is FLAGELLIN-SENSITIVE 2

(FLS2), an RLK that recognizes the most highly conserved domain

of the bacterial flagellin flg22 (Chinchilla et al., 2006; Gomez-

Gomez et al., 2001). Unlike EFR, FLS2 is conserved in several

plant species. However, flg22 perception by FLS2 orthologs

differs among species (Chinchilla et al., 2006). Notably, overex-

pressing grapevine (Vitis vinifera) FLS2 (VvFLS2) in Arabidopsis

conferred resistance against Burkholderia phytofirmans (Trda

et al., 2014). Overexpressing frost grape (V. riparia) FLS2XL in

N. benthamiana induced resistance to Agrobacterium tumefa-

ciens (Furst et al., 2020), and overexpressing NbFLS2 in citrus

reduced susceptibility to X. citri (Hao et al., 2016).

Xa21 is a PRR that confers robust resistance to X. oryzae pv.

oryzae (Xoo; Ronald et al., 1992; Song et al., 1995; Wang

et al., 1996). A RaxX protein sulfated by the tyrosine sulfotrans-

ferase RaxST from Xoo is required to activate Xa21-mediated

immunity (Pruitt et al., 2015). Moreover, chimeric PRRs gener-

ated using an extracellular domain of AtEFR and a kinase domain

of Xa21 conferred elf18-induced signalling and quantitative

immunity in Arabidopsis and N. benthamiana, revealing the

essential role of Xa21 kinase activity in plant resistance (Holton

et al., 2015). Indeed, introducing Xa21 into four sweet orange

cultivars conferred resistance to Xanthomonas axonopodis pv.

citri, the causal agent of leaf-spotting and fruit rind-blemishing
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disease. In addition, the introduction of Xa21 via genetic

transformation enhanced resistance to pathogens in other crops,

such as tomato (Afroz et al., 2010) and banana (Musa acumi-

nata; Tripathi et al., 2014), including against bacterial wilt

pathogens and Xanthomonas campestris pv. musacearum,

respectively.

Domain swapping-based engineering to enhance
resistance

Engineering PRRs by domain swapping represents another

promising approach for achieving disease resistance (Figure 1).

Chitin-elicitor binding protein (CEBiP), a plasma membrane

receptor in rice that perceives chitin from the fungal cell wall, is

a glycoprotein with two LysM domains in the extracellular portion

and a putative transmembrane domain (Kaku et al., 2006; Shinya

et al., 2012). Xa21, a member of the RLK family, harbours a

leucine-rich repeat motif and a serine–threonine kinase-like

domain (Song et al., 1995). Two LysM domains of CEBiP and

the kinase-like domain of Xa21 were combined to generate the

new chimeric receptor CRXA (Figure 1). Transgenic rice plants

accumulating CRXA showed more robust resistance to Magna-

porthe oryzae than plants harbouring wild-type CEBiP, producing

an HR-like response and strong disease resistance to rice blast

(Kishimoto et al., 2010). This enhanced immune response sug-

gests that the LysM domains of CEBiP are required for the early

perception of fungal invasion (Kishimoto et al., 2011).

Enigmatic MAMP of Xanthomonas (eMax) is recognized by the

receptor-like protein RECEPTOR OF eMax (ReMAX) in Arabidopsis

Figure 1 Biotechnological strategies to improve disease resistance in crops. PRR engineering: PRRs (e.g., EFR and FLS2) can be transformed across species for

broadening pathogen recognition. Besides, a newchimeric of PRR canbegenerated throughdomain swapping to enhance resistance. Chimera receptorCRXA,

madeof twoLysMdomains fromCEBiP andkinasedomain fromXa21, induces amore robust immune response toMagnaportheoryzae. The combinationof the

LRR domain from ReMax and JM-TM-CT domain from LeEix can resist Xanthomonas in Nicotiana benthamiana. NLR engineering: NLRs (e.g., MR5, Bs2, and

RRS1/RPS4) can be introduced inter-/intra-species through transformation to gain resistance against specific pathogens. Besides, randommutagenesis in NLR

(e.g., R3a and I2) can be applied to expand effector recognition. Secondarymutation in NLR (e.g., Rx) increases its activation sensitivity to overcome the cost of

over-activated NLR through primary mutagenesis. Decoy engineering: Arabidopsis RPS5 specifically recognizes protease effector AvrPphB by the cleavage of

PBS1 and promotes a defensive response. The recognition specificity of RPS5 could be expanded by substituting AvrPphB cleavage sequence in AtPBS1 with

other new proteases (e.g., AvrRpt2 from bacteria, TEV NIa protease, and TuMV NIa protease from viruses). Pathogens-based engineering: Pathogen effectors

(e.g., SDT1, Crh1, SM1, CRN115, and SCR1) can be utilized as alternative genetic resources for a transgenic-based approach to crop disease management.

Regulatory component engineering: Downstream regulatory components involved in immune signalling positively or negatively regulate the resistance to

pathogen attack. Overexpression of positive regulators (e.g., SnRK1 and Hsp18) increases disease resistance. Alternatively, transcriptional suppression of

negative regulators (e.g., DMR6 and SRFR1) through CRISPR/Cas9, VIGS, RNAi, and T-DNA can boost plant immunity. Created with www.BioRender.com.
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(Jehle et al., 2013b). In addition, the PAMP xylanase provokes a

defence response in tomato via the activity of Lycopersicon

esculentum ethylene-inducing xylanase (LeEix). ReMAX and LeEix

are RLPs containing large extracellular LRR domains, a juxtamem-

brane domain (JM), a transmembrane domain (TM), and a

cytoplasmic tail (CT). N. benthamiana lacks an endogenous

perception system for both eMax and xylanase. However,

transgenic N. benthamiana plants accumulating a hybrid protein

containing the ReMAX LRR and Eix2 JM-TM-CT domains success-

fully induced defence responses upon eMax recognition (Fig-

ure 1; Jehle et al., 2013a,b). One possible strategy for enhancing

the basal response layer may therefore take advantage of each

domain of different RLKs and RLPs to engineer upgraded versions

of PRRs.

Engineering ETI receptors to enhance specific
resistance

Overview of NLR receptors

Some NLRs can recognize their corresponding effectors directly

via physical interactions. However, other NLRs recognize the

presence of effectors via an indirect pathway (Martin

et al., 2003). In detail, NLRs are in company with other host

components targeted by effectors, thus recognizing effector

presence through the modification of the host proteins. The other

host components can be a decoy or a guardee (Cesari, 2018).

Once the guardee/decoy undergoes a conformational change

caused by pathogen effectors, the vigilant NLR is activated,

thereby inducing ETI responses. In some cases, NLRs work in pairs

in effector recognition, in which one NLR functions as a sensor to

trap the effector while the other NLR acts as an executor to

induce signalling (Cesari, 2018). Besides the effector recognition

function, some “helper” NLRs commonly contribute to the signal

transduction downstream after the vigilant NLR activation (Castel

et al., 2019; Dong et al., 2016; Wu et al., 2019b).

Altering NLR structure or effector recognition mechanisms is an

excellent approach for engineering ETI components to boost

resistance to a specific pathogen effector. The NLR itself

represents a popular target for engineering. The guardee/decoy

in the indirect recognition system may also be targeted (Kim

et al., 2016; Kourelis et al., 2016). A guardee is unlikely to

tolerate a change due to its specific functions in plant signalling in

addition to effector recognition (Cesari, 2018), whereas a decoy

is a preferred engineering target by taking advantage of a mimic

host target protein without any role in the plant. In the following

sections, we summarize strategies and provide examples of

increased plant resistance engineering that targets ETI compo-

nents.

Transformation-based engineering to transfer NLRs
within species

Many studies using crops or model plants have demonstrated the

successful transformation of resistance genes to increase resis-

tance against pathogens. For instance, in 2014, Broggini et al.

proposed a transformation strategy to increase the resistance of

apple to fire blight disease (Broggini et al., 2014). This devastat-

ing disease can destroy an entire apple/pear (Pyrus communis)

orchard if just one plant is infected. E. amylovora, the causal

agent of fire blight disease, contains the effector AvrPpt2EA,

which is recognized by the R protein FB_MR5 from apple

accession Mr5. To generate resistance to E. amylovora in apple

cultivar Gala, FB_MR5 was transformed from apple accession

Malus 9 robusta 5 (Mr5; Figure 1). The transgenic lines express-

ing Mr5 showed significantly less severe disease symptoms

compared to susceptible wild-type ‘Gala’. Therefore, it is possible

to isolate a single resistance-determinant gene from the native

genome of apple and transfer it to a susceptible cultivar to

protect it from fire blight. Although FB_MR5 is an endogenous

apple gene, exogenous T-DNA from the transformation construct

is still present in transgenic apple plants, prompting researchers to

design ways to remove it. In 2015, Kost et al. generated the first

cisgenic ‘Gala’ apple using the same method involving

A. tumefaciens-mediated transformation of FB_MR5 from wild

apple accessionMr5 (Kost et al., 2015). Interestingly, the cisgenic

apple line, displaying markedly fewer fire blight disease symp-

toms, carried only the cisgene FB_MR5 controlled by a copy of the

MR5 promoter and no transgene due to the removal of the T-

DNA by heat-induced flippase.

Transformation-based engineering can also be used for the

intraspecies transfer of NLRs when the effector from the

pathogen and the NLR from the resistant cultivar are known.

However, in some cases, even when the cognate effector is

unknown, NLR transfer can still be exploited to generate resistant

cultivars. Indeed, soybean (Glycine max) lines overexpressing

GmKR3, a soybean gene encoding a TIR-NB-LRR (TNL) similar to

tobacco mosaic virus (TMV) resistance protein N, showed

decreased susceptibility to several soybean mosaic virus strains,

bean common mosaic virus, watermelon mosaic virus, and bean

pod mottle virus (Xun et al., 2019; Table 1). Remarkably, the

enhanced resistance in GmKR3 overexpression lines did not

sacrifice plant growth, including seed production and quality. In

addition, overexpressing the RPM1 (RESISTANCE TO P. SYRINGAE

PV MACULICOLA 1)-like resistance gene OsRLR1 enhanced the

resistance of rice to the fungus Pyricularia oryzae and the

bacterium Xoo (Table 1; Du et al., 2021).

Transformation-based engineering to transfer NLRs
from one species to another

Following the pioneering study of 2010 in which the PRR protein

EFR from Arabidopsis was expressed in N. benthamiana and

tomato (Lacombe et al., 2010), an increasing number of studies

have reported the transfer of NLRs across species. Some studies

have focused on the transfer of NLRs to increase resistance

against bacteria. For example, the bacterial spot 2 (Bs2) resistance

gene from pepper (Capsicum annuum) was transferred into

tomato, which is phylogenetically close to pepper, to control

bacterial spot disease (Horvath et al., 2012). Pepper Bs2 is an R

protein that senses the effector AvrBs2, which is conserved in

bacterial spot-inducing Xanthomonas strains. Tomato plants

harbouring the Bs2 transgene exhibited a dramatic decrease in

disease severity (Figure 1). Moreover, the fruit yield from tomato

plants expressing Bs2 was more than double that of non-

transgenic tomatoes. A later study demonstrated that pepper

Bs2-related immunity could also be engineered in a plant family

other than Solanaceae (Sendin et al., 2017). Indeed, the Bs2

gene was used to develop transgenic sweet oranges (from the

Rutaceae family) with increased resistance to citrus canker

disease, which is caused by Xcc harbouring the conserved avrBs2.

Other studies have focused on genetic transformation-based

engineering for resistance to fungal pathogens. For instance,

Arabidopsis plants harbouring theMildew A (MLA) NLR gene from

barley (Hordeum vulgare) were fully resistant to the barley

powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh)

containing the effector AVRA1 (Maekawa et al., 2012), indicating
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Table 1 Representative of positive immune regulators that were identified in crop plants

No. Gene Pathogen/pest Hormone signalling Reference

Monocotyledon

Brachypodium distachyon*

1 AtSAG101 Puccinia brachypodii SA Wang et al. (2020c)

M. oryzae

2 BdWRKY38 R. solani SA Kouzai et al. (2020)

Haynaldia villosa*

3 Stpk-V Bgt, Bgh SA, JA Qian et al. (2017)

4 HvSERK2 Bgh nd Li et al. (2018)

5 RLK-V1.1 Bgt nd Hu et al. (2018)

6 LecRK-V Bgt SA Wang et al. (2018c)

Hordeum vulgare*

7 SnRK1 Bgh nd Han et al. (2020)

8 Sr22, Sr33, Sr35 and Sr45 Pgt nd Hatta et al. (2021)

Oryza sativa*

9 SDS2 M. oryzae nd Fan et al. (2018)

10 OsWRKY67 M. oryzae, Xoo nd Vo et al. (2017)

11 OsMYC2 Xoo JA Uji et al. (2016)

12 OsCIPK30 RSV nd Liu et al. (2017c)

13 OsHsp18.0 Xoo, Xoc SA, JA Ju et al. (2017), Kuang et al. (2017)

14 OsSnRK1a P. oryzae, C. miyabeanus, R. solani JA and SA Filipe et al. (2018)

Xoo

15 WRKY45 Magnaporthe grisea SA Shimono et al. (2012)

Xoo

16 OsRSR1 R. solani nd Wang et al. (2021a)

17 OsRLCK5 R. solani nd Wang et al. (2021a)

18 SWEET14 R. solani nd Kim et al. (2021)

19 DOF11 R. solani nd Kim et al. (2021)

20 OsbHLH034 Xoo JA Onohata and Gomi (2020)

21 Osa-miR162a M. oryzae nd Li et al. (2020b)

22 Os6PGDH1 Nilaparvata lugens (BPH) JA and ET Chen et al. (2020b)

23 OsPDR1 Xoo JA Zhang et al. (2020a)

24 MIM156-3p M. oryzae nd Zhang et al. (2020c)

25 OsMIM167d M. oryzae IAA and JA Zhao et al. (2020)

26 FBL55 R. solani Auxin Qiao et al. (2020)

27 ALEX1 Xoo, Xoc JA Yu et al. (2020)

28 OsHsfB4d Xoo, Xoc nd Yang et al. (2020)

29 OsCM Xoo SA and JA Jan et al. (2020)

30 OsWRKY114 Xoo nd Son et al. (2020)

31 IPA1 Xoo Gibberellin (GA) Liu et al. (2019)

32 LPA1 R. solani nd Sun et al. (2019)

33 OsFWL5 Xoo JA Li et al. (2019a)

34 OsGRF8 BPH Flavonoid componds Dai et al. (2019)

35 OsMKK3 BPH JA, JA-Ile and ABA Zhou et al. (2019b)

36 OsPGIP1 Xoc JA Wu et al. (2019a)

37 HIR3 RSV SA Li et al. (2019c)

Pto DC3000

Xoo

38 AtRPS2 and AtRPM1(D505V) M. oryzae nd Li et al. (2019e)

Xoo

BPH

39 OsERF83 M. oryzae SA, MeJA and Ethephon (ETH) Tezuka et al. (2019)

40 OsRRK1 BPH nd Ma et al. (2017)

41 BAG2 Xoo nd You et al. (2016)

42 OsRLR1 P. oryzae nd Du et al. (2021)

Xoo

Saccharum spp. hybrid*

43 ScPR10 Sporisorium scitamineum, Sorghum

mosaic virus

SA and MeJA Peng et al. (2017)

Triticum aestivum*

44 TaRCR1 Rhizoctonia cerealis nd Zhu et al. (2017)

45 ERF1-V Bgt ET and ABA Xing et al. (2017)

46 TaPIMP2 Bipolaris sorokiniana nd Wei et al. (2017)

47 TaSnRK1a F. graminearum nd Jiang et al. (2020)
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Table 1 Continued

No. Gene Pathogen/pest Hormone signalling Reference

48 WFhb1-1 F. graminearum nd Paudel et al. (2020)

49 TaUGT6 F. graminearum nd He et al. (2020)

50 TaJAZ1 B. graminis JA Jing et al. (2019)

51 AtLTP4.4 F. graminearum nd McLaughlin et al. (2021)

Triticum urartu*

52 TuACO3 Bgt ET Zheng et al. (2020)

Phalaenopsis aphrodite sub sp. Formosana*

53 PaAGO5s Cymbidium mosaic virus,

Odontoglossum ringspot virus

nd Kuo et al. (2021)

Zea mays*

54 ZmERF105 Exserohilum turcicum nd Zang et al. (2020)

55 LcCHI2 E. turcicum nd Liu et al. (2020b)

Curvularia lunata

56 ZmDEF1 Sitophilus zeamais nd Vi et al. (2019)

Dicotyledons

Brassica napus*

57 AtGDSL1 Sclerotinia sclerotiorum SA Ding et al. (2020)

Capsicum annuum*

58 Can-miRn37a Colletotrichum truncatum nd Mishra et al. (2018)

59 CaHDZ27 R. solanacearum SA, JA, Ethephon (ETH) Mou et al. (2017)

60 CaLRR51 R. solanacearum SA, JA, Ethephon Cheng et al. (2017)

Chrysanthemum morifolium*

61 CmMYB19 Macrosiphoniella sanborni nd Wang et al. (2017e)

62 CmMYB15 M. sanborni nd An et al. (2019)

Citrus sinensis*

63 EFR Xcc, Xfp nd Mitre et al. (2021)

64 CsPrx25 Xcc nd Li et al. (2020a)

65 CsGH3.1 and CsGH3.1L Xcc SA, ET Zou et al. (2019)

Cucumis sativus*

66 CsWRKY10 Corynespora cassiicola nd Liu et al. (2020a)

67 CsERF004 Pseudoperonospora cubensis,

C. cassiicola

SA, ET Liu et al. (2017a)

68 CsRSF1 and CsRSF2 Sphaerotheca fuliginea ABA, GA Wang et al. (2021c)

Glycine max*

69 GmSN1 SMV nd He et al. (2017)

70 Rsv3 SMV nd Tran et al. (2018)

71 GmKR3 SMV, Bean common mosaic virus

(BCMV), Watermelon mosaic

virus, Bean pod mottle virus

(BPMV)

ABA Xun et al. (2019)

72 hrpZm P. syringae pv. tabaci, P. sojae nd Du et al. (2018)

73 GmPAL2.1 P. sojae SA and Genistein Zhang et al. (2017a)

74 GmERF113 P. sojae nd Zhao et al. (2017)

75 OXO S. sclerotiorum nd Yang et al. (2019)

76 GmSnRK1.1 P. sojae SA Wang et al. (2019b)

77 GmDR1 Fusarium virguliforme SA and JA Ngaki et al. (2021)

Tetranychus urticae

A. glycines, Matsumura

H. glycines

78 GmPI4L P. sojae Daidzein and genistein Chen et al. (2019)

79 AtQQS H. glycines nd Qi et al. (2019)

BPMV

PsgR4

Myzus persicae

F. virguliforme

80 AtNF-YC4, GmNF-YC4-1 H. glycines nd Qi et al. (2019)

TuMV

Pto DC3000

M. persicae

F. virguliforme

Gossypium hirsutum*

81 GhERF-IIb3 Xanthomonas citri pv. malvacearum

(Xcm)

JA Cacas et al. (2017)
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that AVRA1-mediated resistance via MLA in monocot barley was

recapitulated in the transgenic dicot Arabidopsis. Whereas wheat

contains many Stem rust (Sr) resistance genes against the fungus

Puccinia graminis f. sp. tritici (Pgt), barley contains a limited

number of genetically determined resistance genes. The transfor-

mation of the wheat NLR genes Sr22, Sr33, Sr35, and Sr45

successfully increased resistance to stem rust in barley (Table 1;

Hatta et al., 2021). The transgenic barley plants showed no

agronomically negative effects in the absence of disease. Another

example is the transfer of the NLR gene Ve1 from tomato to

tobacco (Nicotiana tabacum) and cotton (Gossypium hirsutum;

Song et al., 2018b). In detail, Song et al. successfully increased

the resistance of tobacco and cotton against Verticillium spp.

strains via the effector Ave1 recognition by tomato Ve1. In

Arabidopsis, the NLR proteins RESISTANT TO P. SYRINGAE 4 (RPS4)

and RESISTANT TO RALSTONIA SOLANACEARUM 1 (RRS1) recog-

nize three distinct effectors: PopP2, AvrRps4, and an unknown

Colletotrichum effector (Birker et al., 2009; Narusaka

et al., 2009). Transferring the RPS4/RRS1 pair from Arabidopsis

conferred resistance to the fungal pathogen Colletotrichum

higginsianum in Brassicaceae and protected cucumber (Cucumis

sativus, a member of the Cucurbitaceae) against C. orbiculare

(Figure 1; Narusaka et al., 2013). Transgenic tomato plants

expressing RPS4/RRS1 also specifically recognized the PopP2 and

AvrRps4 effectors (Narusaka et al., 2013). These findings expand

our knowledge of the roles of NLR-type genes in recognizing and

conferring resistance to distinct pathogens. The specific recogniz-

ing mechanism is highly conserved, as vigilant NLR protein pairs

were formed between different species. Therefore, transferring

NLR genes to other species represents a powerful strategy for

genetic engineering for enhanced plant immunity.

Random mutagenesis of NLRs enhances plant responses
to effectors

Each NLR can recognize only a few effectors. Therefore, the

limitation of ETI is that the plant must develop a new NLR to

recognize a newly evolved effector secreted from the pathogen.

To address this issue, scientists have performed random mutage-

nesis to broaden the effector recognition capacity of an NLR. For

example, the potato R protein R3a was subjected to random

Table 1 Continued

No. Gene Pathogen/pest Hormone signalling Reference

82 miR398, miR2950 Cotton leaf curl Multan virus

(CLCuMuV)

nd Akmal et al. (2017)

83 GhLAC15 Verticillium dahliae nd Zhang et al. (2019)

84 ghr-miR164 V. dahliae nd Hu et al. (2020)

85 GhMORG1 F. oxysporum nd Wang et al. (2020a)

86 ZmASN Bemisia tabaci nd Gul et al. (2020)

87 GhPAP1D Helicoverpa armigera Anthocyanin Li et al. (2019d)

Tetranychus cinnabarinus

Ipomoea batatas*

88 IbBBX24 Fusarium oxysporum f. sp batatas JA Zhang et al. (2020b)

Malus domestica*

89 MdERF11 Botryosphaeria dothidea SA Wang et al. (2020b)

90 MdMYB88, MdMYB124 Alternaria alternata nd Geng et al. (2020)

Valsa mali

91 MdMYB73 B. dothidea SA Gu et al. (2021)

92 MdUGT88F1 V. mali SA Zhou et al. (2019a)

93 MdATG18a Diplocarpon mali SA Sun et al. (2018)

Manihot esculenta*

94 MeNR1, MeNR2 Xanthomonas axonopodis pv.

manihotis

nd Yan et al. (2021)

Populus tremula*

95 PtDefensin Septotis populiperda JA Wei et al. (2020)

Populus alba var. pyramidalis*

96 PalbHLH1, PalMYB90 B. cinerea, Dothiorella gregaria Flavonoid compounds Bai et al. (2019)

Solanum lycopersicum*

97 SlMAPK3 TYLCV SA, JA Li et al. (2017)

98 Csl TYLCV nd Choe et al. (2021)

99 SlMYC1 T. urticae JA Hua et al. (2021)

100 SlMYB75 B. cinerea JA Liu et al. (2021b)

101 lncRNA39026 P. infestans nd Hou et al. (2020)

102 Pti4/5/6 Pto DC3000 nd Wang et al. (2021d)

103 SlWRKY8 Pto DC3000 SA, ABA Gao et al. (2020)

Solanum tuberosum*

104 StMPK7 P. infestans, Phytophthora parasitica SA Zhang et al. (2021)

105 StRac1 P. infestans nd Zhang et al. (2020d)

Vitis pseudoreticulata*

106 VpRH2 Uncinula necator nd Wang et al. (2017c)

107 VpEIFP1 Golovinomyces cichoracearum nd Wang et al. (2017b)

108 VpSTS29/STS2 U. necator SA Xu et al. (2019)

*Indicated for the applied plant.
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mutagenesis (Segretin et al., 2014) to alter its response to the

pathogenic effector AVR3a from the oomycete Phytophthora

infestans. In detail, wild-type R3a responds effectively to AVR3aKI

but weakly to its variant AVR3aEM (Armstrong et al., 2005; Bos

et al., 2009), which causes virulence in R3a-containing potato

plants. Through a random mutagenesis screening of R3a,

Segretin et al. obtained eight mutant R3a proteins with single

amino acid mutations that showed sufficient recognition of

virulent AVR3aEM and even other isoforms. These eight mutations

were located across the R3a protein, but mainly in LRR domains

(Figure 1). Interestingly, R3aN336Y, harbouring a mutation in a

nearby pocket of the NB, conferred resistance to the effector

PcAVR3a4 from the vegetable pathogen P. capsici.

Furthermore, based on the R3a case study in potato, the

authors applied the previously identified mutations in R3a to its

ortholog in tomato, NLR I2, which confers resistance to the fungal

pathogen Fusarium oxysporum f. sp. lycopersici (Figure 1; Gian-

nakopoulou et al., 2015). Whereas wild-type I2 conferred a weak

response to AVR3a, the I2I141N mutant significantly enhanced the

response to AVR3a. Moreover, I2I141N partially mediated resis-

tance against P. infestans and showed a broad-spectrum

response to effector Avr2 variants from F. oxysporum f. sp.

lycopersici. This finding suggests that it is possible to engineer

NLR via mutation to confer resistance to distantly related

pathogens. The knowledge obtained from studying an NLR in

one plant may thus be applied to improve the resistance

conferred by orthologous NLRs in other plants.

In some cases, broadening the effector recognition of an NLR

through mutagenesis comes at a cost, i.e., yield-compromising

and trailing necrosis caused by autoimmunity. For instance, in the

case of potato Rx protein, which mediates resistance to potato

virus X (PVX), mutations in the LRR domain of Rx confer resistance

to both PVX and the phylogenetically unrelated poplar mosaic

virus (PopMV). In response to PopMV, one Rx mutant showed a

trailing necrosis phenotype that annihilated the plant, while plants

carrying wild-type Rx displayed mild disease symptoms. However,

the researchers overcame this cost by performing secondary

mutagenesis (Harris et al., 2013). Specifically, the authors con-

ducted random mutagenesis in the N terminus of the Rx mutant

with impaired broad-host recognition. Four mutations located

close to the NB pocket were identified, conferring more robust

resistance to PopMV. Moreover, stable transgenic plants express-

ing one of these secondary Rx mutants showed resistance to PVX

and PopMV, which previously induced trailing necrosis in trans-

genic plants harbouring the primary Rx mutant (Figure 1). These

findings demonstrate that the recognition of an NLR can be

improved by stepwise mutagenesis. The stepwise mutagenesis has

been recently applied for Sw-5b, an NLR recognizing the move-

ment protein NSm from Tomato spotted wilt virus (TSWV), to

confer resistance against several TSWV variants and American-

type tospoviruses (Huang et al., 2021). However, since the gain-

of-function mutations arose from random mutagenesis, no

rational design strategy has thus far been proposed to engineer

NLRs with new recognition specificities, which represents an

obstacle to NLR engineering.

Utilizing a decoy system to expand the effector
recognition specificity of an NLR

The classical gene-for-gene hypothesis posits that a single R

protein recognizes only one avirulence effector. The concept that

NLRs could be engineered to recognize several unrelated effectors

had been challenging until the decoy engineering of Arabidopsis

AVRPPHB SUSCEPTIBLE 1 (PBS1) was proposed (Kim et al., 2016).

In nature, the Arabidopsis NLR RPS5 perceives the cleavage

products of the decoy host protein PBS1 following its cleavage by

the protease type III effector AvrPphB to trigger a defence

response (DeYoung et al., 2012; Qi et al., 2014). Targeting

PBS1, Kim and colleagues replaced the cleavage sequence

targeted by AvrPphB with those of AvrRpt2, tobacco etch virus

(TEV) NIa protease, or turnip mosaic virus (TuMV) NIa protease. In

response to each tested protease, the corresponding engineered

PBS1 successfully activated RPS5-mediated ETI (Kim et al., 2016;

Figure 1). Notably, unlike engineering to target an R protein,

decoy engineering provides a safe and predictable method for

protein modification. Indeed, except for effector recognition,

decoy PBS1 has no other biological function in the plant;

therefore, PBS1 decoy engineering will not have any additional

side effects on plants.

The decoy PBS1-based engineering strategy is suitable for plant

species containing Arabidopsis PBS1 orthologs and an endoge-

nous R protein that recognizes AvrPphB. Alternatively, the

Arabidopsis RPS5-engineered PBS1 cassette can be transferred

into crop plants. In addition, the target pathogens must be able to

take advantage of the host protease function for their virulence

activity to use this strategy. PBS1 orthologs have been character-

ized in several crops such as wheat, barley, soybean, and potato

(Bai et al., 2022; Carter et al., 2019; Helm et al., 2019; Sun

et al., 2017). To date, the PBS1 decoy approach was successfully

used to limit soybean mosaic virus (SMV) and potato virus Y (PVY)

in soybean and potato, respectively (Bai et al., 2022; Helm

et al., 2019). The successful engineering of soybean PBS1

(GmPBS1) and potato PBS1 (StPBS1) did not require the identi-

fication of the corresponding R protein. Therefore, PBS1-based

decoy engineering is expected to be widely applied to crops

without the need to identify the responsible R protein for

protease effector-mediated resistance.

Unlike a decoy, a guardee is not considered to be a good target

for engineering due to its other functions besides effector

recognition. For example, a T-DNA knockout mutant of the

guardee gene RPM1 INTERACTING PROTEIN 4 (RIN4) caused

seedling lethality due to the failure to suppress RPS2 autoactiva-

tion (Mackey et al., 2003). Therefore, engineering the guardee

RIN4 could alter its function, posing a challenge for researchers.

However, a recent study of natural RIN4 variants created an

opportunity to overcome that challenge (Kim et al., 2022). In

detail, natural RIN4 variants require RIN4-specific motifs,

asparagine/tyrosine (NY) or aspartic acid/phenylalanine (DF), to

regulate distinct NLRs. In general, while NY-type RIN4s suppress

the autoactivation of Arabidopsis RPM1 and RPS2, DF-type RIN4s

activate apple FB_MR5-mediated resistance. More importantly,

the conserved H167 residue in various RIN4s plays a key role in

regulating multiple NLRs. The idea of expanding NLR recognition

specificity by combining two motifs proved to be fruitful, since

three of six engineered chimeric RIN4 proteins designed using

two full-length NY-type RIN4s and three C-terminal DF-type RIN4s

suppressed RPM1/RPS2 autoactivation and activated the R protein

FB_MR5. When co-expressed with RPM1 and RPS2, the con-

structs encoding the tested RIN4 chimeric proteins triggered

AvrRpm1- and AvrRpt2-mediated resistance, respectively. Since

RIN4 is conserved among species, but with several polymorphisms

(Kim et al., 2022), it might be possible to engineer chimeric RIN4

to broaden the specificity of NLR recognition in plants of interest.
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Engineering crop resistance by targeting the
regulators of plant innate immunity

Enhancing the expression of positive regulators of plant
innate immunity for broad-spectrum resistance

Genetic transformation is the most commonly employed strategy

compared to several other biotechnological approaches, as it

permits researchers to insert specific gene sequences into a host

plant and to enhance the expression of positive regulatory

components in plant defence. During defence responses, phyto-

hormone signalling, particularly jasmonic acid (JA), ethylene (ET),

salicylic acid (SA), abscisic acid (ABA), auxin, cytokinin (CK),

gibberellin (GA), and brassinosteroid (BR) signalling, is somehow

induced, indicating that these plant hormones play significant

roles in plant defence responses (Bari and Jones, 2009; Berens

et al., 2017).

JA and ET primarily control resistance against necrotrophic

pathogens. By contrast, SA is a primary regulator of defence

against biotrophic and hemibiotrophic pathogens and is also

required to establish SAR (Durrant and Dong, 2004). Hence,

many researchers have utilized various regulatory components

from these phytohormone signalling networks to reduce host

susceptibility to specific pathogens. Table 1 lists positive immune

regulators that were engineered in crops over the past 5 years

and conferred disease resistance against several pathogens. For

instance, overexpressing SNF1-related protein kinase 1 (SnRK1),

encoding a key regulator of cellular metabolism, positively

affected SA and JA signalling pathways and enhanced resistance

against necrotrophic and biotrophic fungal pathogens such as

Fusarium graminearum, Bgh, M. oryzae, Cochliobolus miyabea-

nus, Rhizoctonia solani, and Plasmodiophora brassicae in various

crops (Table 1).

The activation of incompatible plant-pathogen interactions

mediated by SA and JA signalling is also applicable for many

bacteria. SnRK1 has been utilized to generate broad-spectrum

disease resistance. SnRK1 was also reported to decrease suscep-

tibility to bacterial leaf blight Xoo in various rice cultivars. In

addition to SnRK1, many regulatory components in the SA

signalling pathway are involved in the plant defence response

against bacteria (Filipe et al., 2018). Overexpressing Heat shock

protein 18.0 (Hsp18.0) activated SA signalling and positively

regulated resistance to Xoo and X. oryzae pv. oryzicola (Xoc), the

causal agent of bacterial leaf streak in rice. Conversely, suppress-

ing this gene increased susceptibility to Xoo and Xoc and

decreased free SA levels, suggesting that OsHsp18.0-mediated

resistance functions via an SA-dependent signalling pathway (Ju

et al., 2017; Kuang et al., 2017). The decreased susceptibility of

the transgenic rice lines to Xoo and Xoc was not solely due to

increased SA levels but also to increased JA and GA levels

(Table 1; Onohata and Gomi, 2020; Zhang et al., 2020a). Con-

sistent with these findings, the enhanced transcriptional regula-

tory activity of SnRK1 that confers resistance to Xoo involves

three phytohormone signalling pathways. Thus, defence

responses against the leaf blight pathogens seem to be coordi-

nately regulated by SA, JA and GA signalling pathways.

Engineering of S genes to enhance crop resistance

The engineering of durable, broad-spectrum resistance involves

the loss of function of S genes. Pathogens target and exploit S

genes to establish a compatible interaction with the host.

Therefore, the mutation or loss of function of S genes can limit

the ability of the pathogen to cause infection and disease

(Moniruzzaman et al., 2020). Recent advances in crop protection

have led to the identification and targeting of an assortment of S

genes in vegetables and other crops that play critical roles in plant

susceptibility to a wide range of pathogens and pests. Table 2

shows a summary of representative S genes identified in crops

over the past decade. One significant constraint to yield produc-

tion in rice is blast disease caused by the hemibiotrophic fungus

M. oryzae. Over the past decade, powerful biotechnology

approaches aimed at exploring the rice blast disease circuitry

have led to the discovery of various S genes involved in M. oryzae

infection. Interestingly, some S genes of M. oryzae were also

designated as S genes of the biotrophic bacterium Xoo (Table 2).

Even though numerous rice genes have been identified and

defined as S genes to Xoo, their roles in M. oryzae infection have

not yet been tested (Table 2). Thus, future studies on the

pathogenicity of Xoo and M. oryzae could help elucidate the

connection between M. oryzae and Xoo S genes. Besides

interacting with bacteria and fungi, S genes play roles in plant-

virus interactions. For example, knockout of ARGONAUTE 2

(OsAGO2) and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9

(OsSPL9) conferred resistance against rice black-streaked dwarf

virus (RBSDV) and rice stripe virus (RSV), respectively (Wang

et al., 2021e; Yao et al., 2019). Soybean MITOGEN-ACTIVATED

PROTEIN KINASE 6 (MPK6), tomato eIF4E2, and Pelota genes also

function as S genes that interact with plant viruses. Suppression

of MPK6 expression decreased susceptibility to SMV (Liu

et al., 2014), whereas knockout mutations of eIF4E2 and Pelo

conferred resistance against pepper veinal mottle virus (PVMV)

and tomato yellow leaf curl virus (TYLCV), respectively (Moury

et al., 2020; Pramanik et al., 2021).

The biotrophic fungus B. graminis causes powdery mildew,

one of the most destructive foliar diseases of cereals, thereby

significantly reducing crop productivity. Three S genes from

barley, cysteine-rich RLK 1 (HvCRK1), Microrchidia 1 (HvMORC1),

and HvMORC6a, were recently shown to contribute to suscep-

tibility to Bgh, as transcriptional suppression of HvCRK1 and

knockout of HvMORC1/MvMORC6a enhanced resistance to Bgh

(Table 2; Galli et al., 2021; Rayapuram et al., 2012). S genes to

B. graminis f. sp. Tritici (Bgt) from wheat have also been

characterized, including BONZAI 1 (BON1), BON3, ENHANCED

DISEASE RESISTANCE 1 (EDR1), and DOMAINS REARRANGED

METHYLASE 2 (DRM2); the downregulation of any of these four

genes led to significantly reduced powdery mildew symptoms

(Table 2; Geng et al., 2019; Zhang et al., 2017b; Zou

et al., 2018). Therefore, S genes play a role in disease suscepti-

bility to a wide range of pathogens.

Translating S gene engineering from Arabidopsis to
crops

Initial research to increase disease resistance in the model plant

Arabidopsis by downregulating S genes laid the foundation for

crop improvement. For example, DOWNY MILDEW-RESISTANT 6

(DMR6) was first identified as a negative regulator of plant innate

immunity via EMS mutagenesis of the highly susceptible Ara-

bidopsis mutant enhanced disease susceptibility1-2 (eds1-2) in

the accession Landsberg erecta. The growth of Hyaloperonospora

parasitica was highly constrained in the resulting dmr6 mutants

(Van Damme et al., 2005). Moreover, overexpressing DMR6 in

the Columbia-0 accession enhanced susceptibility to P. syringae

pv. tomato DC3000 (Pto DC3000) and Hyaloperonospora ara-

bidopsidis. Remarkably, the mutation in DMR6 strongly enhanced
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Table 2 Representative of S genes identified in crop plants (2011–2021)

No. Gene Method Pathogen/pest Reference

Monocotyledon

Hordeum vulgare*

1 HvCRK1 RNAi Bgh Rayapuram et al. (2012)

2 HvMORC1, HvMORC6a CRISPR/Cas9 Bgh Galli et al. (2021)

F. graminearum

Musa spp.*

3 MusaDMR6 CRISPR/Cas9 Xcm Tripathi et al. (2021)

Oryza sativa*

4 OsAGO2 CRISPR/Cas9, transposon insertion RBSDV Wang et al. (2021e)

5 OsMADS26 RNAi M. oryzae Khong et al. (2015)

Xoo

6 OsDCL1 RNAi M. oryzae Zhang et al. (2015a)

7 GF14e RNAi Xoo Manosalva et al. (2011)

8 OsGLIP1, OsGLIP2 RNAi Xoo Gao et al. (2017)

M. oryzae

9 OsNramp6 T-DNA M. oryzae Peris-Peris et al. (2017)

10 SPL33 EMS M. oryzae Wang et al. (2017d)

Xoo

11 OsDjA6 RNAi M. oryzae Zhong et al. (2018)

12 OsCUL3a EMS M. oryzae Liu et al. (2017b)

Xoo

13 OsCPK4 T-DNA M. oryzae Wang et al. (2018b)

Xoo

14 OsWRKY28 T-DNA M. oryzae Delteil et al. (2012)

15 OsEDR1 RNAi, T-DNA Xoo Shen et al. (2011)

16 OsERF922 RNAi M. oryzae Liu et al. (2012)

17 OsNPR1 Antisense expression C. suppressalis Li et al. (2013)

18 CPK18 RNAi M. oryzae Xie et al. (2014)

19 LMR RNAi and EMS M. oryzae Fekih et al. (2015)

Xoo

20 OsHDT701 RNAi M. oryzae Ding et al. (2012)

Xoo

21 OsMESL T-DNA, CRISPR/Cas9, RNAi Xoo Hu et al. (2021)

R. solani

22 OsTrxm CRISPR/Cas9 Xoo Hu et al. (2021)

R. solani

23 OsSULTR3;6 CRISPR/Cas9 Xoc Xu et al. (2021)

24 DEP1 RNAi, T-DNA insertion R. solani Miao Liu et al. (2021)

25 Osa-miR1873 miR1873 M. oryzae Zhou et al. (2020)

26 OsSPL9 CRISPR/Cas9 RSV Yao et al. (2019)

27 OsMPK15 CRISPR/Cas9 M. oryzae Hong et al. (2019)

Xoo

28 Os8N3 CRISPR/Cas9 Xoo Kim et al. (2019)

29 OsHCAR CRISPR/Cas9 Xoo Kampire et al. (2021)

30 OsPG1 CRISPR/Cas9 Xoo Cao et al. (2021)

31 OsVOZ1/OsVOZ2 CRISPR/Cas9, RNAi M. oryzae Wang et al. (2021b)

Triticum aestivum*

32 TaNAC1 VIGS Pst Wang et al. (2015)

33 Ta-A/N-Inv1 VIGS Pst Liu et al. (2015)

34 TaBON1 and TaBON3 VIGS Bgt Zou et al. (2018)

35 TaWRKY49 VIGS Pst Wang et al. (2017a)

36 TaEDR1 RNAi, VIGS, CRISPR/Cas9 Bgt Zhang et al. (2017b)

37 TaLSD1 VIGS Pst Guo et al. (2013)

38 TaEIL1 VIGS Pst Duan et al. (2013)

39 TaNAC21/22 VIGS Pst Feng et al. (2014)

40 TaDIR-B1 VIGS, EMS Fusarium pseudograminearum Yang et al. (2021)

41 TaSTP13 VIGS Pst Huai et al. (2020)

42 TaHRC RNAi, CRISPR/Cas9 F. graminearum Su et al. (2019)

43 TaCSN5 RNAi Pst Bai et al. (2021)

44 TaADF3 VIGS Pst Tang et al. (2015)

45 DRM2 VIGS Bgt Geng et al. (2019)

Zea mays*

46 ZmLOX3 Mu-transposable element-insertional

mutagenesis

Colletotrichum graminicola Constantino et al. (2013)
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Table 2 Continued

No. Gene Method Pathogen/pest Reference

47 ZmFBL41 Transposon insertion R. solani Li et al. (2019b)

Dicotyledons

Brassica napus*

48 BnCRT1a EMS, CRISPR/Cas9 Verticillium longisporum Probsting et al. (2020)

Capsicum annuum*

49 CaMLO2 VIGS Xanthomonas campestris pv. vesicatoria (Xcv) Kim et al. (2014)

50 CaWRKY58 VIGS R. solanacearum Wang et al. (2013)

51 CaGRP1 VIGS Xcv Kim et al. (2015)

Citrus sinensis*

52 CsWRKY22 RNAi Xcc Long et al. (2021)

53 CsDMR6 CRISPR/Cas9 Xcc Parajuli et al. (2022)

54 CsTCTP1 or CsTCTP2 VIGS S. fuliginea Meng et al. (2018)

55 CsMLO1 or CsMLO2 VIGS C. cassiicola Yu et al. (2019a,b)

56 CYP6CY14, CYP6CY22, CYP6UN1 RNAi Aphis gossypii Chen et al. (2020a)

Fragaria 9 ananassa*

57 FaWRKY25 RNAi B. cinerea Jia et al. (2020)

Glycine max*

58 Gm-NDR1-1 RNAi Meloidogyne incognita McNeece et al. (2017)

59 GmMPK6 VIGS P. manshurica Liu et al. (2014)

SMV

Gossypium barbadense*

60 GbWRKY1 VIGS V. dahliae Li et al. (2014a)

B. cinerea

61 GbMPK3 RNAi V. dahliae Long et al. (2020)

Gossypium hirsutum*

62 HDTF1 VIGS V. dahliae Gao et al. (2016)

B. cinerea

63 GhSSI2 VIGS V. dahliae Mo et al. (2021)

F. oxysporum

64 GhADF6 VIGS V. dahliae Sun et al. (2021)

65 GhNAC100 VIGS V. dahliae Hu et al. (2020)

66 GhBsr-k1 VIGS V. dahliae Li et al. (2021)

F. oxysporum

Malus domestica*

67 MdMLO19 RNAi Podosphaera leucotricha Pessina et al. (2016)

Solanum lycopersicum*

68 SlWRKY70 VIGS Macrosiphum euphorbiae Atamian et al. (2012)

Meloidogyne javanica

69 SlSR1, SlSR3L VIGS B. cinerea Li et al. (2014b)

Pto DC3000

70 eIF4E2 EMS PVMV Moury et al. (2020)

71 SlSRFR1 CRISPR/Cas9 Pto DC3000 Son et al. (2021)

72 SlPelo CRISPR/Cas9 TYLCV Pramanik et al. (2021)

73 SlMlo1 CRISPR/Cas9 Oidium neolycopersici Pramanik et al. (2021)

74 SlDMR1 RNAi O. neolycopersici Huibers et al. (2013)

75 SlDMR6 CRISPR/Cas9 Pto DC3000 Thomazella et al. (2021)

X. gardneri

X. perforans

P. capsici

P. neolycopersici

Solanum lycopersicum, Solanum tuberosum*

76 StDND1 RNAi P. infestans Sun et al. (2016a)

O. neolycopersici

Golovinomyces orontii

Solanum tuberosum*

77 StDND1 CRISPR/Cas9 P. infestans Kieu et al. (2021)

78 StCHL1 CRISPR/Cas9 P. infestans Kieu et al. (2021)

79 StDMR6-1 RNAi P. infestans Sun et al. (2016b)

CRISPR/Cas9 P. infestans Kieu et al. (2021)

80 StERF3 RNAi P. infestans Tian et al. (2015)

*Indicated for the applied plant.
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Table 3 List of S genes from Arabidopsis thaliana for potential resistance improvement in crops

No. Gene name Gene ID Method Pathogen/pest Reference

Pathogen: Bacteria

1 AtHMAD1 AT1G51090 T-DNA insertion Pto DC3000 Imran et al. (2016)

2 ORM1 AT1G01230 T-DNA insertion P. syringae Li et al. (2016)

3 ORM2 AT5G42000 artificial microRNA P. syringae

4 CBP60a AT5G62570 T-DNA insertion P. syringae pv. maculicola Truman et al. (2013)

5 LECRK-I.7 AT5G60270 T-DNA insertion P. brassicae, P. capsici Wang et al. (2014)

6 LecRK-V.5 AT3G59700 T-DNA insertion, OX Pto DC3000 Desclos-Theveniau et al. (2012),

Wang et al. (2014)

7 AtLIK1 AT3G14840 T-DNA insertion Pto DC3000 Le et al. (2014)

8 PAT1 AT1G79090 T-DNA insertion Pto DC3000 Roux et al. (2015)

9 PBL13 AT5G35580 T-DNA insertion Pto DC3000 Lin et al. (2015)

10 PICC AT2G32240 Knockout Pto DC3000 Venkatakrishnan et al. (2013)

11 EIJ1 AT2G24860 T-DNA insertion Pto DC3000 Liu et al. (2021a)

12 EIL1 AT2G27050 PCR-based Screen knockout Pto DC3000 Chen et al. (2009)

13 AtG3BP-LIKE AT5G48650 T-DNA insertion Pto DC3000 Abulfaraj et al. (2018)

14 IAN9 AT1G33970 CRISPR/Cas9 Pto DC3000 Wang et al. (2019c)

15 IAP1 AT1G18660 T-DNA insertion Pto DC3000

16 ATG5 AT5G17290 Autophagy knock-out Pto DC3000 Lenz et al. (2011)

17 ATG10 AT3G07525 Autophagy knock-out Pto DC3000

18 ATG18a AT3G62770 RNAi, T-DNA insertion Pto DC3000

19 MIEL1 AT5G18650 T-DNA insertion Pto DC3000 Marino et al. (2013)

20 MOM1 AT1G08060 TGS mutants Pto DC3000 Cambiagno et al. (2018)

21 MKP2 AT3G06110 T-DNA insertion R. solanacearum Lumbreras et al. (2010)

22 At NFXL1 AT5G50440 T-DNA insertion Pto DC3000 Zhang et al. (2011)

23 AtMEMB12 AT1G10170 T-DNA insertion Pto DC3000 Asano et al. (2008)

24 AtNUDT7 AT4G12720 T-DNA insertion Pto DC3000 Ge et al. (2007)

25 AtPLA2-a AT2G26560 T-DNA insertion Pto DC3000 Froidure et al. (2010)

26 AtPRN2 AT2G43120 T-DNA insertion R. solanacearum Zhang et al. (2014)

27 PROSCOOP12 AT5G44585 T-DNA insertion E. amylovora Gully et al. (2019)

28 AtPUB13 AT3G46510 T-DNA insertion Pto DC3000 Antignani et al. (2015)

29 AtCBRLK1 AT1G11350 T-DNA insertion Pto DC3000 Kim et al. (2009a)

30 SEF AT5G37055 T-DNA insertion Pto DC3000 March-Diaz et al. (2008)

31 PIE1 AT3G12810

Pathogen: Fungus

32 ABA2 AT1G52340 Amino acid substitution G. cichoracearum Xiao et al. (2017)

33 ABA3 AT1G16540 Amino acid substitution G. cichoracearum Xiao et al. (2017)

34 ATG2 AT3G19190 EMS, T-DNA insertion G. cichoracearum Wang et al. (2011)

35 RWA2 AT3G06550 T-DNA insertion B. cinerea Manabe et al. (2011)

36 EXO70B1 AT5G58430 T-DNA insertion G. cichoracearum Zhao et al. (2015)

37 EDR2 AT4G19040 EMS Erysiphe cichoracearum Tang et al. (2005)

38 EDR4 AT5G05190 EMS G. cichoracearum Wu et al. (2015)

39 AtGRXS13 AT1G03850 T-DNA insertion B. cinerea La Camera et al. (2011)

40 MED20 AT2G28230 T-DNA insertion F. oxysporum Fallath et al. (2017)

41 MED8 AT2G03070 T-DNA insertion F. oxysporum Kidd et al. (2009)

42 MED25, PFT1 AT1G25540 T-DNA insertion F. oxysporum Kidd et al. (2009)

43 AtMLO2 AT1G11310 T-DNA insertion B. cinerea Consonni et al. (2010)

44 MYB3R4 AT5G11510 T-DNA insertion G. orontii Chandran et al. (2010)

45 AtMYB46 AT5G12870 T-DNA insertion B. cinerea Ramirez et al. (2011)

46 AtMYB44 AT5G67300 T-DNA insertion Alternaria brassicicola Shim et al. (2013)

47 OCP3 AT5G11270 EMS B. cinerea, Plectosphaerella cucumerina Coego et al. (2005)

48 PAD4 AT3G52430 EMS G. cichoracearum Neubauer et al. (2020)

49 PMR6 AT3G54920 T-DNA insertion E. cichoracearum Vogel et al. (2002)

50 PUB25 AT3G11840 T-DNA insertion B. cinerea Wang et al. (2018a)

51 PUB26 AT3G19380 T-DNA insertion B. cinerea

52 PUX2 AT2G01650 T-DNA insertion G. cichoracearum Chandran et al. (2009)

53 AtSEX1 AT1G10760 T-DNA insertion E. cruciferarum Engelsdorf et al. (2013)

54 PGM AT1G78050

55 ADG1 AT5G48300

56 At2OGO ND CRISPR/Cas9 F. graminearum Low et al. (2020)

Pathogen: Virus

57 ACS6 AT4G11280 T-DNA insertion TMV Chen et al. (2013b)

58 AtTOR AT1G50030 RNAi CaMV Schepetilnikov et al. (2011)

59 BIR1 AT5G48380 T-DNA insertion Tobacco rattle virus Guzman-Benito et al. (2019)
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resistance to H. arabidopsidis without any growth defects in the

plants (Zeilmaker et al., 2015). DMR6 is a SA 5-hydroxylase (S5H)

that catalyses the formation of 2,5-DHBA (an aromatic compound

in green plants) from SA (Zhang et al., 2017c). Since DMR6 plays

an important role in regulating plant defence responses in

Arabidopsis, its orthologs have been successfully targeted in

many different crops (Table 2). For example, a loss-of-function

mutant of SlDMR6 in tomato generated by CRISPR/Cas9-

mediated mutagenesis showed broad-spectrum resistance to

pathogens, including Pto DC3000, X. gardneri, X. perforans,

P. capsici, and Pseudoidium neolycopersici (Thomazella

et al., 2021). Knockout mutants of sweet basil (Ocimum basili-

cum) ObDMR6 using CRISPR/Cas9-mediated mutagenesis exhib-

ited enhanced resistance to downy mildew caused by

Peronospora belbahrii (Hasley et al., 2021). Knockdown of

StDMR6 in potato by RNAi (Sun et al., 2016b) and knockout of

this gene by CRISPR/Cas9 (Kieu et al., 2021) conferred resistance

to P. infestans, which causes late blight disease. A mutation in

the banana ortholog MusaDMR6 generated by CRISPR/Cas9

enhanced resistance to banana xanthomonas wilt (BXW) caused

by Xanthomonas campestris pv. musacearum (Xcm; Tripathi

et al., 2021). In two citrus cultivars, ‘Duncan’ grapefruit and

Carrizo citrange, the mutation of CsDMR6 via CRISPR/Cas9 led to

significantly increased resistance to the bacterial disease citrus

canker caused by X. citri ssp. citri (Xcc; Parajuli et al., 2022).

These findings highlight the benefits of engineering disease

resistance by disabling disease S genes using genome-editing

techniques in which CRISPR/Cas is a dominant tool.

SUPPRESSOR OF rps4-RLD 1 (SRFR1) is a negative regulator of

ETI-associated transcriptional immune responses in Arabidopsis

(Kwon et al., 2004, 2009). SRFR1 functions as a scaffold protein

in association with the defence regulator EDS1 and other TNL

proteins, such as RPS4, RPS6, and SUPPRESSOR OF NPR1-1

CONSTITUTIVE 1 (SNC1), to regulate downstream plant immune

signalling (Bhattacharjee et al., 2011; Kim et al., 2010). Muta-

tions in SRFR1 enhanced resistance to the Pto DC3000-expressing

effectors avrRps4 or hopA1 in Arabidopsis in the absence of

functional RPS4 or RPS6, respectively (Kim et al., 2009b,c; Kwon

et al., 2009), as well as resistance to the generalist chewing

insect beet armyworm (Spodoptera exigua) and sugar beet cyst

Table 3 Continued

No. Gene name Gene ID Method Pathogen/pest Reference

60 CBP20 AT5G44200 T-DNA insertion Plum pox virus (PPV) Pasin et al. (2020)

61 CBP80, ABH1 AT2G13540 T-DNA insertion PPV

62 CDKC;2 AT5G64960 T-DNA insertion CaMV Cui et al. (2007)

63 CYCT1;5 AT5G45190 T-DNA insertion CaMV Cui et al. (2007)

64 AtDBP1 AT2G25620 T-DNA insertion PPV, TuMV Castello et al. (2010)

65 PCaP1, MDP25 AT4G20260 T-DNA insertion TuMV Cheng et al. (2020)

66 NISP AT4G30240 T-DNA insertion Begomovirus Gouveia-Mageste et al. (2021)

67 PAP85 AT3G22640 RNAi TMV Chen et al. (2013a)

Pathogen: Oomycete

68 AtERF019 AT1G22810 CRISPR/Cas9 P. parasitica Lu et al. (2020)

69 IOS1 AT1G51800 T-DNA insertion H. arabidopsidis Hok et al. (2011)

70 AtOBE1 AT3G07780 T-DNA insertion H. arabidopsidis Mukhtar et al. (2011)

71 NPR3 AT5G45110 T-DNA insertion H. parasitica Zhang et al. (2006)

Pathogen: Nematode

72 AtWRKY23 AT2G47260 RNAi H. schachtii Grunewald et al. (2008)

73 STP12 AT4G21480 T-DNA insertion H. schachtii Hofmann et al. (2009)

74 PME3 AT3G14310 T-DNA insertion H. schachtii Hewezi et al. (2008)

75 RPE AT5G61410 T-DNA insertion M. incognita Favery et al. (1998)

Pests: Arthropods

76 AtWSCP AT1G72290 T-DNA insertion Porcellio scaber, Armadillidium vulgare Boex-Fontvieille et al. (2015)

77 AGO1 AT1G48410 EMS M. persicae Kettles et al. (2013)

78 DCL1 AT1G01040 T-DNA insertion M. persicae Kettles et al. (2013)

79 HRL1 AT4G23660 EMS S. exigua Mewis et al. (2005)

80 ETR1 AT1G66340 EMS S. exigua Mewis et al. (2005)

81 LOX5 AT3G22400 T-DNA insertion M. persicae Nalam et al. (2012)

Multiple pathogens

82 LIF2 AT4G00830 T-DNA insertion Pto DC3000 Le Roux et al. (2014)

B. cinerea

83 AtLYK3 AT1G51940 T-DNA insertion Pectobacterium carotovorum Paparella et al. (2014)

B. cinerea

84 RTP1 AT1G70260 T-DNA insertion, RNAi G. cichoracearum Pan et al. (2016)

P. parasitica

85 AtMED18 AT2G22370 T-DNA insertion F. oxysporum Fallath et al. (2017)

TuMV, CaMV, AltMV, Cytomegalovirus (CMV) Hussein et al. (2020)

86 AtSSI2 AT2G43710 EMS CMV Sekine et al. (2004)

M. persicae Louis et al. (2010)

87 PGL3 AT5G24400 T-DNA insertion P. syringae pv. maculicola Xiong et al. (2009)

H. arabidopsidis
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nematode (Heterodera schachtii; Figure 3; Nguyen et al., 2016).

Knowledge of Arabidopsis SRFR1 prompted the editing of tomato

SRFR1 (SlSRFR1) with the CRISPR/Cas9 system. Interestingly, this

approach not only enhanced disease resistance against Pto

DC3000, but it also revealed the antagonistic functions of

Arabidopsis SRFR1 and tomato SRFR1 as negative regulators of

the response to hemibiotrophic pathogens (Pto DC3000) and

positive regulators of the response to necrotrophic pathogens

(F. oxysporum f. sp. lycopersici and Botrytis cinerea), respectively

(Table 2 and Figure 3; Son et al., 2021). Targeting SRFR1

orthologs in other crop plants could offer a new means of

engineering enhanced disease resistance.

As demonstrated by the above examples, successful studies in

Arabidopsis have paved the way for the editing of S genes to

enhance disease resistance in crops. With this in mind, we

compiled a list of S genes that were mutated to improve plant

resistance in Arabidopsis but that have not yet been targeted in

any crop (Table 3). We categorized these S genes into seven

groups, based on the pathogen to which the mutation in the

gene confers resistance: bacterium, fungus, virus, oomycete,

nematode, arthropod, and multiple pathogens. Notably, the

mutation of many S genes causes a broad range of resistance to

multiple pathogens (Table 3). For instance, Mediator Complex

Subunit 18 (MED18) is a multifunctional protein that regulates

plant immunity, flowering time, and responses to plant hormones

(Lai et al., 2014). Mutating Arabidopsis MED18 via T-DNA

insertion strongly enhanced plant immunity in response to the

fungus F. oxysporum (Fallath et al., 2017) and to many viruses

such as TuMV, cauliflower mosaic virus (CaMV), Alternanthera

mosaic virus (AltMV), and CMV (Table 3; Hussein et al., 2020).

Therefore, orthologs of Arabidopsis MED18 in other crops that

are generally affected by fungi and viruses represent potential

targets for engineering to reduce crop losses in the future. The

mutation of LHP-INTERACTING FACTOR 2 (LIF2), which controls

flowering time and cell fate in Arabidopsis (Latrasse et al., 2011),

also enhanced resistance to both the hemibiotrophic bacterium

Pto DC3000 and the necrotrophic ascomycete B. cinerea

(Table 3; Le Roux et al., 2014). Based on the success of gener-

ating new disease resistance traits by knocking down/out the S

genes DMR6 and SRFR1 from model plants into crop plants

(Table 2 and Figure 3; Son et al., 2021; Thomazella et al., 2021),

the information in Table 3 could serve as a guide for improving

productivity via plant immune engineering simply by targeting S

genes.

Alternative ways to engineer disease resistance:
introducing pathogen molecules into plants

Plant disease management in the agricultural sector principally

relies on breeding disease-resistant varieties, chemical applica-

tions, biological control and cultural practices. Identifying new

disease-resistance resources and selecting new resistant cultivars

with broad-spectrum resistance are the most economical, practi-

cal, and effective methods for disease control and prevention.

However, the disease resistance of plant varieties against specific

pathogens is often limited by the existence of regulatory compo-

nents that suppress defence responses. Intriguingly, recent studies

have identified an assortment of effector proteins that conferred

Figure 2 Multiple strategies to engineer disease resistance by targeting the promoter region of immune-related genes. (a) Using dCas9 to control the

transcriptional expression of the target genes. dCas9 is fused with a transcriptional activator or repressor. Specific gRNA(s) specifically guide(s) the complex

of dCas9 and the activator or repressor to the promoter region of the target gene to up-regulate or down-regulate its transcriptional level, leading to

disease resistance enhancement in the plant. (b) Using uORF of TBF1 gene to overcome growth defect issue in plant disease engineering. Overexpressing

some positive regulators of immunity somehow causes an autoimmune response, which affects plant growth. Incorporating uORF sequences of the TBF

gene enables to compromise of normal phenotype without changing disease resistance traits of the plant. (c) Using CRISPR/Cas9 to remove uORF

sequences of a positive regulator gene efficiently increases the translational level, leading to disease resistance enhancement. Created with www.

BioRender.com.
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improved disease resistance when expressed in transgenic plants.

For instance, overexpressing Phytophthora sojae crinkling and

necrosis (CRN) effector (PsCRN115; Zhang et al., 2015b), small

cysteine-rich effector (PstSCR1) from Puccinia striiformis f. sp.

tritici (Pst; Dagvadorj et al., 2017), B. cinerea Congo red hyper-

sensitivity effector (BcCrh1; Bi et al., 2021), and M. oryzae SM1

and systemic defence trigger 1 effectors (MoSM1 and MoSDT1;

Hong et al., 2017; Wang et al., 2019a) significantly improved

disease resistance in various crops (Table 4). Thus, pathogen

effectors could be used as genetic resources for a transgenic-

based approach to disease management in crops.

However, the approval of transgenic plants or genetically

modified (GM) plants is controversial. The most important

consideration for GM plant cultivation is their impact on human

health and environmental sustainability. Consequently, GM plants

and their products must undergo adequate screening and

extensive safety testing before commercialization. Thus,

transgenic-based breeding is relatively time-consuming and

costly. One alternative method that does not produce GM plants

involves spray-induced gene silencing (SIGS) using exogenously

applied double-stranded RNA (dsRNA), short interfering RNA

(siRNA), or hairpin RNA (hpRNA). This technique has been applied

to enhance resistance against pathogens and pests in several

plants (Table 4). For example, the application of dsRNAs or

siRNAs to target F. graminearum genes, such as Cytochrome

P450 monooxygenase 51A (CYP51A), CYP51B, and CYP51C,

suppressed fungal growth in barley (Koch et al., 2016). Similarly,

exogenously applied dsRNA targeting myosin5 of Fusarium

asiaticum reduced fungal virulence in wheat (Song et al., 2018a).

The exogenous application of dsRNAs targeting numerous genes

of B. cinerea, including Bmp3, DCL1, DCL2, amino acyl tRNA

ligase, thioredoxin reductase, and TIM44, significantly decreased

the severity of grey mould disease in various fruits and vegetables

(McLoughlin et al., 2018; Spada et al., 2021; Wang

et al., 2016). SIGS is not only compatible with fungi, but it has

also been used to target a gene from the moth Chilo suppressalis

(striped rice stemborer) and several viral components (Sun

et al., 2020; Worrall et al., 2019). Therefore, RNAi-based bio-

control holds great potential for managing devastating diseases

and engineering plant innate immunity.

Figure 3 SRFR1 engineering as a case study of modifying gene encoding a negative regulator/S protein. (a) Summary of defence responses in the loss-of-

function mutant srfr1 in Arabidopsis and tomato. Mutation of SRFR1 in Arabidopsis induces disease resistance to Heterodera schachtii, Spodoptera exigua,

and Pto DC3000 expressing AvrRps4. However, srfr1 enhanced disease susceptibility to Fusarium oxysporum f. sp. lycopersici (FOL) and Botrytis cinerea.

Consistently, mutation of SlSRFR1 enhances resistance to Pto DC3000 and enhances susceptibility to FOL and B. cinerea. Enhancement of resistance and

susceptibility are indicated by green and red arrows, respectively. (b) Neighbour-joining phylogenetic tree based on the amino acid alignment of full-length

products of Arabidopsis SRFR1 (AtSRFR1) and its orthologs in other crops. AtSRFR1 sequence was obtained from The Arabidopsis Information Resource

(TAIR10, arabidopsis.org), and SRFR1-related protein sequences were obtained from the Dicots PLAZA 4.0 and Monocots PLAZA 5.0. Eleven different

SRFR1-like homologous were shown in the figure. The phylogenetic tree with 12 amino acid sequences was made using MEGAX. Amino acid sequences

were aligned using the MUSCLE alignment method, and the result was collected to generate a phylogenetic tree with the neighbour-joining model. Clades

were assessed using 1000 bootstrap repeats. (c) Transcriptional reduction of SRFR1 homologous in crops to generate new disease resistance by using

CRISPR/Cas9 and CRISPR/dCas9 systems. Created with www.BioRender.com.
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Perspectives

Strategies for targeting PRR and NLR receptors: from
broad-spectrum perception to specific resistance

In general, most plants are resistant to most pathogens, so disease

is the exception.A susceptible plantmaynot contain theproper PRR

found in resistant plants to recognize the pathogen. Taking

advantage of gene transfer techniques, scientists have introgressed

PRR genes from resistant to susceptible plants (Figure 1; Lacombe

et al., 2010; Piazza et al., 2021). The exogenous PRRs functioned

well in the previously susceptible plants, providing these plantswith

resistance against a range of pathogens. To enhance the response

of a PRR to a PAMPof interest, domain swapping canbeperformed.

The idea of combining a PAMP recognition ectodomain from one

PRRwith an endokinase domain fromanother PRR has proven to be

successful, since the chimeric PRRs exhibitedmore robust resistance

to the target pathogen compared to the original receptor lacking a

kinase domain (Figure 1; Kishimoto et al., 2010). Therefore, PRRs

can be transferred from one plant to another or engineered by

domain swapping based on the domains of other receptors.

Notably, NLRs are mainly engineered to perceive a specific

effector. An NLR normally recognizes a specific cognate effector:

recognizing multiple effectors is the exception. If an NLR that is

responsible for perceiving a particular effector is known, the NLR

could be introduced from resistant plants into susceptible ones.

The transfer of NLR genes has been carried out within and across

species (Figure 1). Although overexpressing an NLR gene can

induce an autoimmune response (Li et al., 2007; Stokes

et al., 2002), in some cases, an NLR gene can be overexpressed

in a plant to obtain resistance without any side effects (Du

et al., 2021; Xun et al., 2019). Because NLRs recognize specific

effectors, researchers have tried to expand the recognition

specificity of NLRs using several methods. The first such method

was random mutagenesis of the LRR domain (responsible for

effector recognition; Giannakopoulou et al., 2015; Segretin

et al., 2014). Some randomly mutated NLRs conferred enhanced

immunity and resistance to another pathogen. Although a

mutagenized NLR can lead to a growth defect in the plant,

secondary stepwise mutagenesis can be utilized to overcome this

issue. However, information about the effects of mutated

residues from a mutagenized NLR might not be applicable to

another NLR due to the random mutagenesis strategy itself.

Secondly, the domain-swapping strategy for PRRs prompted the

idea of domain engineering in NLRs. In detail, in the cases that

NLRs work in pairs to recognize effectors, some NLRs that act as

sensors but not executors contain an integrated decoy domain for

effector recognition. Promising approaches for NLR engineering

are introducing the integrated decoy domain into an executor

NLR or replacing/incorporating the integrated decoy domain with

other decoys/effector targets in a sensor NLR. Indeed, a recent

study of the sensor/executer NLR pair RGA5/RGA4 revealed that

this strategy is achievable (Cesari et al., 2022). After all, scientists

need to consider the partners of NLR in effector recognition and

downstream components of NLRs-mediated resistance to apply

NLR engineering in crops. Some NLR introductions could become

successful due to the identity between signalling components in

the target plants and those in the studied plants. Otherwise, NLR

introductions could not be accomplished.

NLRs are not the only targets of ETI-based engineering. Based

on an indirect recognition system, a guardee or decoy protein

targeted by a pathogenic effector could be engineered to expand

the recognition specificity of a corresponding NLR. In this review,

we discussed the engineering of the novel guardee RIN4 and the

decoy PBS1. When RIN4 was engineered, the chimeras generated

from RIN4s with two functional motifs regulated multiple NLRs

(Kim et al., 2022). Crops such as soybean and grape contain RIN4

homologues with variable RIN4-specific motifs (Kim et al., 2022);

these motifs might function in NLR-mediated resistance that has

not yet been characterized. It would be fascinating to explore

their functions and engineer a chimeric RIN4 for the regulation of

multiple NLRs. When PBS1 was engineered, swapping the PBS1

cleavage site of the effector AvrPphB with other sites cleaved by

other effectors expanded the recognition capacity of RPS5

(Figure 1; Kim et al., 2016). This finding suggests that we can

engineer crop resistance against any pathogen that takes

advantage of a protease as part of its effector repertoire as long

as the target crop exhibits PBS1-mediated immunity.

Two examples of applications for decoy engineering (Bai

et al., 2022; Helm et al., 2019) revealed the challenge of

translating this strategy into crops: (i) crops might harbour more

than one PBS1 orthologs that impede the identification of the

actual decoy protein for engineering (Helm et al., 2019); (ii)

modifying endogenous decoy genes raises a technical tricky in

crops. Therefore, to apply PBS1 decoy engineering, first, the

actual native PBS1 decoy must be carefully identified. Second,

validated genome editing tools should be considered to generate

desirable modifications efficiently. Nowadays, new plant genome

editing techniques detailed in Engineering PRRs, NLRs, and

regulators of plant innate immunity by CRISPR/Cas-mediated

gene editing section allow the installation of precise mutation.

Everything has its challenges; however, every challenge is

possible to solve.

Moreover, the successful engineering of PBS1 sheds light on the

concept that other target proteins could perhaps be engineered to

be cleaved by protease effectors. We suspect that if negative

immune regulators are engineered to be cleaved by a specific

protease effector, they will become dysfunctional in immunity

suppression in the presence of pathogens that harbour the

protease. Therefore, depending on the pathogens and protease

effectors they contain, engineering negative immune regulators by

adding a cleavage site represents a possible approach for resistance

engineering based on the case study of PBS1.

How can the expression levels of plant immune
regulators be modified as needed?

Besides immune receptors, downstream immune regulators

represent potential targets for resistance engineering. Immune

regulators positively or negatively regulate disease resistance

upon pathogen attack. One basic strategy is to transcriptionally

and translationally boost the activities of positive immune

regulators. Overexpression systems are commonly used in this

approach (Table 1). However, overexpressing genes in plants

sometimes leads to slower development due to over-active

immunity (Stokes et al., 2002; Tong et al., 2017). To modify

the expression levels and abundance of positive immune regu-

lators, the use of native or pathogen-specific promoters is

recommended. The translation of TL1-BINDING TRANSCRIPTION

FACTOR 1 (TBF1), a transcription factor that functions in the

switch from plant growth to defence upon defence activation in

Arabidopsis, was shown to be modulated by an upstream open

reading frame (uORF; Figure 2a; Xu et al., 2017). Generally, an

uORF located in the 50 untranslated region of a major open
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reading frame of a gene serves as a translational control factor to

precisely fine-tune the translation of the encoded protein. Based

on this finding, Xu et al. developed a ‘TBF1-cassette’ consisting of

the immune-inducible promoter and two pathogen-responsive

uORFs from the TBF1 promoter region. This cassette constrained

the translation of the autoactivated immune receptor snc1-1 in

Arabidopsis and the positive immune regulator AtNPR1 in rice.

The characterization of more genes exhibiting a similar type of

translation regulation is expected to increase the available

repertoire of uORFs. The combination of uORF cassettes with

positive immune regulators might function efficiently in crops,

resulting in enhanced resistance and normal plant growth.

Another method for resistance engineering is to modify

effector targets or negative regulators of the immune system.

Specifically, pathogenic effectors interact with and modify host

proteins for their virulence function (Jones and Dangl, 2006), and

negative regulators suppress immunity during pathogen infec-

tion. Therefore, effector targets or negative regulators of immu-

nity could be repressed to boost plant defence. To date, several

methods have been used to accomplish this type of suppression,

such as T-DNA insertion to knockout target genes and VIGS or

RNAi to knockdown these genes (Table 2). In some cases,

knockout/knockdown of negative regulators leads to defective

growth and abnormal phenotype by the uncontrolled positive

immune regulators. For example, in the Arabidopsis Col-0

ecotype, a T-DNA knockout in AtSRFR1 led to defective devel-

opment but not in the RLD ecotype. It is explained that SRFR1

suppresses the autoimmunity induced by the NLR SNC1 (that

does not function in RLD; Kim et al., 2010). Interestingly, unlike

the T-DNA knockout of AtSRFR1/Col-0, the mutation of SlSRFR1

enhanced defence against a bacterial pathogen with mild growth

defects in tomato (Son et al., 2021). These studies revealed that

the challenge of engineering immune regulators in one plant due

to the growth-defence tradeoff could be overcome in other plant

species. Therefore, identifying and engineering the orthologs of

immune regulators remains a promising strategy (Figure 3).

Plant pathologists have long focused on fighting enemies

(pathogens) and cherishing allies (plants). Surprisingly, however,

using a pathogen component to improve plant resistance can

sometimes be successful. Table 4 lists several immune regulators

originating from pathogen species that have been used to

enhance plant defence responses. Some effectors may be used as

critical genetic resources for the transgenic improvement of plant

disease resistance. However, the process of genetically modifying

crops remains controversial, not only due to technical limitations

but also because many consumers are apprehensive about

consuming GM products. The emergence of RNAi technology

utilizing exogenous dsRNAs, siRNAs, and hpRNAs could be

viewed as a viable alternative, as it is more eco-friendly,

sustainable, and broadly acceptable than genetic engineer-

ing/transformation. Additionally, RNAi-based biocontrol could

be utilized for pre- and post-harvest disease management in

vegetables and other crops. However, the number of target

genes that could be used for RNAi-based biocontrol and our

understanding of how plants or pathogens absorb exogenous

dsRNA are still limited. These issues pose challenges that could

hinder the use of RNA molecules on a large scale or in open-field

conditions. In summary, RNAi-based biocontrol represents a

promising approach to managing devastating plant diseases,

but additional studies are needed to overcome the limitations of

this technology.

Engineering PRRs, NLRs, and regulators of plant innate
immunity by CRISPR/Cas-mediated gene editing

Plants that were engineered using either transgenic or cisgenic

strategies still contain exogenous genetic material, precluding

their use as non-GM crops. The CRISPR/Cas system has recently

emerged as a powerful engineering method to generate T-DNA-

free plants. This system was developed based on the bacterial

immune system, using the Cas nuclease to bind to and cleave

exogenous DNA sequences from viruses (Terns and Terns, 2011;

Wiedenheft et al., 2012). A single guide RNA (sgRNA) accompa-

nies a Cas nuclease to a specific target sequence to generate DNA

double-strand breaks. This event triggers a natural repair mech-

anism of the host cell via two pathways: homology-directed repair

(HDR) and non-homologous end-joining (Malzahn et al., 2017),

resulting in a modified host DNA sequence. The versatility of the

CRISPR/Cas system allows users to create knockout mutants,

insert donor DNA, edit the bases of a target sequence, or control

the expression of target genes. This section focuses on the

CRISPR/Cas-based genome editing approach and its potential for

disease resistance engineering.

CRISPR-based tools open the door to immune receptor

engineering, which was previously impossible. We discussed

LRR domain swapping and NLR mutagenesis in a previous section.

These methods could theoretically be performed using CRISPR/

Cas. For LRR domain swapping, CRISPR/Cas could be used to

insert donor DNA encoding the desired additional domain.

CRISPR/Cas-mediated insertion is challenging, depending on the

length of donor template DNA. Recently, the improvement of

HDR efficiency in the plant has been validated (Vu et al., 2020,

2021). Therefore, it might be possible to perform LRR domain

swapping using an improved CRISPR/Cas system in the future. For

NLR mutagenesis, CRISPR/Cas could be used to precisely edit

specific target bases to obtain the amino acid sequence of

interest. However, more studies of NLR mutagenesis or NLR

crystallization are needed to provide references for CRISPR/Cas-

mediated NLR editing. In addition, two recent successful appli-

cations of PBS1 decoy engineering are overexpression of modified

PBS1 in transgenic soybean and potato (Bai et al., 2022; Helm

et al., 2019), which are regarded as GM organisms. This disad-

vantage inhibits the approval of engineered plants in global

markets. CRISPR/Cas-based modification can produce T-DNA free

in the engineered plants providing the desired resistance traits

without foreign DNA.

CRISPR/Cas9 has been widely used to engineer immune

regulators, especially negative immune regulators. CRISPR/Cas9

can be used to induce mutations or a premature stop codon to

knock out a gene of interest (Tables 2 and 3). SRFR1 and DMR6

are two recent examples of negative regulator genes that were

knocked out to gain resistance in tomato (Son et al., 2021;

Thomazella et al., 2021). Using CRISPR/Cas9 to knockout genes

of interest and applying information about the orthologs of

negative regulators will facilitate disease resistance engineering.

The DNA-binding activity of the gRNA-Cas9 complex provides

an excellent system for altering the expression of genes of

interest, especially genes encoding immune regulators. A tran-

scriptional repressor or activator could be combined with dead

Cas9 (dCas9) to suppress or enhance the gene expression of a

target negative/positive regulator of immunity without introduc-

ing DNA double-strand breaks (DSBs; Figure 2b; Moradpour and

Abdulah, 2020; Selma et al., 2019). Based on this knowledge, to
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enhance the expression level of a positive immune regulator in

the plant, targeting the promoter region of the gene using dCas9

represents a promising approach. When the gene encoding the

positive regulator contains a uORF(s), standard CRISPR/Cas9-

induced mutation could be utilized to repress uORF-mediated

translational suppression, resulting in the enhanced production of

the positive immunity regulator (Figure 2c). Notably, compared to

the traditional CRISPR/Cas system, base-editor and prime editor

are the most recent evolution of this technology to generate

desired mutations without DSBs (Anzalone et al., 2019; Kang

et al., 2018; Komor et al., 2016; Lin et al., 2020; Nishida

et al., 2016). Combining engineering strategies mentioned in

this manuscript and upgraded versions of new genome editing

techniques opens the new door to engineering plant innate

immunity wisely.

In summary, our present understanding of plant immune

components and current engineering strategies is being utilized

to enhance plant resistance. Although every strategy has its

advantages and disadvantages, the choice of a suitable strategy

could greatly facilitate crop engineering for improved disease

resistance. With rapid advances in our understanding of plant

immunity, we predict that new engineering strategies will be

developed, promising a bright future for crop protection.
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